
Water Utility Journal 18: 61-77, 2018.  
© 2018 E.W. Publications 

Evaluation of different methods to estimate monthly reference 
evapotranspiration in a Mediterranean area 

V.Z. Antonopoulos* and A.V. Antonopoulos  
School of Agriculture, Dept of Hydraulics, Soil Science and Agricultural Engineering, Aristotle University of Thessaloniki, 54124 
Thessaloniki, Greece 
* e-mail: vasanton@agro.auth.gr 

Abstract:  Many empirical equations and methods have been used and proposed in order to estimate the reference evapotranspi- 
ration from land or the evaporation from a free water surface. These empirical methods belong in one of the four 
categories of a) radiation and temperature b) temperature, c) mass transfer and d) regression or simplified based 
methods. In this article, thirteen of those empirical methods and a model based on artificial neural networks (ANN) 
were evaluated and compared with the Penman-Monteith equation, which is considered as a standard method. A 
meteorological dataset that consisted of monthly meteorological measurements from a station in northern Greece, 
covering a period of seven years (2009 to 2015) was used. The radiation and temperature based methods of Penman, 
Priestley-Taylor, Makkink, de Bruin-Keijman, and the modified Penman correlated better with the Penman-Monteith 
method. The temperature based methods of Hargreaves and Blaney-Criddle followed in accuracy, while the mass 
transfer equation, the Jensen-Haise, the Copais and the Valiantzas simplified methods presented the lowest 
correlation. A multilinear regression model based on the meteorological dataset gave highly correlated results. The 
recalibration of the constant values on some of these equations to the local meteorological conditions showed 
significant improvement. 

Key words: Reference evapotranspiration; Penman–Monteith method; empirical equations; ANNs model; monthly datasets; 
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1. INTRODUCTION 

The crop water requirements, which are essential in irrigation planning and scheduling, the 
hydrologic balance studies and the watershed hydrology, are based on the accurate estimation of the 
reference evapotranspiration (ETo). Numerous methods or equations have been developed and are 
being used to estimate the ETo. Those depend mainly upon the availability of meteorological 
variables. These may be categorized into one of the following classes of energy budget, 
aerodynamic transfer (or mass transfer), a combination of those and empirical methods.  

The suitability of various evapotranspiration methods has been a serious subject for many 
hydrologists and agriculturists. Evaporation researches that included comparisons of a number of 
equations were the Winter et al. (1995) and Rasmussen et al. (1995) studies of lakes in the 
continental climate of Minnesota, the Singh and Xu (1997) comparison of thirteen mass-transfer 
methods applied to four sites in Ontario, Canada, the Dalton et al. (2004) comparison of evaporation 
methods for Lake Seminole in Georgia, the Yao (2009) evaluation for the lake evaporation for 
Dickie Lake, Canada and the evaluation of 14 alternate evaporation methods that were compared 
with values from the Bowen-ratio energy-budget method by Rosenberry et al. (2007). Antonopoulos 
et al. (2016) presented an evaluation between different empirical methods of lake evaporation. 
Evapotranspiration research also includes comparison of numerous equations describing 
evaporation or evapotranspiration. Among the articles on comparison between different approaches 
is the work of Xu and Singh (2002), which evaluated five empirical equation of ETo estimation with 
daily datasets from Switzerland. Rosenberry et al. (2004) compared evapotranspiration rates 
determined with several empirical methods for a wetland in semi-arid North Dakota. Lu et al. 
(2005) studied six ETo methods using databases from forested watersheds in the southeastern 
United States. Xystrakis and Matzarakis (2011), using daily meteorological data from the island of 
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Crete (southern Greece), evaluated 13 empirical equations of ETo. Rácz et al. (2013) presented a 
comparative analysis of different methods of ETo for the continental climate of Eastern Hungary. 
Djaman et al. (2015) evaluated 16 ETo equations against the ASCE-PM equation under the Sahelian 
conditions in the Senegal River Valley and Antonopoulos and Antonopoulos (2017) evaluated the 
daily ETo estimates by artificial neural network models and empirical equations using limited input 
climate variables. 

During the last decades there has been a widespread interest in the application of artificial 
intelligence techniques in the field of water sciences and technologies. Artificial neural networks 
(ANN) were used to estimate evaporation from free water surface as well as actual and reference 
evapotranspiration (Jain et al., 2008; Diamantopoulou et al., 2011; Laaboudi et al., 2012; Heddam, 
2014; Antonopoulos et al., 2016; Antonopoulos and Antonopoulos, 2017).  

