

Beyond Nash Equilibrium: Solution Concepts for the 21st Century

Joe Halpern and many collaborators ...

Cornell University

Beyond Nash Equilibrium - p. 1/35

Nash equilibrium and security

- An often useful way to think of security is as a game between an adversary and the "good" participants in the protocol.
 - Allows us to model incentives of participants
 - Tradeoffs between costs of security and amount of security
- Game theorists understand games in terms of solution concepts
 - meant to describe what the outcome of a game will be
- *Nash equilibrium* (NE) is the most common solution concept.
 - A NE is a strategy profile (one strategy for each player) such that no player can do better by unilaterally deviating
 - Intuition: it's a steady state of play (technically: a fixed point)
 - Each players holds correct beliefs about what the other players are doing and plays a best response to those beliefs.

The good news:

- Often, NE gives insight, and does predict what people do
- Theorem: [Nash] Every finite game has a Nash equilibrium (if we allow mixed (randomized) strategies).

- NE gives quite unreasonable answers in a number of games
 - e.g., repeated prisoners' dilemma, discussed later
- How do agents learn what other agents are doing if the game is played only once!
 - What if there are multiple Nash equilibria?
 - Which one is played?
- Why should an agent assume that other agents will play their part of a NE, even if there is only one?
- What if agents are not aware of some aspects of the game
 - There may be lack of awareness of their moves, of other players' moves, or of who is playing the game

Alternative Solution Concepts

- To deal with these problems, many refinements of and alternatives to
- NE have been considered in the game theory literature:
 - rationalizability
 - sequential equilibrium
 - (trembling hand) perfect equilibrium
 - proper equilibrium

. . .

iterated deletion of weakly (or strongly) dominated strategies

None of these address the concerns that I want to focus on.

New problems

- NE is not robust
 - It does not handle "faulty" or "unexpected" behavior
 - It does not deal with coalitions
- NE does not take computation costs into account
- NE assumes that the structure of the game is common knowledge
 - What if a player is not aware of some moves he can make?

NE tolerates deviations by one player.

It's consistent with NE that 2 players could do better by deviating. An equilibrium is k-resilient if no group of size k can gain by deviating

(in a coordinated way).

Example: n > 1 players must play either 0 or 1.

- if everyone plays 0, everyone gets 1
- if exactly two players play 1, they get 2; the rest get 0.
- otherwise; everyone gets 0.

Everyone playing 0 is a NE, but not 2-resilient.

- Nash equilibrium = 1-resilient equilibrium.
- In general, k-resilient equilibria do not exist if k > 1.
- Aumann [1959] already considers resilient equilibria.
- But resilience does not give us all the robustness we need in large systems.
- Following work on robustness is joint with Ittai Abraham, Danny Dolev, and Rica Gonen.

"Irrational" Players

Some agents don't seem to respond to incentives, perhaps because

- their utilities are not what we thought they were
- they are irrational
- they have faulty computers

Apparently "irrational" behavior is not uncommon:

People share on Gnutella and Kazaa, seed on BitTorrent

Example: Consider a group of *n* bargaining agents.

- If they all stay and bargain, then all get 2.
- Anyone who goes home gets 1.
- Anyone who stays gets 0 if not everyone stays.

Everyone staying is a k-resilient Nash equilibrium for all k < n, but not immune to one "irrational" player going home.

People certainly take such possibilities into account!

A protocol is t-immune if the payoffs of "good" agents are not affected by the actions of up to t other agents.

- Somewhat like *Byzantine agreement* in distributed computing.
- \checkmark Good agents reach agreement despite up to t faulty agents.
- A (k, t)-robust protocol tolerates coalitions of size k and is t-immune.
 - Nash equilibrium = (1,0)-robustness
 - In general, (k, t)-robust equilibria don't exist
 - they can be obtained with the help of mediators

Mediators

Consider an auction where people do not want to bid publicly

- public bidding reveals useful information
- don't want to do this in bidding for, e.g., oil drilling rights

If there were a mediator (trusted third party), we'd be all set ...

Distributed computing example: Byzantine agreement

Implementing Mediators

Can we eliminate the mediator? If so, when?

- Work in economics: implementing mediators with "cheap talk" [Myerson, Forges, ...]
 - "implementation" means that if a NE can be achieved with a mediator, the same NE can be achieved without
- Work in CS: *multi-party computation* [Ben-Or, Goldwasser, Goldreich, Micali, Wigderson, ...]
 - "implementation" means that "good" players follow the recommended protocol; "bad" players can do anything they like
- By considering (k, t)-robust equilibria, we can generalize the work in both CS and economics.

If n > 3k + 3t, a (k, t)-robust strategy $\vec{\sigma}$ with a mediator can be implemented using cheap talk.

