2016 24th European Signal Processing Conference (EUSIPCO)

DECENTRALIZED SPARSITY-PROMOTING SENSOR SELECTION IN ENERGY
HARVESTING WIRELESS SENSOR NETWORKS

Miguel Calvo-Fullana, Javier Matamoros and Carles Anton-Haro

Centre Tecnologic de Telecomunicacions de Catalunya (CTTC), Barcelona, Spain

ABSTRACT

This paper considers the problem of sensor selection for the
estimation of a stochastic source, being the sensor nodes pow-
ered by energy harvesting. Therefore, the interest lies in se-
lecting the subset of most informative sensors that transmit
their observations to a fusion center (FC). To that end, we
propose to minimize the attained distortion at the FC plus a
penalization term that promotes sparsity on the power alloca-
tion at the sensors. Then, we propose a decentralized algo-
rithm in which the power allocation (and, thus, the selection
policy) and distortion minimization problems can be regarded
as separated problems. More specifically, the algorithm con-
sists of: (i) a local computation of the power allocation policy,
and (ii) a distortion minimization step. Moreover, for the case
where sparsity is promoted via the classical £; norm, we show
that the resulting local power allocation policy can be readily
computed by means of a waterfilling-like algorithm.

Index Terms— Sensor selection, energy harvesting, spar-
sity, wireless sensor networks.

1. INTRODUCTION

Energy Harvesting (EH) has recently emerged as a technol-
ogy capable of providing self-sustainable and longer lasting
wireless networks. As the name suggests, energy harvesting
consists in the scavenging of environmental energy, with com-
mon sources ranging from solar, thermal or kinetic energy.
One area where this idea has shown considerable promise is in
Wireless Sensor Networks (WSNs). These networks consist
of inexpensive, small and low-power sensors, making them a
prime candidate for being EH-powered.

All of this has lead to a great deal of research interest
in energy harvesting (See [1] and references therein for an
overview of current advances). Research focus ranges from
point-to-point scenarios [2] (with various considerations such
as finite battery capacity [3], and source-channel coding [4])
to multi-user scenarios, such as the broadcast channel [5] and
the multiple access channel [6].
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However, one essential characteristic in wireless sensor
networks is the availability of a large number of sensor nodes.
In this case, it may not be desirable for all the sensors to trans-
mit (i.e., to be selected) at a same time instant. This is usually
the result of constraints such as the available bandwidth or
the interference generated between nodes. This sensor se-
lection problem—as it is commonly known—is in essence a
combinatorial problem (with its inherent computational com-
plexity). However, convex relaxations of the problem have
been studied and are commonly used [7]. More recently, a
sparsity-aware approach has also been taken. Specifically,
the authors in [8] study the minimization of the number of
selected sensors subject to a given Mean Square Error (MSE)
constraint. Other works have also studied this problem for
the case of non-linear measurement models [9]. Also in an
sparsity-aware framework, and from an energy efficiency
point of view, the authors in [10] used a sparsity-promoting
penalty function to discourage the repeated selection of any
sensor node in particular.

Likewise in [7-10], this paper considers the problem of
sensor selection to estimate a stochastic source. However, un-
like the previous works, here sensors are assumed to be pow-
ered by energy harvesting. In this context, our previous works
[11, 12] have focused on the case where the number of se-
lected sensors is constrained by a prescribed value (i.e. max-
imum number of communication channels) and no sparsity is
promoted. In this setting, we provided in [12] an algorithm
achieving a stationary solution of the resulting (nonconvex)
sensor selection problem. Instead, in this paper (and more in
line with [13]), we resort to an sparsity-promoting framework.
Notably, we take an offline optimization approach, and, un-
like in [13], focus on the derivation of a decentralized sparse
sensor selection and power allocation scheme. To do so, we
resort to the Alternating Directional Method of Multipliers
(ADMM). The proposed procedure consists of: (i) a local
power allocation problem, in which the sensor nodes conduct
a regularization of their power allocation subject to their en-
ergy harvesting constraints; and (ii) a distortion minimization
step, in which the FC ensures the local decisions of the sensor
nodes minimize the distortion. Interestingly, when sparsity
is promoted by a weighted ¢; norm, we show that the power
allocation policy can be computed locally by means of a di-
rectional waterfilling algorithm. Finally, we assess the per-
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formance of the algorithm (i.e., convergence speed and dis-
tortion) by means of simulations.

2. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a wireless sensor network composed of M energy
harvesting sensor nodes (with index set M 2 {1,..., M})
and one fusion center deployed to estimate an underlying
source x € R™, with x ~ N(0,%;). We consider a
time-slotted system with 7' time slots indexed by the set
T £ {1,...,T} of duration Ts. In time slot ¢, the station-
ary source x generates an independent and identically dis-
tributed (i.i.d.) large sequence of n samples {x®)[t]}r_, =
{xW[t],...,x™[t]}. Asin [7], source samples and sensor
measurements are related through the following linear model:

y 1) = al <P+ 0P, k=1,...,n (1)
where {wfk) [t]}7_, stands for i.i.d., zero-mean Gaussian ob-
servation noise of variance 0120; vector a; gathers the known
coefficients of the linear model at the ¢-th sensor. The ultimate
goal is to reconstruct at the FC the sequence {x(*)[{]}7_, in
each time slot.

In the sequel, we assume separability of source and chan-
nel coding. As far as source coding is concerned, we adopt
a rate-distortion optimal encoder. Assuming a quadratic dis-
tortion measure at the FC, the encoded measurements at the
sensor nodes can be modeled as a sequence of auxiliary ran-

[ty [14]:

= alx Wt + vVt + " [,

dom variables {ui-k

ufft] = E=1,...,n (2)
with q(k)[] ~ N (0,02 [t]) modeling the i.i.d. encoding
noise. The average encoding rate per sample R;[t] must sat-
isfy the rate-distortion theorem [15], that is,

Rilt] 2 I(yilt]; wilt]) = h(usft]) — h(uilt]lyit]),
aT a; 0’2
= %log <1 e E;g:[t? w) NE)

Further, we assume that each active sensor encodes its ob-
servations at the maximum channel rate which is given by
the Shannon capacity formula!. Hence we have R;[t] =
L log(1 + h;[t]pi[t]), where p;[t] and h;[t] stand for the aver-
age transmit power and channel gain, respectively. From this
and (3), the variance of the encoding noise reads

_ al'S,a; + o2
hilt]pit]

Finally, by means of a Minimum Mean Square Error (MMSE)
estimator [16] the FC reconstructs {x®)[t]}7_, from the re-

“

IFor simplicity, we let the number of channel uses per sensor be equal to
the number of samples in a time slot.
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ceived codewords {ugk) [t]}7_,. The average (MSE) distor-
tion in time slot ¢ € 7T is given by [16]

M 1 -1
D[t] =tr <Z ey aa] +3.1) )

i=1 W qi
where tr(-) denotes the trace operator. By substituting ex-

pression (4) in (5) and defining &;[t] £ (%)’ we

can write the average distortion over all time slots as

T

-1
pilt] -1
Z <J2 D Ea ) . ©

=1

We consider sensor nodes powered by energy harvesting.
Assuming a discrete energy arrival model, at the beginning
of time slot ¢, the i-th sensor harvests E;[t] Joules of energy.
For simplicity, we consider the sensor nodes to be equipped
with batteries of infinite capacity and take into account only
the transmit power in the energy consumption model. Under
these considerations, the causal? constraints on the transmit
power are given by the convex sets

{T}_jpz <§_tj 5 >0} (7)

forallt € 7 and i € M. Our goal is then to minimize
the average distortion (6), subject to the energy harvesting
constraints (7). Due to bandwidth and signaling constraints?,
we attempt to minimize (6) by selecting a reduced subset of
sensors. Since sensor activity is determined by its transmit
power, (i.e., a sensor is active if p;[t] > 0 and idle other-
wise), we promote sparsity in the power allocation variable
p;[t]. Hence, the regularized optimization problem is given
by

1 1 Y 1] B
. Pi T -1
min — tr | — ————a;a; + X
pileily) T ; <03U ; pilt] + &[] )
1 T M
+Af;;f(pi[t]) (82)

where f : R — R is a sparsity-promoting penalty function,
and )\ the corresponding sparsity parameter. Several penalty
functions have been studied in the literature [17, 18], with the
most common ones being shown in Figure 1. The commonly
called ¢y norm corresponds to the cardinality function (in our
case, it equals one for p;[t] > 0 and zero otherwise). This
function results in a combinatorial problem, which is gener-
ally difficult to solve. To alleviate this, the ¢y norm is typi-
cally replaced by its convex envelope, i.e. the ¢; norm, lead-
ing to affordable optimization problems. However, other non-
convex regularizers such as the logarithmic penalty function

ZRecall that we consider the design of offline power allocation policies.
3Typically, the number of communication channels to the FC is limited.