Significant efforts for the accurate estimation of ETo under the Greek environmental-
meteorological conditions have been carried out by several researchers, which focused on 
comparisons and sensitivity analysis between the aforementioned methods, their parameters and 
their calculation time step (Tsakiris and Vangelis, 2005; Sakellariou-Makrantonaki and Vagenas, 
2006; Ampas et al., 2007; Aschonitis et al., 2012; Paraskevas et al., 2013; Kitsara et al., 2015; 
Efthimiou et al., 2013). Additional studies have been performed to develop new methodologies for 
the estimation of ETo using empirical equations, such as the “Copais model” (Alexandris et al., 
2006), equations based on Penman’s formula with reduced parameters (Valiantzas, 2006) or with 
indirect estimation using pan evaporation measurements and pan coefficients (kp) adapted to the 
surrounding environmental conditions (Aschonitis et al., 2012). 

The aim of this study is to evaluate the applicability and validity of different empirical methods 
from different categories of input variables as of radiation and temperature, temperature only, mass 
transfer, based on regression processes or simplification of others to estimate monthly reference 
evapotranspiration. Models of Artificial Neural Networks technique are also examined and 
evaluated. Monthly data from a meteorological station in northern Greece was used. The results 
were compared to the values of reference evapotranspiration estimated by the Penman – Monteith 
method.  

2. MATERIAL AND METHODS 

2.1 Monthly reference crop evapotranspiration 

The Food and Agricultural Organization of the United Nations (FAO) accepted the FAO 
Penman-Monteith as the standard equation for the estimation of ET (Jensen et al. 1990; Allen et al., 
1998). This method is a combination of the energy balance and the aerodynamic processes and two 
more resistance factors, the aerodynamic and the (bulk) surface resistances. The surface 
conductance/resistance term that accounted for the response of leaf stomata to their hydrologic 
environment was introduced by Monteith (1965).  

The FAO-56 Penman-Monteith (PM) method of daily or monthly reference crop 
evapotranspiration ΕΤο estimation is described by the following equation (Allen et al. 1998): 

ΕΤο =
0.408Δ(Rn −G)+ γ

900
Τ + 273

u2 (eα − ed )

Δ + γ (1+ 0.34u2 )
           (1) 

where ΕΤο is the daily reference crop evapotranspiration (mm d-1), Rn is the net radiation (MJ m-2d-

1), u2 is the mean wind speed at 2 m above soil surface (m s-1), T is the mean air temperature (oC), G 
is the soil heat flux density at the soil surface (MJ m-2d-1), ea is the saturation vapour pressure (kPa), 
ed is the actual vapour pressure (kPa), Δ is the slope of the saturation vapour pressure-temperature 
curve (kPaoC-1), γ is the psychrometric constant (kPaoC-1).  
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Many other formulas have been developed which are simplified methods of the Penman formula 
or other empirical equations, and are grouped according to method type (Winter and Rosenberry, 
1995; Rosenberry et al., 2007; Yao, 2009). In this study, a) the combination Penman method, b) the 
radiation and temperature based methods of Priestley-Taylor, de Bruin-Keijman and FAO-24 
Makkink, c) the temperature based methods of Hargreaves and Blaney-Criddle, d) the mass transfer 
based method and e) some simplified and regression based methods were evaluated and compared 
with Penman – Monteith method. An artificial neural network is also evaluated and compared with 
PM method. 

2.2 Penman method 

The Penman method (Doorenbos and Pruitt, 1977) is a modification of the initial Penman 
formula, which has the following form: 
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The Penman method has been used to estimate the reference crop evapotranspiration in many 
studies (Yao, 2009; Rosenberry et al., 2007; Antonopoulos et al., 2016).  

A modified Penman equation presented by Doorembos and Pruitt (1977) was expresses as 

EToPM = cEToP  (3) 

where EToP and EToPM are the reference evapotranspiration of Penman and the modified equation, 
respectively and c is an adjustment factor that incorporates the differences between day and night 
weather conditions. Frevert et al. (1983) and Kotsopoulos and Babajimopoulos (1997) presented 
(among others) expressions of c as a polynomial of Rs (solar radiation), RHmax, Uday (wind velocity 
during the day hours) and Ur (the ration of day to night hours velocity). These polynomial 
expressions of c approach the tabular values given by Doorenbos and Pruitt (1977) with maximum 
absolute errors of 26.2% and 5.6%, respectively (Kotsopoulos and Babajimopoulos, 1997). 