- No knowledge of other agents' utilities required
- The protocol has bounded running time that does not depend on the utilities.
- Can't do this if $n \leq 3k + 3t$.
- If n > 2k + 3t, agents' utilities are known, and there is a *punishment strategy* (a way of punishing someone caught deviating), then we can implement a mediator
 - Can't do this if $n \leq 2k + 3t$ or no punishment strategy
 - Unbounded running time required (constant expected time).

- If n > 2k + 2t and a broadcast facility is available, can ϵ -implement a mediator.
 - Can't do it if $n \leq 2k + 2t$.
- If $n \le k + t$, assuming cryptography, polynomially-bounded players, a (k + t)-punishment strategy, and a PKI, then can ϵ -implement mediators using cheap talk.
- Note how standard distributed computing assumptions make a big difference to implementation!
- **Bottom line:** We need solution concepts that take coalitions and fault-tolerance seriously.

Making Computation Costly

Work on computational NE joint with Rafael Pass.

Example: You are given a number n-bit number x.

- You can guess whether it's prime, or play safe and say nothing.
 - If you guess right, you get \$10; if you guess wrong, you lose
 \$10; if you play safe, you get \$1.
 - Only one NE in this 1-player game: giving the right answer.
 - Computation is costless
 - That doesn't seem descriptively accurate!
- The idea of making computation cost part of equilibrium notion goes back to Rubinstein [1985].
 - He used finite automata, charged for size of automaton used

A More General Framework

We consider *Bayesian games*:

- Each agent has a type, chosen according to some distribution
 - The type represents agent's private information (e.g., salary)
- Agents choose a Turing machine (TM)
- Associated with each TM M and type t is its complexity
 - The complexity of running M on t
- Each agent i gets a utility depending on the
 - profile of types, outputs (M(t)), complexities
 - I might just want to get my output faster than you

Can then define Nash Equilibrium as usual.

The addition of complexities allows us to capture important features:

- In the primality testing game, for a large input, you'll play safe because of the cost of computation
- Can capture overhead in switching strategies
- Can explain some experimentally-observed results.

Repeated Prisoner's Dilemma:

Suppose we play Prisoner's Dilemma a fixed number k times.

$$\begin{array}{c|c} C & D \\ \hline C & (3,3) & (-5,5) \\ D & (5,-5) & (-1,-1) \end{array}$$

- The only NE is to always defect
- People typically cooperate (and do better than "rational" agents who play NE)!

Suppose there is a small cost to memory and a discount factor > .5.

- **9** Then *tit-for-tat* gives a NE if k is large enough
 - Tit-for-tat: start by cooperating, then at step m + 1 do what the other player did at step m.
 - In equilibrium, both players cooperate throughout the game
- This remains true even if only one player has a cost for memory!

NE might not exist.

- Consider roshambo (rock-paper-scissors)
- Unique NE: randomize 1/3-1/3-1/3
- But suppose we charge for randomization
 - deterministic strategies are free
- Then there's no NE!
 - The best response to a randomized strategy is a deterministic strategy

But perhaps this is not so bad:

Taking computation into account should cause us to rethink things!

Redefining Protocol Security

Key Result: Using computational NE, can give a game-theoretic definition of security that takes computation and incentives into account

- Rough idea of definition: II is a secure implementation of f if, for all utility functions, if it is a NE to play with the mediator to compute f, then it is a NE to use II (a cheap-talk protocol)
- The definition does not mention privacy;
 - this is taken care of by choosing utilities appropriately
- Can prove that (under minimal assumptions) this definition is equivalent to precise zero knowledge [Micali/Pass, 2006]
 - Two approaches for dealing with "deviating" players are intimately connected: NE and zero-knowledge simulation

(Lack of) Awareness

Work on awareness is joint with Leandro Rêgo.

- Standard game theory models assume that the structure of the game is common knowledge among the players.
 - This includes the possible moves and the set of players
- **Problem:** Not always a reasonable assumption; for example:
 - war settings
 - one side may not be aware of weapons the other side has
 - financial markets
 - an investor may not be aware of new innovations
 - auctions in large networks,
 - you may not be aware of who the bidders are

A Game With Lack of Awareness

- One Nash equilibrium of this game
 - A plays across_A , B plays down_B (not unique).
- But if A is not aware that B can play down_B, A will play down_A.

Representing lack of awareness

NE does not always make sense if players are not aware of all moves

- We need a solution concept that takes awareness into account!
- First step: represent games where players may be unaware
- Key idea: use augmented games:
 - An augmented game based on an underlying standard game Γ is essentially Γ and, for each history h an awareness level:
 - the set of runs in the underlying game that the player who moves at h is aware of
 - Intuition: an augmented game describes the game from the point of view of an omniscient modeler or one of the players.

