

Beyond Nash Equilibrium: Solution Concepts for the 21stCentury

Joe Halpernand many collaborators . . .

Cornell University

Beyond Nash Equilibrium – p. 1/35

Nash equilibrium and security

- An often useful way to think of security is as ^a game between anadversary and the "good" participants in the protocol.
	- Allows us to model incentives of participants \bullet
	- Tradeoffs between costs of security and amount of security
- Game theorists understand games in terms of solution concepts
	- meant to describe what the outcome of ^a game will be
- Nas*h equilibrium* (NE) is the most common solution concept.
	- A NE is a *strategy profile* (one strategy for each player) such that no player can do better by unilaterally deviating
	- Intuition: it's ^a steady state of play (technically: ^a fixed point) \bullet
		- Each players holds correct beliefs about what the otherplayers are doing and plays ^a best response to those beliefs.

The good news:

- Often, NE gives insight, and does predict what people do
- **Theorem:** [Nash] Every finite game has ^a Nash equilibrium (if weallow mixed (randomized) strategies).
- NE gives quite unreasonable answers in ^a number of games
	- e.g., repeated prisoners' dilemma, discussed later
- How do agents learn what other agents are doing if the game isplayed only once!
	- What if there are multiple Nash equilibria?
		- Which one is played? \bullet
- Why should an agent assume that other agents will play their part of ^a NE, even if there is only one?
- What if agents are not aware of some aspects of the game
	- There may be lack of awareness of their moves, of other \bullet players' moves, or of who is playing the game

Alternative Solution Concepts

- To deal with these problems, many refinements of and alternatives to
- NE have been considered in the game theory literature:
	- rationalizability
	- sequential equilibrium
	- (trembling hand) perfect equilibrium
	- proper equilibrium

. . .

iterated deletion of weakly (or strongly) dominated strategies

None of these address the concerns that I want to focus on.

New problems

- NE is not robust
	- It does not handle "faulty" or "unexpected" behavior \bullet
	- It does not deal with coalitions
- NE does not take computation costs into account
- NE assumes that the structure of the game is common knowledge
	- What if a player is not aware of some moves he can make?

NE tolerates deviations by one player.

It's consistent with NE that 2 players could do better by deviating. An equilibrium is k -res*ilient* if no group of size k can gain by deviating

(in ^a coordinated way).

Example: $n > 1$ players must play either 0 or 1.

- if everyone plays 0, everyone gets ¹
- if exactly two players play 1, they get 2; the rest get 0.
- otherwise; everyone gets 0.

Everyone playing 0 is ^a NE, but not 2-resilient.

- Nash equilibrium ⁼ 1-resilient equilibrium.
- In general, k -resilient equilibria do not exist if $k>1.$
- Aumann [1959] already considers resilient equilibria.
- But resilience does not give us all the robustness we need in largesystems.
- Following work on robustness is joint with Ittai Abraham, Danny Dolev, and Rica Gonen.

"Irrational" Players

Some agents don't seem to respond to incentives, perhaps because

- their utilities are not what we thought they were
- they are irrational
- they have faulty computers

Apparently "irrational" behavior is not uncommon:

People share on Gnutella and Kazaa, seed on BitTorrent

 $\pmb{\text{Example:}}$ Consider a group of n bargaining agents.

- If they all stay and bargain, then all get 2.
- Anyone who goes home gets 1.
- Anyone who stays gets 0 if not everyone stays.

Everyone staying is a k -resilient Nash equilibrium for all $k < n$, but not immune to one "irrational" player going home.

People certainly take such possibilities into account!

A protocol is t *-immune* if the payoffs of "good" agents are not affected by the actions of up to t other agents.

- Somewhat like *Byzantine agreement* in distributed computing.
- Good agents reach agreement despite up to t faulty agents.
- A (k,t) -robust protocol tolerates coalitions of size k and is t -immune.
	- Nash equilibrium $= (1,0)$ -robustness
	- In general, (k, t) -robust equilibria don't exist
		- \bullet they can be obtained with the help of *mediators*

Consider an auction where people do not want to bid publicly

- public bidding reveals useful information
- don't want to do this in bidding for, e.g., oil drilling rights

If there were ^a mediator (trusted third party), we'd be all set . . .

Distributed computing example: Byzantine agreement

Implementing Mediators

Can we eliminate the mediator? If so, when?

- Work in economics: implementing mediators with "cheap talk"[Myerson, Forges, . . .]
	- "implementation" means that if ^a NE can be achieved with ^amediator, the same NE can be achieved without
- Work in CS: *multi-party computation* [Ben-Or, Goldwasser, Goldreich, Micali, Wigderson, ...
	- "implementation" means that "good" players follow therecommended protocol; "bad" players can do anything they like

By considering (k,t) -robust equilibria, we can generalize the work in both CS and economics.