2.3 Priestley-Taylor, de Bruin -Keijman and FAO-24 Makkink methods 

The Priestley-Taylor method (Priestley and Taylor, 1972), the de Bruin – Keijman method (de 
Bruin – Keijman, 1979) and the Makkink (1957) are modifications and simplifications of the 
Penman formula (Doorenbos and Pruitt, 1977). Evapotranspiration is estimated as a function only 
from the energy term of the Penman equation. The aerodynamic term is approximated as a fixed 
fraction of the total evaporation over a suitable average period. The equations have the following 
form, respectively: 
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where λ is the latent heat of vaporization (MJ kg−1), ρw is the water density (kg m-3) and α is an 
empirically derived parameter with an average value of 1.26, αm is a coefficient (mm d-1), bm is a 
nondimensional constant calculated by a function of mean relative humidity (%) and wind speed (m 
s-1), Rs is solar radiation (MJ m-2 d-1). The values of αm and bm of Makkink method are -0.12 and 
0.61, respectively. The Priestley-Taylor, de Bruin – Keijman and Makkink methods have been used 
to estimate the reference crop evapotranspiration in many works (Utset et al., 2004; Rosenberry et 
al., 2007; Gianniou and Antonopoulos, 2007; Yao, 2009; Bogawski and Bednorz, 2014; Aschonitis 
et al., 2015). 

2.4 Hargreaves method 

The Hargreaves method (Hargreaves and Samani, 1985) estimates daily ETo, when solar 
radiation, relative humidity and wind speed data are missing by using only the maximum and 
minimum air temperature in the following equation  

( )( ) h

h mean h max min
c

o aET a T b T T R= + −   (7) 

where Tmax, Tmin and Tmean are the maximum, minimum and mean temperature (oC), respectively, Ra 
is the extraterrestrial radiation (mm day-1) and ah=0.0023 oC-1.5, bh=17.8 oC, and ch=0.5 empirical 
constants of Hargreaves equation. Hargreaves and Samani (1982) calculated solar radiation (Rs) as: 

α−= R)TT(162.0 5.0
minmaxsR   (8) 

The units of constant 0.162 of Eq. (8) are in (oC)-0.5. 

2.5 Blaney-Criddle Method 

The Blaney-Criddle method (Blaney-Criddle, 1950, Doorembos – Pruitt, 1977; Allen and Pruitt, 
1986) formula is: 

))13.8T46.0(p(ba meanBCBC ++=oET  (9) 

where p is the mean daily percentage of total annual daytime hours for a given time period and 
latitude. The aBC and bBC coefficients are given by the equations (Allen and Pruitt, 1986; Frevert et 
al., 1983): 

41.1NRH 0043.0 ratiomin −−=BCa   (10a) 

−++−= dayratiomin U6565.0N0705.1RH00409.0819.0BCb  

−0.005968RHminNratio − 0.000597RHminUday   (10b) 

2.6 Mass transfer method 

The mass transfer methods (Aerodynamic) are based on Dalton’s law, which describes the 
turbulent transfer of water vapour from an evaporating surface to the atmosphere (Singh and Xu, 
1997). These methods use simple forms and can be successfully applied when radiation or sunshine 
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duration data are not available. The basic version of this equation is as follows (Bogawski and 
Bednorz, 2014):  

))(cb(a da2mtmtmt eeuE −+=  (11) 

where amt, bmt and cmt are constants and ea is the saturation vapour pressure at water surface (kPa). 
Many variations of Eq. (11) have been proposed (Xu and Singh, 2002). Singh and Xu (1997) 
evaluated and compared 13 mass transfer equations suggesting that all of these gave almost equally 
good results. The constant values of the mass transfer equation for Lake Vegoritis (Gianniou and 
Antonopoulos, 2007), which is in the area of the meteorological station, are amt=2.032, bmt = 1 and 
cmt =0.26.  

2.7 Copais method 

The Copais method was developed by Alexandris et al. (2006) to estimate daily reference 
evapotranspiration ETo using data from solar radiation, temperature and relative humidity. The 
equation coefficients were estimated using bilinear surface regression analysis. The form of the 
equation is: 

ETo = m1 + m2C2 + m3C1 + m4C1C2        (12) 

where m1=0.057, m2=0.227, m3=0.643 and m4=0.0124 and  

C1 = 0.6416-0.00784RH+0.372Rs-0.00264RsRH  (13) 

C2 = -0.0033+0.00812T+0.101Rs+0.00584RsT        (14) 

where RH in %, T in oC and Rs in MJ m-2 d-1.  

2.8 Simplified Penman formula 

Valiantzas (2006) proposed a simplified formula for the Penman equation to estimate daily ETo, 
when wind speed data is missing which is as: 

 ( ) ( ))100/RH(1)20T(09.0R/R4.25.9TR047.0 2
asso −++−+=ET        (15) 

where Ra is the extraterrestrial radiation (MJ m-2d-1).  

2.9 Simplified Jensen-Haise method 

The Jensen-Haise (Rosenberry et al., 2004) formula has the following form 
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2.10 Multivariable regression method 

Since the meteorological parameters are highly correlated with ETo, multi-linear regression 
analysis can be used to estimate ETo from these variables. A general form of this equation is as 



66 V.Z. Antonopoulos & A.V. Antonopoulos 

ETo = m1 + m2Tmean+ m3RH + m4Rs+ m5u2         (17) 

where m1, m2, m3, m4 and m5 are regression coefficients.  

