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Abstract—This paper deals with the reconstruction of a
3-D spatio-spectral object observed by a multispectral imaging
system, where the original object is blurred with a spectral-
variant PSF (Point Spread Function) and integrated over few
broad spectral bands. In order to tackle this ill-posed problem,
we propose a linear forward model that accounts for direct (or
auto) channels and between (or cross) channels degradation,
by modeling the imaging system response and the spectral
distribution of the object with a piecewise linear function.
Reconstruction based on regularization method is proposed, by
enforcing spatial and spectral smoothness of the object. We test
our approach on simulated data of the Mid-InfraRed Instrument
(MIRI) Imager of the James Webb Space Telescope (JWST).
Results on simulated multispectral data show a significant
improvement over the conventional multichannel method.

Index Terms—Inverse problems, Image reconstruction, Decon-
volution, System modeling, Multispectral restoration

I. INTRODUCTION

Multispectral imaging systems are used in many fields,
e.g. astrophysics [1], remote sensing [2], medicine [3] or
microscopy [4]. This paper deals with the inverse problem
of joint restoration. Our goal is to reconstruct a discrete 3-
D spatio-spectral object from a small number of 2-D Multi-
Spectral (MS) observed data when this continuous 3-D object
is degraded by the instrument that suffers the diffraction
due to the limited size of the optical system. This physical
degradation affects its spatial resolution (in the form of blur)
accordingly to the wavelength. Moreover, before its spatial
sampling, the blurred object is integrated by the detector over
the different wide spectral bands, which results in low spectral
resolution multispectral data. Therefore, the multispectral data
are severely degraded and contain limited spectral information
about the original object.

Multichannel restoration has been extensively studied in the
literature. Multichannel forward models have been proposed
in [5], [6], where the system response is a block-diagonal
matrix with circulant blocks. For instance, [7], [8], [9] address
multichannel 2-D deconvolution problem for hyperspectral
image deconvolution. They take into account the within-
channel degradation, but not the between channel (or cross-
channel) degradation. Hence, this approach is not suitable for
MS imaging, especially if spectral bands are broad and over-
lapping, which implies a strong correlation between channels.

In [10] a model is proposed that reduces these limitations
since the system response is represented by a block matrix
corresponding to within and between channel degradations.
However, this model is mostly used when the number of
channels and observations is the same, e.g. color image
restoration [11], [12], [13].

In this paper we propose a multispectral forward model that
accounts for within and between channels degradation (or auto
and cross-channel), where (1) the number of multispectral data
is much lower than the number of spectral channels and (2)
a set of low-resolution multispectral data are degraded by a
spectral-variant PSF and integrated over broad spectral bands.
Reconstruction of a spatio-spectral object is performed using
regularization method, by accounting for spatial and spectral
quadratic regularization. Simulated results are provided with
a comparison to multichannel 2-D deconvolution for an appli-
cation to the MIRI Imager on board the JWST1.

This paper is organized as follows. In Sec. II we present the
problem formulation. The imaging system response and the
forward model are described in Sec. III. The reconstruction
method is presented in Sec. IV. Simulation and results are
presented in Sec. V including a brief description of the
JWST/MIRI Imager. Conclusions and perspectives are pro-
vided in Sec. VI.

II. PROBLEM FORMULATION

The general form of the multispectral problem we are
considering is the one proposed in [10], [11]. It follows the
discrete linear forward model

y = Hx + n, (1)

where x =
[
x(1)T ,x(2)T , . . . ,x(M)T

]T ∈ RMNkNl is the
stack of M spectral channels represented in a vector form,
each channel containing Nk × Nl pixels, where x

(m)
k,l de-

notes the (k, l)th spatial position in the (m)th wavelength.
The vector y =

[
y(1)T ,y(2)T , . . . ,y(P )T

]T ∈ RPNiNj

is the stack of multispectral observed data acquired via
P broad spectral bands of the imaging system. n =[
n(1)T ,n(2)T , . . . ,n(P )T

]T ∈ RPNiNj represents an additive

1https://jwst.nasa.gov/
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unknown noise. The full system response is a PNiNj by
MNkNl block matrix,

H =

 H1,1 H1,2 · · · H1,M

...
...

. . .
...

HP,1 HP,2 · · · HP,M

 , P �M, (2)

defined by a set of P × M Toeplitz sub-matrices Hp,m ∈
RNiNj×NkNl , which are approximated for computational ease
by circulant blocks.