If $n>3k+3t$, a (k,t) -robust strategy $\vec{\sigma}$ with a mediator can be implemented using cheap talk.

- No knowledge of other agents' utilities required
- The protocol has bounded running time that does not dependon the utilities.
- Can't do this if $n\leq 3k+3t$.
- If $n>2k+3t$, agents' utilities are known, and there is a punishment strategy (a way of punishing someone caught deviating), then we can implement ^a mediator
	- Can't do this if $n\leq 2k+3t$ or no punishment strategy \bullet
	- Unbounded running time required (constant expected time).

- If $n>2k+2t$ and a broadcast facility is available, can ϵ -implement a mediator.
	- Can't do it if $n\leq 2k+2t$.
- If $n\leq k+t$, assuming cryptography, polynomially-bounded players, a $(k+t)$ -punishment strategy, and a PKI, then can ϵ -implement mediators using cheap talk.
- Note how standard distributed computing assumptions make ^a big difference to implementation!
- **Bottom line:** We need solution concepts that take coalitions andfault-tolerance seriously.

Making Computation Costly

Work on computational NE joint with Rafael Pass.

Example: You are given a number n -bit number $x.$

- You can guess whether it's prime, or play safe and say nothing.
	- If you guess right, you get \$10; if you guess wrong, you lose\$10; if you play safe, you get \$1.
	- Only one NE in this 1-player game: giving the right answer.
		- Computation is costless
		- That doesn't seem descriptively accurate!
- The idea of making computation cost part of equilibrium notion goesback to Rubinstein [1985].
	- He used finite automata, charged for size of automaton used

A More General Framework

We consider *Bayesian games*:

- Each agent has ^a type, chosen according to some distribution
	- **The type represents agent's private information (e.g., salary)**
- Agents choose ^a Turing machine (TM)
- Associated with each TM M and type t is its complexity
	- The complexity of running M on t
- Each agent i gets a utility depending on the
	- profile of types, outputs $(M(t))$, complexities
		- I might just want to get my output faster than you

Can then define Nash Equilibrium as usual.

The addition of complexities allows us to capture important features:

- In the primality testing game, for ^a large input, you'll play safebecause of the cost of computation
- Can capture overhead in switching strategies
- Can explain some experimentally-observed results.

Repeated Prisoner's Dilemma:

Suppose we play Prisoner's Dilemma a fixed number k times.

$$
\begin{array}{c|cc}\n & C & D \\
\hline\nC & (3,3) & (-5,5) \\
D & (5,-5) & (-1,-1)\n\end{array}
$$

- The only NE is to always defect
- People typically cooperate (anddo better than "rational" agentswho play NE)!

Suppose there is a small cost to memory and a discount factor $>\,.5.$

- Then *tit-for-tat* gives a NE if k is large enough
	- Tit-for-tat: start by cooperating, then at step $m+1$ do what the other player did at step $m.$
	- In equilibrium, both players cooperate throughout the game
- This remains true even if only one player has ^a cost for memory!

NE might not exist.

- Consider roshambo (rock-paper-scissors)
- Unique NE: randomize $1/3\!\!-\!\!1/3\!\!-\!\!1/3$
- But suppose we charge for randomization
	- deterministic strategies are free \bullet
- Then there's no NE!
	- The best response to ^a randomized strategy is ^a deterministi c \bullet strategy

But perhaps this is not so bad:

Taking computation into account should cause us to rethink things!

Redefining Protocol Security

- **Key Result:** Using computational NE, can give ^a game-theoreticdefinition of security that takes computation and incentives into account
	- Rough idea of definition: Π is a secure implementation of f if, for all utility functions, if it is ^a NE to play with the mediator to compute $f,$ then it is a NE to use Π (a cheap-talk protocol)
	- The definition does not mention privacy;
		- **this is taken care of by choosing utilities appropriately**
	- Can prove that (under minimal assumptions) this definition i sequivalent to *precise zero knowledge* [Micali/Pass, 2006]
		- Two approaches for dealing with "deviating" players areintimately connected: NE and zero-knowledge simulation

(Lack of) Awareness

Work on awareness is joint with Leandro Rêgo.

- Standard game theory models assume that the structure of thegame is common knowledge among the players.
	- This includes the possible moves and the set of players
- **Problem:** Not always ^a reasonable assumption; for example:
	- \bullet war settings
		- one side may not be aware of weapons the other side has
	- financial markets
		- an investor may not be aware of new innovations
	- auctions in large networks,
		- you may not be aware of who the bidders are

A Game With Lack of Awareness

- One Nash equilibrium of this game
	- A plays across $_A$, B plays down $_B$ (not unique).
- But if A is not aware that B can play down $_B$, A will play down $_A$.