2.11 Artificial neural networks 

Artificial neural networks are non-linear models that make use of a structure capable to represent 
arbitrary complex non-linear processes that correlate the inputs and outputs of any system (Kisi, 
2006; Antonopoulos and Antonopoulos, 2017). The basic unit in an ANN is the neuron (node). 
Neurons are connected to each other by links known as synapses, associated with each synapse 
there is a weight factor.  

The ANN architecture is defined by the way in which the neurons are interconnected. The 
network is fed with a set of input-output pairs and is trained to reproduce the output. The structure 
of each ANN is represented as (i, j, k), where i expresses the number of nodes in the input layer, j 
the nodes in the hidden layer and k the nodes in the output layer. There is a wide variety of 
algorithms available for training a network and adjusting its weights. In this article, an algorithm of 
the multi-layer feed forward artificial neural networks and of the back-propagation for optimization 
was used. The main task in developing an ANN model is to identify the input variables and the 
optimal network structure in order to produce the desired output accurately. 

2.12 Modeling performance criteria 

The model’s performance was evaluated using a variety of standard statistical criteria including 
the correlation coefficient (r), the root mean square error (RMSE) and the coefficient of efficiency 
(EF): 
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where O are the observed values (the reference evapotranspiration), C are the computed values by 
the other methods and Om and Cm are the mean observed and computed values, respectively. In 
most cases the coefficient of determination (R2) is the square of r. 

2.13 Study area and data 

The weather data that was used in this study to estimate monthly ETo, consisted of monthly data 
of air temperature, solar radiation, wind speed, and humidity for a period of seven years (2009 to 
2015) all measured at the meteorological station of Amynteo in West Macedonia of the northern 
Greece. It is located in the Ptolemais plain which is surrounded by high mountains (Antonopoulos 
and Gianniou, 2003). This station is located in the center of an area with four natural lakes 
surrounding it (Vegoritis, Petron, Zazari and Chemaditis), from which Vegoritis Lake is one of the 
most significant lakes in northern Greece. 
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Table 1 presents the maximum, minimum, average and standard deviation values of temperature 
(oC), relative humidity (%), wind speed (m s-1), solar radiation (W m-2) and ETo from P-M method, 
for each year of the study period of 7 years. The use of monthly data in this study arises from the 
fact that meteorological stations rarely have complete daily data and that the data time series present 
serious limitations and gaps. In most stations in Greece daily meteorological data has been 
monitored only for the last decade.  

 
Table 1. Statistical parameters of available meteorological variables and ETo at Amynteo station. 

 
 Tmean (oC) RHmean (%) u2 (m s-1)   Rs (W m-2)  ETo (mm d-1)  

Max 25.0 95.71 5.047 343.968 6.563 
Min 1.7 48.45 0.875 60.780 0.398 
Mean 12.7 66.99 2.096 192.592 2.824 
sd 7.48 9.74 0.783 88.061 1.870 

3. RESULTS AND DISCUSSION 

3.1 Comparison results of estimated ETo with deterministic methods 

Figure 1 shows the comparison of monthly ETo values predicted by the combination based 
methods of Penman (PEN), Priestley Taylor (PT), Makkink (MAK), and de Bruin-Keijman (dBRU) 
and the ETo values of the Penman-Monteith method. Figure 2 presents the comparison between two 
of the temperature-based methods of Hargreaves (HRG) and Blaney-Criddle (BLC) and the 
Penman-Monteith method.  

 

Figure 1. Scattering diagrams between ETo with P-M method and a) Penman (PEN), b) Priestley and Taylor (PT), c) 
Makkink (MAK) and d) de Bruin-Keijman (dBRU) methods. 
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Table 2 presents the statistical properties of the empirical methods. A lower RMSE value or a 
higher EF value indicates a lower error between the estimated values from the empirical methods 
and the values of the P-M method. The Penman method correlated very well with the Penman-
Monteith method followed by the Priestley-Taylor, Makkink and de Bruin-Keijman methods. From 
Figure 1 it can be observed that there is a good correlation between ETo of the Penman-Monteith 
method and each one of the other methods, which are also consistent with the high values of the 
coefficient of determination that range from 0.972 to 0.991 and the RMSE values that range from 
0.265 to 0.343 mm d-1.  

From Figure 2 (and Table 2) it can also be observed that the modified Blaney-Criddle method 
gives better values of r in relation to the other temperature based method of Hargreaves, but the 
RMSE value is worst. The values of the coefficient of determination are 0.997 and 0.991 and the 
RMSE are 1.192 and 0.469 mm d-1, respectively. 