However, all sub-matrices are ill-conditioned, meaning that
H is also ill-conditioned, which leads to an ill-posed problem.
Each multispectral observation y(p) depends on all spectral
channels through the blocks of H , where Hp,t, t = m
represents the direct (or auto) observation, whereas the block
Hp,t, t 6= m accounts for between (or cross) degradation
occurring between channels. We are interested in the particular
case where we have few low-resolution multispectral observed
data compared to spectral channels, i.e. P �M , which means
there is a lack of spectral information in the data. For instance,
for the multispectral data observed by the JWST/MIRI imager,
P = 9 and M = 1000, and the size of H is 9× 2562 by
1000× 2562 for a 256× 256 pixel detector.

III. MODELING OF WITHIN AND BETWEEN CHANNEL
DEGRADATIONS

A. Object Model

We first define the 3-D spatio-spectral object of interest
with φ(α, β, λ) : R3 → R, having two spatial parameters
(α, β) ∈ R2 and one spectral parameter λ ∈ R+. In order to
handle the lack of spectral information in the data, we propose
to perform approximation of the M spectral channels by M ′

channels, with M ′ < M , by modeling the object spectral dis-
tribution with a piecewise linear function [14]. Moreover, we
are interested in reconstructing a discrete version of the object,
hence, we define two basis functions for spatial and spectral
discretization, bs() and bλ(), respectively. They are defined
upon two grids, Gs = {αk, βl}Nk,Nl

k,l=1 and Gλ =
{
λ(m)

}
M ′

m=1 ,
respectively. Thus, the object is modeled by

φ(α, β, λ) =

M ′∑
m=1

Nk∑
k=1

Nl∑
l=1

x
(m)
k,l b

(k,l)
s (α, β)b

(m)
λ (λ), (3)

where b
(m)
λ (λ) is a uniform piecewise linear function, for

instance first-order B-spline function [15]. The parameter M ′

compromises between the sharpness of the spectral sampling
of the modeled object and the unknown spectral channels to
reconstruct x(m).

B. Imaging System Response

In this section we provide the multispectral imaging system
response by establishing an imaging system model that relates
the input to the output. The instrument we are considering
is composed of an optical system and a detector. Due to
light diffraction of φ, the optical system response is modeled
by a 2-D spatial convolution [16] with a spectral variant

optical response, known as Point Spread Function (PSF)
h(α, β, λ). This blurs the object accordingly to the wavelength
and limits its spatial resolution (as illustrated in Sec. V).
The blurred object is integrated over broad spectral bands
τp(λ) and sampled pixel-by-pixel on the 2-D detector grid,
Gsamp = {αi, βj}Ni,Nj

i,j=1 , with αi, βj being the 2-D angular
positions of pixels (i, j) and Ni, Nj are the total number of
pixel according dimensions α and β. We introduce a basis
function b(i,j)samp(α, β) to carry out spatial sampling. It is defined
on the pixel sensitive surface Ωpix. Moreover, a noise term n

(p)
i,j

is added for each pixel (i, j) and band p, e.g. readout noise of
the detector. Finally, the imaging system model is given by

y
(p)
i,j =

∫
R+

τp(λ)

(∫∫
Ωpix

(∫∫
R2

φ(α′, β′, λ) (4)

h(α− α′, β − β′, λ)dα′dβ′

)
b(i,j)samp(α, β)dαdβ

)
dλ+ n

(p)
i,j

this model links the 3-D continuous input φ(α, β, λ) to the 2-D
discrete output y(p)

i,j through a complex instrument response,
which includes spectral windowing and five sums, two for
spatial 2-D convolutions, two for spatial sums and one for
spectral integration. Note that the above model does not
include any non-ideal characteristics of the detector, which
are assumed to be corrected upstream.

C. Forward Model and definition of Hp,m

The discrete forward model links the discrete spectral
channels to the discrete multispectral data. It is obtained by
substituting equation (3) in (4). This yields

y
(p)
i,j =

M ′∑
m=1

Nk∑
k=1

Nl∑
l=1

Hp,m
i,j;k,l x

(m)
k,l + n

(p)
i,j , (5)

with

Hp,m
i,j;k,l =

∫
R+

τp(λ)b
(m)
λ (λ)

(∫∫
Ωpix

(∫∫
R2

b(k,l)s (α′, β′)

h(α− α′, β − β′, λ)dα′dβ′
)
b(i,j)samp(α, β)dαdβ

)
dλ. (6)

In addition, we consider for instance a rectangular impulse
function [17] for the sampling function. i.e. b(i,j)samp(α, β) =

1
4α4βΠ4α,4β(α−αi, β−βj), with4α,4β are the sampling
steps according to dimensions α and β, respectively. Thus,
the system response becomes a convolution matrix Hp,m

i,j;k,l =
Hp,m
i−k;j−l. Therefore, the vector-matrix representation of (5) is

y(p) =
M ′∑
m=1

Hp,mx(m) + n(p), (7)

where the p-th multispectral data y(p) is a sum of M ′

discrete 2-D spatial convolutions between spectral channels
and convolution matrices Hp,m (blocks of the matrix H
in (2)). Thus, it accounts for within and between channels
degradation. The discrete multispectral forward model with the
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full imaging system H response takes the form in (1). Without
loss of generality, we consider Ni = Nj = Nk = Nl = N .