Consider the earlier game. Suppose that

- \blacksquare players A and B are aware of all histories of the game;
- player A is uncertain as to whether player B is aware of run (across_A, down_B) and believes that B is unaware of it with probability p; and
- the type of player B that is aware of the run $\langle \operatorname{across}_A, \operatorname{down}_B \rangle$ is aware that player A is aware of all histories, and he knows A is uncertain about B's awareness level and knows the probability p.

To represent this, we need three augmented games.

Modeler's Game

- Both A and B are aware of all histories of the underlying game.
- But A considers it possible that B is unaware.
 - To represent A's viewpoint, we need another augmented game.

A's View of the Game

At node B.2, B is not aware of the run $\langle across_A, down_B \rangle$.

We need yet another augmented game to represent this.

(A's view of) B's view

- At node A.3, A is not aware of $\langle across_A, down_B \rangle$;
 - neither is B at B.3.
- Moral: to fully represent a game with awareness we need a set of augmented games.
 - Like a set of possible worlds in Kripke structures

A game with awareness based on Γ is a tuple $\Gamma^*=(\mathcal{G},\Gamma^m,\mathcal{F}),$ where

- \mathcal{G} is a countable set of augmented games based on Γ ;
- $\Gamma^m \in \mathcal{G}$ is an omniscient modeler's view of the game
- - h is a history in $\Gamma^+ \in \mathcal{G}$;
 - If player *i* moves at *h* in Γ^+ and $\mathcal{F}(\Gamma^+, h) = (\Gamma^h, I)$, then
 - Γ^h is the game that i believes to be the true game at h
 - I (*i*'s *information set*) describes where i might be in Γ^h
 - · I is the set of histories in $\Gamma^h i$ considers possible;
 - · histories in I are indistinguishable from i's point of view.

- In a standard game, a strategy describes what a player does at each information set
- This doesn't make sense in games with awareness!
 - A player can't plan in advance what he will do when he becomes aware of new moves
- In a game $\Gamma^* = (\mathcal{G}, \Gamma^m, \mathcal{F})$ with awareness, we consider a collection of *local strategies*, one for each augmented game in \mathcal{G}
 - Intuitively, local strategy $\sigma_{i, \prime}$ is the strategy that i would use if i thought that the true game was Γ' .
- There may be no relationship between the strategies $\sigma_{i, \prime}$ for different games Γ' .

Generalized Nash Equilibrium

- Intuition: $\vec{\sigma}$ is a generalized Nash equilibrium if for every player *i*, if *i* believes he is playing game Γ' , then his local strategy $\sigma_{i, \gamma}$ is a best response to the local strategies of other players in Γ' .
 - The local strategies of the other players are part of $\vec{\sigma}$.
- **Theorem:** Every game with awareness has at least one generalized Nash equilibrium.

Awareness of Unawareness

Sometimes players may be aware that they are unaware of relevant moves:

- War settings: you know that an enemy may have new technologies of which you are not aware
- Delaying a decision: you may become aware of new issues tomorrow
- Chess: "lack of awareness" \leftrightarrow "inability to compute"

Modeling Awareness of Unawareness

- If i is aware that j can make a move at h that i is not aware of, then j can make a "virtual move" at h in i's subjective representation of the game
 - The payoffs after a virtual move reflect i's beliefs about the outcome after the move.
 - Just like associating a value to a board position in chess
- Again, there is guaranteed to be a generalized Nash equilibrium.
- Ongoing work: connecting this abstract definition of unawareness to the computational definition

- The first paper on unawareness by Feinberg (2004, 2005):
 - defines solution concepts indirectly, syntactically
 - no semantic framework
- Sequence of papers by Heifetz, Meier, Schipper (2005–08)
 - Awareness is characterized by a 3-valued logic
- Work with Rêgo dates back to 2005; appeared in AAMAS 2006
- Related papers on logics of awareness and unawareness
 - Fagin and Halpern (1985/88), Modica and Rusticchini (1994; 1999), ..., Halpern and Rêgo (2005, 2006)
- *Lots* of recent papers, mainly in Econ:
 - 7 papers in TARK 2007, 6 papers in GAMES 2008

Conclusions

- I have suggested solution concepts for dealing with
 - fault tolerance
 - computation
 - (lack of) awareness
- Still need to take into account (among other things):
 - "obedient" players who follow the recommended protocol
 - Alvisi et al. call these "altruistic" players
 - "known" deviations: hoarders and altruist in a scrip system
 - asynchrony
 - computational equilibria in extensive form games
 - computation happens during the game