 
Table 2. Statistical criteria of comparison results for 7 years data and prediction by the examined empirical equations. 

 
P-M PEN PT MAK dBRU HRG BLC MTR 

Mean 2.824 2.631 2.772 3.179 2.844 3.041 3.455 1.865 
sd 1.870 1.807 2.045 2.419 2.037 1.954 2.644 1.343 
RMSE 

 
0.265 0.304 0.830 0.343 0.469 1.192 1.054 

r 
 

0.996 0.988 0.988 0.986 0.991 0.997 0.986 
EF 

 
0.978 0.978 0.881 0.971 0.942 0.794 0.376 

 

 
P-M mPENI mPENII VAL MLR J-H ETo COP 

Mean 2.824 2.703 2.730 4.049 2.824 3.176 4.638 
sd 1.870 1.988 1.983 2.576 1.854 2.537 1.876 
RMSE 

 
0.209 0.215 1.619 0.310 0.958 2.159 

r 
 

0.994 0.993 0.993 0.938 0.988  0.887 

EF 
 

0.989 0.988 0.600 0.975 0.856 -0.341 

 
Figure 3 shows the scattering diagrams between monthly ETo values predicted by the Penman-

Monteith method and the modified Penman (mPENI, mPENII, when c is estimated according to 
Frevert et al. (1983) or Kotsopoulos and Babajimopoulos (1997), respectively) equations (Eq 3) and 
the simplified methods of Jensen-Haize and Valiantzas (Eq. 10 and 12). From this Figure and the 
statistical criteria of Table 2, the Penman and modified Penman equations give similar results, while 
the simplified equations overestimate the ETo values with an r of 0.993 and 0.988 and an RMSE of 
1.619 and 0.958 mm d-1, respectively for Valiantzas and Jensen-Haize equations. 

 

Figure 2. Scattering diagrams between ETo with P-M method and a) Blaney-Criddle (BLC) and b) Hargreaves (HRG) 
methods. 

Figure 4 shows the scattering diagrams between monthly ETo values predicted by the Penman-
Monteith method and Copais (COP) and multi-linear regression (MLR) equations (Eq. 13 and 17). 
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From this Figure and the statistical criteria of Table 2 the MLR equation gives better results 
compared to the COP equation with r of 0.938 and 0.887 and RMSE of 0.310 and 2.159 mm d-1, 
respectively.  

Figure 5 presents the differences between each one of the ETo estimation methods and the P-M 
method using the average differences for each month of the time period from 2009 to 2015. The 
radiation based method of Makkink overestimates ETo values. The other methods of this group 
present difference of less than a 1 mm d-1, which are observed during the summer months of high 
evapotranspiration conditions. From the temperature based methods, Blaney-Criddle overestimates 
the ETo values with differences that approach the 2 mm d-1, while Hargreaves method presents 
smaller differences. The modified formulas of Penman methods present smaller differences, while 
the Jensen-Haizen method overestimates the ETo values with significant differences. The methods 
of Copais, Valiantzas and mass transfer present significant differences to P-M method. Coppais and 
Valiantzas overestimate the ETo values, while the mass transfer underestimates them. 

 

Figure 3. Scattering diagrams between ETo with P-M method and a) Modified Penman (mPENI), b) Modified Penman 
(mPENII), c) Jensen-Haise (JH) and d) Valiantzas (VAL) methods. 

 

Figure 4. Scattering diagrams between ETo with P-M method and a) Copais (COP) and b) multi-linear regression 
(MLR) methods. 
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3.2 Comparison results of ETo estimated with ANNs 

The architecture of the ANN model was identified by the trial and error procedure 
(Antonopoulos and Antonopoulos, 2017). The most appropriate one that was finally chosen was the 
4-6-1 structure, with 4 neurons in the input layer, 6 neurons in the hidden layer and 1 neuron in the 
output layer which corresponds to the reference evapotranspiration, using a sigmoid transfer 
function. Before training and testing, the 4 variables (T, RH, Rs, u2) were standardized and were 
used as input variables. The target output variable ETo was also standardized before training and 
testing. All of the available data sets were used for training and testing the model. Detailed 
information on the data that was split for training and testing, the selection of ANN’s architecture 
etc, was presented in Antonopoulos and Antonopoulos (2017) in which daily meteorological and 
ETo data time series was used. 

Figure 6 shows the comparison between monthly ETo values of ANNs models of a) 4-6-1, b) 3-
6-1, c) 2-6-1 and d) 1-6-1 structure and the ETo values of Penman-Monteith method. Table 3 gives 
the values of RMSE and r for each combination of the number of input variables. The values of 
these criteria, when daily data sets were used (Antonopoulos and Antonopoulos (2017), are also 
presented for comparison reasons. From Figure 6 and Table 3, it can be observed that the ANNs 
models describe the monthly values of ETo with high accuracy, which however decreases as the 
number of input variables lessens. The RMSE values of all combinations in the input variables 
ranged from 0.509 to 0.947 mm d-1 and the r values from 0.955 to 0.998. This shows that using 
even 3 or 2 input variables in the ANN models also gives high accuracy results in the ETo 
evaluation. 