IV. RECONSTRUCTION

The reconstruction of the object of interest φ relies on the re-
construction of its spectral channels x(m) : m = 1, 2, . . . ,M ′

using a regularization method. The solution x̂ is obtained by
minimizing an objective function J (x),

x̂ = argmin
x

{J (x) = Q(x,y)} , (8)

where Q(x,y) = ‖y −Hx‖22 is the data fidelity that enforces
agreement of the solution with the data.

Therefore, the solution is x̂ =
(
HTH

)−1

HTy, called
the Least-Squares solution. However, this solution is unstable
because of the ill-conditioning of the matrix H , hence the
problem is ill-posed. To correct this ill-posedness we add reg-
ularization terms to J (x), this method is called Regularized
Least-Squares [18]. The objective function becomes J (x) =
Q(x,y) + Rs(x) + Rλ(x), where Rs(x) = µs ‖Dsx‖22
is a spatial regularization which enforces spatial smoothness
between neighboring pixels of x, with Ds ∈ RM ′N2×M ′N2

is a second-order finite difference operator along the spatial
dimension. Rλ(x) = µλ ‖Dλx‖22 refers to spectral regu-
larization. It enforces the similarity between intensity val-
ues of corresponding pixels in neighboring channels, with
Dλ ∈ RM ′N2×M ′N2

is a first-order finite difference operator
along the spectral direction. µs and µλ are regularization
parameters, they are set to compromise between fidelity to
the data and spatial smoothness, and spectral smoothness
across channel, respectively. Therefore the objective function,
J (x) = ‖y −Hx‖22 + µs ‖Dsx‖22 + µλ ‖Dλx‖22 . is a sum
of quadratic, linear and differentiable terms. Thus we obtain
the solution

x̂ =
(
HTH + µsD

T
sDs + µλD

T
λDλ

)−1

HTy, (9)

where Q = HTH +µsD
T
sDs+µλD

T
λDλ contains Toepltiz

blocks Qi,j : i, j = 1, . . . ,M ′ of size N2 × N2. However,
Qi,j 6= Qi+t,j+t, hence Q is not a Toeplitz matrix. We
propose to compute the solution without inverting Q, but by
computing the solution iteratively using the following form:

x̂k+1 = x̂k − a
[
Qx̂k −HTy

]
, (10)

with x̂k=0 = 0 corresponds to the initialization and a is a
convergence parameter of the algorithm. A conjugated gradient
(CG) algorithm [19] is implemented.

V. SIMULATION RESULTS

A. JWST/MIRI Imager

We apply the proposed reconstruction algorithm to mul-
tispectral data, simulated using the model in (4), for the
Mid-InfraRed Instrument (MIRI) Imager [20] on-board the
James Webb Space Telescope (JWST), the next flagship space
telescope of NASA, ESA and the Canadian Space Agency
(CSA) to be launched in 2020. This imager provides nine

multispectral observations (P = 9) integrated over a broad
range of spectral bands, from 5 µm to 28 µm [21]. The
nine bands are shown in Fig. 1. Note that overlapping of
the spectral bands increases the between channels degradation.
The MIRI Imager detector has a pixel pitch of 0.11 arcsecond,
i.e. Ωpix = 0.11 × 0.11 arcsecond2. We use the official
PSF simulator of the JWST mission, WebbPSF [22], [23],
to simulate realistic PSF images at different wavelengths, as
shown in Fig. 2. The PSF is complex due to the segmented
mirror of the JWST. We clearly observe an enlargement of
the PSF according to the wavelength, i.e. the longer the
wavelength the wider the PSF, as expected from diffraction
theory [16].

5 10 15 20 25
Wavelength λ (micrometer)

0.0

0.5 p=
1

p=
2

p=
3

p=
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p=
5

p=
6

p=
7

p=
8

p=
9

Fig. 1. The nine broad bands of the JWST/MIRI Imager [21] covering the
mid-infrared wavelength range from 5 to 28 µm.
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Fig. 2. Monochromatic PSF of the JWST/MIRI imager simulated using
WebbPSF [22], [23] and displayed in the same logarithmic scale. We clearly
observe the dependency of the PSF to the wavelength as expected from
diffraction theory.