2016 24th European Signal Processing Conference (EUSIPCO)

f(pilt])
151 fi
flog
1 fo
DT
b pi[t]

15 -1 -05 0 05 1 15

Fig. 1. Sparsity-promoting penalty functions.

might be preferable in some cases. The latter is typically used
in combination with Majorization-Minimization (MM) meth-
ods allowing us to solve the problem by means of a sequence
of surrogate (convex) functionals. Therefore, in the sequel,
we assume [ to be a convex function.

3. DECENTRALIZED ALGORITHM

In practice, the sensors should implement their selection and
power allocation policies locally and, the FC should ulti-
mately ensure that these local decisions attain the minimum
distortion. Bearing this in mind, we decouple the optimiza-
tion problem into those two tasks by introducing consensus
variables in the power allocation variables. Namely, we
introduce the global variables {¢;[t]} in (6) and force con-
sensus with {p;[t]} by introducing the equality constraints
p;[t] = g;[t]. Then, the optimization problem is rewritten as

M

-1
. 1 1 gi[t] T s-1
=S tr| = Y —"—aal +3%
mt?éla?[w T & r<o2 ;Qi[t]+£¢[t] R

1 T M
AL D Z f (pilt]) (9a)

st pilt] = qlt], VteT,VieM (9b)

Since (9) is a convex optimization problem, we can find a
global minimizer [19]. To exploit the separate structure of
this problem, we resort to the ADMM algorithm [20]. The
augmented Lagrangian of this problem is given by

£:l2tr <1i a1t aaT+21>
r= o5 = @lt] + &lt] o !
T M T M
FAZ DYl + Y0 Y05 wilt] - i)’
. tjwlz 1 t=11=1
+ ) iltl (vilt] - ailt]) (10)
t=1i=1

where p is the penalty parameter of the augmented La-
grangian and {¢;[t]} stands for the Lagrange multipliers
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Algorithm 1 Decentralized algorithm.

1: Step 1: Sensor computation.

2 0 = ongin (5 (it - o
pi[t]€Q;[t]

)+ oM
+3d i)

3: Step 2: FC computation.

V1= agmin( 8 (60 - ald + 0(1)”
qi[t] =

1 (1M g T >1>

+—tr — = _—aal +3 !
T (02 721 ¢ [t] + &lt]

5: Step 3: Dual update.

6 0TV = 0[]+ pTV 1) - ¢TI

7: Step 4: Go to Step 1 until convergence.

associated to the equality constraints (9b). Then, the result-
ing optimization procedure is summarized* in Algorithm 1,
where for convenience we have introduced the scaled dual
variable ¢;[t] = (1/p)¢;[t]. Algorithm 1 consists on a local
step and a consensus step. The local step is computed at each
sensor node and it is constrained by each sensor’s own energy
harvesting process. Then, sensors transmit their locally com-
puted power allocation p;[t] to the FC. During the consensus
step, the FC3 finds new values of {¢;[t]} which minimize the
distortion plus the regularization term. These new {¢;[t]} val-
ues are then transmitted to all the sensor nodes, which locally
update the dual variables {4);[t]}. The role of dual variables is
to enforce consensus between the FC variables and the power
allocation {p;[t]} computed by the sensor nodes. The process
is repeated until convergence.

3.1. Local step for a weighted /; norm

A frequent sparsity-promoting function that arises in a vari-
ety of scenarios is the weighted ¢; norm [18], (in our case,
f (pi[t]) = wi[t]pi[t], where w;[t] is a nonnegative scalar
weight). In this case, the resulting local optimization prob-
lem can be interpreted as a slight variation of the classical
waterfilling algorithm. First, including the energy harvesting
constraints given by (7), we form the Lagrangian of the local
step in Algorithm 1

cl) =2 (il - o1 +¢§’“m)2 + Dl

+ Bilt] (T > pill] Z

=1

U]) +miltlpift] - (A1)

with §;[t], and n;[t] standing for the Lagrange multipliers of
the constraints defined in (7). Taking the derivative of the

4This scheme can also be implemented in the case that there is no fusion
center and the sensor nodes are supported on a fully connected graph.
SWe assume that the coefficients a; are known at the fusion center.
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Fig. 2. Local step interpretation for a weighted ¢; norm.