 
Table 3. Statistical criteria of results obtained using different number of input variables of ANN models. The data sets 

of 2009-2015 were used for training and testing. 

  ETo PM 
4 Input variables 
Τ, RH, Rs, u2 

3 Input variables 
Τ, RH, Rs 

2 Input variables 
Τ, Rs 

1 Input variable 
Τ 

Mean (mm d-1) 2.821 2.821 2.821 2.815 2.821 
sd 2.259 2.247 2.235 2.229 2.167 
RMSE   0.509 0.638 0.663 0.947 
r   0.998 0.992 0.99 0.955 

 For daily datasets 
RMSE  0.574-1.326 0.598-0.954 0.640-0.871 1.020 
r  0.955-0.986 0.952-0.978 0.951-0.976 0.897 

3.3 Methods’ adjustment to local conditions 

Many of the ETo methods presented in this paper contain coefficients that were estimated for 
specific locations. The Pristley-Taylor, Makkink, de Bruin-Keijman, Valiantzas, and Blaney-
Criddle methods were modified by adjusting coefficients to obtain better comparison with ETo P-M 
values. The software of Wessa (2017) was used in these estimations. The modified equations are 
presented in Table 4, with the values of statistical criteria. The PT and Makkink methods give 
results nearly identical to the original form of the equations. The adjusting mass transfer and 
Valiantzas equations have been improved significantly in relation to the original form of the 
equations. From the multilinear regression equations, these which involve the three basic variables 
(Rs, Tm, RH) present the better results of statistical criteria. These values compared well with the 
values of the Penman and PT methods. The equation with Rs and T also show good statistical 
values, while the equation with only T gives statistical values that are lower but remain still high. 
Using Ra as radiation in the multilinear equation with 3 or 2 variables, results in high values of 
statistical criteria, almost identical to the case of using Rs.   
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Figure 5. Mean monthly differences of ETo of different method estimation from P-M method for period of 2009 to 2015. 

4. DISCUSSION 

Many researchers worked with different methods of evapotranspiration from land covered 
surfaces or evaporation from free surface water of lakes based on the number of variables that are 
affecting them. The methods may be categorized into one of the following classes of energy budget, 
aerodynamic transfer (or mass transfer), a combination of these and simplified empirical methods or 
multilinear regression methods.  

A performance rank from the best to the least effective is determined by the RMSE and EF 
values and it is given in Table 5. From this table the rank is: mPENI, mPENII, PEN, PT, MLR, 
dBRU, HRG, MAK, J-H, MTR, BLC, VAL and COP. From the radiation-temperature based 
category, Penman and the modified Penman, Priestley Taylor and de Bruin-Keijman are among the 
best methods. From the temperature based category, Hargreaves is better compared to Blaney-
Criddle.  

Evaporation is one of the most important components in both the energy and water budgets of 
lakes and a primary process of water loss from their surface (Antonopoulos et al., 2016). Accurate 
estimation of lake evaporation is necessary for water and energy budget studies, lake level forecasts, 
water quality surveys, water management and planning for hydraulic constructions. Evaporation 
methods that include available energy and aerodynamic terms have been studied in comparison to 
the Bowen-ration. Energy-Budget was used as the standard method in many articles (Rosenberry et 
al., 2007; Winter et al., 1995; Dalton et al. 2004; Antonopoulos et al. 2016). They found that 
empirical methods that emphasize on the assessment of energy fluxes provide the best estimates of 
water loss to the atmosphere. Rankings of alternate methods for estimating evaporation varied 
among the three above-mentioned studies. In some cases, the robustness of a particular empirical 
method depended on the ambient climate. 
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Figure 6. Scattering diagrams between ANNs results and P-M method of ETo (mm d-1) during the testing periods, when 
monthly data of 2009-15 were used for training and testing the ANN model and a) T, RH, u2 and Rs b) T, RH, Rs, c) T, 

Rs and d) only T are the input variables, relatively. 

Table 4. Equations adjustment to local conditions and statistical criteria. 
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The evaluation of empirical equations of reference evapotranspiration in relation to the Penman-

Monteith method (standard method) has been also the subject of many articles. The main reasons of 
these studies are 1) the poor data availability that limits the use of the P-M method in many regions 
and 2) the need to calibrate the empirical equations under the regional conditions. Hargreaves 
method, as an example, is one of the most used methods, because it requires limited variables but it 
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overestimates ETo at wet conditions and underestimates it at more dry conditions and high wind 
velocities (Allen et al., 1998; Garcia et al., 2004). 