B. Setup of the Experiment

The original 3D object φ is a simplified spatio-spectral
model of the Horsehead nebula [24]. A spatial region of
256 × 256 pixels (N = 256) is taken for the simulation
with M ′ = 1000 spectral samples uniformly distributed within
4−28 µm. Nine multispectral data are simulated using (4) with
a zero-mean white Gaussian noise added in order to obtain a
global Signal-to-Noise Ratio (SNR) of 30, 20, 10 dB.

SNR(dB) = 10 log10

(
1

PN2 ‖y‖22
σ2
n

)
, (11)

where σn is the standard deviation of the noise, P is the
number of MS data and N2 is the total number of pixels in
the MS data.

Reconstruction results are summarized in Table I together
with a comparison between the proposed method and the
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multichannel 2-D deconvolution method (MDec) [6] (indepen-
dent channel restoration using an averaged PSF per channel).
The regularization parameters µs and µλ are adjusted by
running the code for different values in a range [10−4, 10−2]
and keeping the pair that minimizes the objective function
J (x̂(µ̂s, µ̂λ)). For a quantitative comparison between the
original object forig and the reconstructed f rec, we compute
the relative reconstruction error as defined by

Error(%) = 100×
∥∥forig − f rec

∥∥
2
/
∥∥forig

∥∥
2
.

C. Discussion
Fig. 3 shows the spectral reconstruction result of one

single pixel (100, 150), comparing the original spectrum φorig,
the reconstructed spectrum using our method φrec, and the
reconstructed spectrum using multichannel 2-D deconvolution
φMDec. The original spectral distribution is complex with
spectral features at short wavelengths (4 − 13µm) and con-
tinuum. Therefore, an accurate reconstruction using a few MS
data is difficult, if not impossible, without using a strong prior
knowledge of the spectrum of the object. The reconstructed
spectrum computed with our method (using piecewise linear
model) allows us to reconstruct an envelope-like spectral dis-
tribution which significantly increases the spectral resolution
compared to multichannel 2-D deconvolution. Several values
of M ′ = {20, 40, 60} have been tested, and the reconstruction
results for three wavelengths, 7.8, 16 and 21 µm, are reported
in Table I. Increasing M ′ improves the spectral resolution
of the object model, but increases the between channels
degradation and the number of unknowns. Moreover, we find
that there is not much error improvement for M ′ > 60. In any
case, the proposed reconstruction shows smaller reconstruction
errors compared to the multichannel 2-D deconvolution ;
this is due to our model accounting for within and between
channel degradations. Spatial reconstruction results at different
wavelengths are illustrated in Fig. 4. As anticipated, a better
reconstruction is obtained at λ = 16µm and λ = 21µm than
at λ = 7.8µm (see the fourth row of the figure) since within
the integration windows at long wavelengths the spectrum of
the object does not contain any feature.

TABLE I
RELATIVE RECONSTRUCTION ERRORS (SEE THE TEXT) FOR THE

HORSEHEAD NEBULA [24] OF SIZE 1000× 256× 256

SNR λ Error (%)
(dB) (µm) Proposed Reconstruction MDec

M’=20 M’=40 M’=60

7,8 49,44 42,37 41,42 52,85
30 16,0 2,44 4,11 4,80 7,89

21,0 1,87 3,82 4,26 11,92

7,8 49,50 43,07 41,46 52,84
20 16,0 7,41 7,66 8,98 8,02

21,0 4,42 5,40 5,77 11,97

7,8 50,71 43,71 42,38 52,84
10 16,0 19,67 21,25 25,51 8,56

21,0 10,85 11,31 13,38 12,13

5 10 15 20 25
Wavelength (µm)

0

50

100

φorig

φrec

φMDec

Fig. 3. Comparison between one single pixel (100, 150) spectrum from the
original object φorig, the proposed reconstruction φrec (with M ′ = 60) and
the multichannel 2-D deconvolution φMDec. The nine MS data (P = 9)
were corrupted with zero-mean Gaussian noise of 30 dB.
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Fig. 4. [First row] Original spectral channel of the Horse Head nebula.
[Second row] Simulated MS data with 30 dB corresponding to the bands
that include wavelengths of the first row (see Fig. 1). [Third row] Proposed
reconstruction. [Fourth row] Difference between the original and reconstructed
spectral channels. The original and reconstructed objects are in physical units,
whereas MS data are in detector units.

VI. CONCLUSION

In this paper we address the reconstruction of 3-D spatio-
spectral object observed by a multispectral imaging system
from a few low-resolution data. A discrete forward model is
defined accounting for within and between channel degrada-
tions using a piecewise linear function to model the spectral
distribution of the sought object. A quadratic reconstruction
is proposed by considering spatial and spectral regularization
terms. Results on simulated data applied to the JWST/MIRI
Imager highlights the complexity of the problem. A clear in-
crease of spatial and spectral distribution is achieved compared
to multichannel 2-D deconvolution method.
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