Lagrangian (11) with respect to p;[t], and solving for p;[t]
(while satisfying the KKT conditions) we have

T, A a ’
s | P

piltl=— | (qi’“) U /)Twi[t]) o m]
where []* = max{-,0}. We define the heights H;t]

A
p(tF1t) — v - Srwilt]) /T and waterlevels v;[t] £
ZlT:t Bi[l]. Then, we can interpret the solution as a direc-
tional reverse waterfilling, scaled by the widths T /p. This is
shown in Figure 2(a). For any sensor i € M, each time slot
t is associated to a hollow rectangle of height H;[t]. Right-
permeable walls are placed at the beginning of each time slot
with an energy arrival. Then, water flows from the top down
inside those rectangles, until a waterlevel v;[t] is reached.
Then, the power allocation corresponds to the filled area of
water above zero.

An equivalent interpretation as the more common direc-
tional waterfilling can be derived by defining the new heights
H;[t] = H™> — H,[t], where H™> £ max{{H;[t|}+e7}
We illustrate this in Figure 2(b). This equivalent problem cor-
responds to the mirroring of the original problem with re-
spect to the axis defined by the taller rectangle H;"®*. In
this equivalent problem, the rectangles H;[t] correspond to a
solid material over which water is then poured to a waterlevel
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Fig. 3. Convergence of the proposed algorithm.

v;[t] = H™* — y;[t]. In this case there is a ceiling H™**
up to which power is allocated. Thus, any water flowing over
this ceiling will not be allocated as power.

4. NUMERICAL RESULTS

In this section, we study the performance of the proposed
algorithm. We consider a WSN composed of M = 100
sensors measuring an uncorrelated source (i.e., ¥, = I) of
length m = 5. We have T = 20 time slots of duration
Ts = 1 each. The linear combination coefficients are given by
a; ~ N(0,1/y/m) and the variance of the measurement noise
by 02, = 0.01. The harvested energies F;[t] are modeled by
means of Poisson processes of common intensity rate p = 1.
Further, we assume non-fading communication channels.

In Figure 3, we show the numerical convergence of the
proposed algorithm when the sparsity-promoting function is
the /1 norm. In particular, we show on the y-axis the error be-
tween the optimal value O*bj of the objective function (9a) and

its value at the k-th iteration f(fl];). We plot the error for sev-
eral values of the penalty parameter p. As shown, an appro-
priate choice of p allows convergence to an acceptable error
of 1072 in just 10 iterations, which ensures a low communi-
cation overhead between the sensors and the FC.

Now, we consider the case in which the sparsity-promoting
function is given by a reweighted ¢; norm, i.e., f(p;[t]) =
w;[t]p;[t]. In this case, we solve Algorithm 1 over ten iter-

ations, with weights at the [-th iteration given by wgl)[t] =

1/ V[t] + €), and € = 0.01 [18]. In Figure 4, we plot
the resulting distortion vs. the average number of selected
sensors (the latter being directly related with the regulariza-
tion parameter A). We show results for different amounts of
the harvested energy, namely, E;[t]. The resulting distortion,
as expected, is monotonically decreasing with the average
number of selected sensors. More interestingly, by just se-
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Fig. 4. Distortion vs. average number of active sensors.

lecting 20% to 30% of the sensors, the resulting distortion is
identical to that of the whole set. The impact of the amount
of harvested energy (or equivalently, the arrival intensity rate)
on such percentages is marginal.

5. CONCLUSIONS

In this paper, we have addressed the sensor selection prob-
lem for the estimation of a stochastic source when sensors are
powered by energy harvesting. In particular, we have pro-
posed to minimize a functional that consists of the attained
distortion plus a penalty term. The rationale of this penal-
ity term is to promote sparsity on the power allocation and,
thus, on the sensor activity as well. Then, by leveraging on
the ADMM, we have proposed a decentralized iterative algo-
rithm in which the tasks of selection and reconstruction are
decoupled. Moreover, we have shown that when the sparsity
function takes the form of a weighted ¢; norm, the power al-
location policy can be computed by means of a directional
waterfilling algorithm. Finally, numerical results have shown
the fast convergence of the proposed scheme.
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