The radiation and temperature based methods generally describe the monthly ETo in the 
examined area of northern Greece better. The temperature based methods follow in accuracy and 
the mass transfer and empirical methods with less accuracy. The adjustments of coefficients of 
some empirical methods to the local conditions significantly improve the results of ETo estimation. 
Multilinear regression equations produce accurate results even when less meteorological variables 
are used in the equation. These results and conclusions are similar to the results of many other 
authors that examined empirical equation of ETo, as they are presented below. Xu and Singh (2002) 
evaluated and compared five empirical reference evapotranspiration equations from the three 
categories of temperature-based (Hargreaves and Blaney-Criddle), radiation-based (Makkink and 
Priestley-Taylor) and mass-transfer-based methods with the Penman-Monteith equation using daily 
meteorological data from the Changins station in Switzerland. The study showed that: (1) the 
original constant values involved in each empirical equation worked quite well for the study region, 
except that the value of α = 1.26 in Priestley-Taylor was found to be too high and the recalibration 
gave a value of α = 0.90 for the region, (2) improvement was achieved for the Blaney-Criddle 
method by adding a transition period in determining the parameter p, (3) the differences of 
performance between the best equation forms selected from each category are smaller than the 
differences between different equations within each category as reported in earlier studies (Xu and 
Singh, 2000). Further examination of the performance resulted in the following rank of accuracy as 
compared to the Penman-Monteith estimates: Priestley-Taylor and Makkink (radiation-based), 
Hargreaves and Blaney-Criddle (temperature-based) and Rohwer (mass-transfer). 

Lu et al. (2005) studied six commonly used ETo methods using datasets from forested 
watersheds in the southeastern United States. The temperature based Hargreaves-Samani and the 
radiation based Makkink, and Priestley-Taylor ETo methods were compared. The study found that 
ETo values calculated from the six methods were highly correlated (Pearson Correlation Coefficient 
0.85 to 1.00). The Priestley-Taylor method performed better than the other ETo methods. 

 
Table 5. Ranked performance of examined empirical method according to RMSE and EF values. 

Method RMSE, mm d-1 EF Rank 
mPENI 0.209 0.989 1 
mPENII 0.215 0.988 2 
PEN 0.265 0.978 3 
PT 0.304 0.978 4 
MLR 0.310 0.975 5 
dBRU 0.343 0.971 6 
HRG 0.469 0.942 7 
MAK 0.830 0.881 8 
J-H 0.958 0.856 9 
MTR 1.054 0.376 10 
BLC 1.192 0.794 11 
VAL 1.619 0.600 12 
COP 2.159 -0.341 13 

 
Xystrakis and Matzarakis (2011), using daily meteorological data from seven meteorological 

stations on the island of Crete (southern Greece), evaluated 13 empirical equations (radiation- and 
temperature-based) of ETo. The radiation-based equations generally exhibited better fits than the 
temperature-based equations. Jensen-Haise equation, Makkink equation and De Bruin equation 
clearly revealed a great bias and, therefore, their use for the estimation of ETref in the semiarid 
climate of Crete is not recommended. 

Rácz et al. (2013) presented a comparative analysis of different methods of ETo evaluation for 
the continental climate of Eastern Hungary. They concluded that Priestley-Taylor, 
Penman−Monteith−FAO-56, parameterized with alternative radiation balance and Makkink 
methods were found to be the best performing models for ET calculation. According to Efthimiou et 
al. (2013), the Pristley-Taylor method had the best correlation to the ETo-PM, amongst many other 
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empirical equations as Penman, Makkink, Hargreaves and Copais, while using the data from two 
meteorological stations at Western Macedonia, Greece. 

Djaman et al. (2015) evaluated the performance of 16 ETo equations against the ASCE-PM 
equation under the sahelian conditions in the Senegal River Valley. The Hargreaves and the 
modified Hargreaves equation systematically overestimated ETo. The equations of Makkink–
Hansen systematically underestimated ETo. Temperature-based equations performed relatively 
better. Mass transfer equations of Trabert and Mahringer also had better performance and represent 
simple ETo estimation methods that could be used under conditions of limited climate data in the 
Senegal River Valley. The results of Heydari et al., (2014) from a comparison and evaluation study 
of 38 equations to estimate ETo in an arid region, showed that the mass transfer-based equations had 
the worst performances among the equations evaluated. The ETo values obtained from the 
equations, derived specifically for this location, were better than those estimated by existing 
equations.  

Recently a significant number of articles use artificial intelligence techniques to simulate 
evaporation from free water surface as well as actual and reference evapotranspiration (Kumar et 
al., 2011). The results of ANN models in evaluation of ETo with the available datasets of our study 
area from the region of West Macedonia in Northern Greece showed that they have the ability to 
describe it with high accuracy. This accuracy is in agreement with the results of radiation and 
temperature based methods of Penman, modified Penman, Pristley-Taylor, de Bruin-Keijman and 
those of the empirical methods. Similar are the results of using ANNs models from other authors as 
they are presented below. The results of Terzi and Keskin (2010) evaluation of artificial neural 
networks (ANN) models and some classical methods showed that PT and MAK methods 
underestimated evaporation values and that the ANN model is superior even to classical methods. 
Diamantopoulou et al. (2011) compared two ANN models and HRG method to the P-M method at 
three meteorological stations in the central and northern Greece. The estimated r and RMSE values 
of the HRG method ranged from 0.914 to 0.958 and 0.553 to 0.725 mm d-1, respectively, while 
those for the ANN models ranged from 0.934 to 0.957 and 0.398 to 0.444 mm d-1, respectively. 
Traore et al. (2010) also showed that the ANNs temperature-based model has a better performance 
when compared to the empirical Hargreaves method. Gocic et al. (2016) analyzing the ETo using an 
extreme learning machine (ELM) and the adjusted Hargreaves, Priestley–Taylor and Turk, obtained 
results which revealed that the ELM and Hargreaves method was superior to the other conventional 
methods. Shiri et al. (2014) applied ANNs and some other Heuristic Data Driven (HDD) models to 
study ETo and to compare it with the corresponding Hargreaves, Makkink, Priestley–Taylor, Turc 
methods, and non-linear calibrated methods. The calibrated Hargreaves model was found to give 
the most accurate results in all local and pooled scenarios, followed by the calibrated Priestley–
Taylor model. The comparison results of Antonopoulos and Antonopoulos (2016) of ANNs models 
and empirical equations showed that ANNs models estimate ETo with an accuracy of a RMSE that 
ranged from 0.574 to 1.33 mm d-1, and r from 0.955 to 0.986. The Priestley-Taylor and Makkink 
methods correlated very well (RMSE of 0.962 and r of 0.925) with the Penman-Monteith method 
followed by the Hargreaves method. The mass transfer method also correlated sufficiently 
(RMSE=0.922, r=0.849) but it underestimated the ETo values. 

As Jain et al. (2008) noted, the ANNs have the ability to learn from the data (training datasets) to 
recognize a pattern in the data, to adapt solutions and to process information rapidly. The major 
disadvantage of ANNs in hydrological models is that they do not explain the underlying physical 
processes in mapping the relationships while operating as “black box” models. Another 
disadvantage is that a model developed for one specific location cannot be implemented to other 
locations without local training. The most serious disadvantage is that these models require 
significant effort in order to be used, which makes them very difficult for a common user without 
any software (as MATLAB, or STATGRAPHICS) and structure knowledge of these models. In 
contrast the empirical models are very simple for anyone to use and require no special knowledge 
and skill. 
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5. CONCLUSIONS 

Monthly reference evapotranspiration rates were estimated with the combination type method of 
Penman – Monteith. The results of alternative empirical methods of radiation-temperature, 
temperature, mass transfer based methods and some others equations based on regression or 
simplified approaches were compared with the ETo-PM. ANN models were also used to describe 
ETo and to compare it with the empirical methods. Seven years (2009 to 2015) of monthly data 
from the station of Amynteo near the Lake Vegoritis in the northern Greece were used. The Penman 
Monteith method is considered the standard method to compare and evaluate the 
empirical/deterministic models of reference evapotranspiration. 

The empirical temperature and radiation based methods gave the best results followed by the 
temperature based methods, while the simplified or regression equations had less accuracy. The 
multilinear regression equations, based on the local meteorological datasets, gave accurate results 
either by using all input variables or by limiting them. The recalibration of the Pristley-Taylor, 
Makkink, Blaney-Criddle, Valiantzas and mass transfer methods with the local meteorological 
datasets improved the results of the ETo estimation. 

The accuracy and statistical criteria of the (4-6-1) structure ANN model is considered the best of 
all the other ANN structures. The performance of the ANNs models while using less input 
variables, but containing temperature and solar radiation, was also adequate and gave good results 
with high accuracy. Generally, the accuracy of the ANN models is similar to the one of the 
radiation and temperature based empirical methods.  

The empirical methods to estimate reference evapotranspiration still remain a valuable tool, as it 
is one of the main components of the hydrological balance, and because of the high interest in the 
hydrological and agronomical studies. Its accurate estimation over the world, under local 
conditions, is also very important for the water resources management. The newest methods of 
artificial intelligent processes, while giving accurate results, require special knowledge from the 
users and significant dataset of the same variables that empirical methods use to estimate ETo. 
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