Representing lack of awareness

NE does not always make sense if players are not aware of all moves

- We need ^a solution concept that takes awareness into account!
- First step: represent games where players may be unaware
- Key idea: use *augmented games*:
	- An augmented game based on an underlying standard game Γ is essentially Γ and, for each history h an *awareness level*:
		- the set of runs in the underlying game that the player whomoves at h is aware of
	- Intuition: an augmented game describes the game from thepoint of view of an omniscient modeler or one of the players.

Consider the earlier game. Suppose that

- players A and B are aware of all histories of the game;
- player A is uncertain as to whether player B is aware of run $\langle \textsf{across}_A, \textsf{down}_B \rangle$ and believes that B is unaware of it with probability p ; and
- the type of player B that is aware of the run $\langle\text{\text{across}}_A,\text{\text{down}}_B\rangle$ is aware that player A is aware of all histories, and he knows A is uncertain about B 's awareness level and knows the probability $p.$

To represent this, we need three augmented games.

Modeler's Game

- Both A and B are aware of all histories of the underlying game.
- But A considers it possible that B is unaware.
	- To represent A 's viewpoint, we need another augmented game.

A**'s View of the Game**

At node $B.2,$ B is not aware of the run $\langle\arccos_{A},$ down $_{B}\rangle.$

We need yet another augmented game to represent this. \bullet

(A**'s view of)** ^B**'s view**

- At node $A.3$, A is not aware of $\langle\mathtt{across}_A,\mathtt{down}_B\rangle;$
	- neither is B at $B.3$.
- **Moral:** to fully represent ^a game with awareness we need ^a set of augmented games.
	- Like ^a set of possible worlds in Kripke structures

A game with awareness based on Γ is a tuple $\Gamma^* =$ $(\mathcal{G}, \Gamma^m$ $,\mathcal{F}),$ where

- ${\cal G}$ is a countable set of augmented games based on $\Gamma;$
- $\Gamma^m\in\mathcal{G}$ is an omniscient modeler's view of the game
- $\mathcal{F}: (\Gamma^*, h) \mapsto (\Gamma^h, I)$
	- h is a history in $\Gamma^{+}\in\mathcal{G};$
	- If player i moves at h in Γ^+ and $\mathcal{F}(\Gamma^+,h)=(\Gamma^h,I),$ then
		- Γ^h is the game that i believes to be the true game at h
		- I (i 's *information set*) describes where i might be in Γ^h
			- · \cdot I is the set of histories in Γ^h $^{\prime\prime}$ i considers possible;
			- $\,\cdot\,$ histories in I are indistinguishable from i 's point of view.

- In ^a standard game, ^a strategy describes what ^a player does at each information set
- This doesn't make sense in games with awareness!
	- A player can't plan in advance what he will do when hebecomes aware of new moves
- In a game $\Gamma^{*}=$ $(\mathcal{G}, \Gamma^m$ $,\mathcal{F})$ with awareness, we consider a collection of *local strategies*, one for each augmented game in $\mathcal G$
	- Intuitively, local strategy $\sigma_{i,-'}$ is the strategy that i would use if \bullet i thought that the true game was $\Gamma'.$
- There may be no relationship between the strategies $\sigma_{i,-'}$ for different games $\Gamma^{\prime}.$

Generalized Nash Equilibrium

- Intuition: $\vec{\sigma}$ is a generalized Nash equilibrium if for every player i , if i believes he is playing game Γ' , then his local strategy $\sigma_{i,-'}$ is a best response to the local strategies of other players in $\Gamma'.$
	- The local strategies of the other players are part of $\vec{\sigma}$.
- **Theorem:** Every game with awareness has at least one generalizedNash equilibrium.

Awareness of Unawareness

Sometimes players may be aware that they are unaware of relevant moves:

- War settings: you know that an enemy may have new technologiesof which you are not aware
- Delaying ^a decision: you may become aware of new issuestomorrow
- Chess: "lack of awareness" \leftrightarrow "inability to compute" $\hspace{0.1mm}$

Modeling Awareness of Unawareness

- If i is aware that j can make a move at h that i is not aware of, then j can make a "virtual move" at h in i 's subjective representation of the game
	- The payoffs after a virtual move reflect i 's beliefs about the outcome after the move.
		- Just like associating ^a value to ^a board position in chess
- Again, there is guaranteed to be ^a generalized Nash equilibrium.
- Ongoing work: connecting this abstract definition of unawarenessto the computational definition
- The first paper on unawareness by Feinberg (2004, 2005):
	- defines solution concepts indirectly, syntactically
	- no semantic framework
- Sequence of papers by Heifetz, Meier, Schipper (2005–08)
	- Awareness is characterized by ^a 3-valued logic
- Work with Rêgo dates back to 2005; appeared in AAMAS 2006
- Related papers on logics of awareness and unawareness
	- Fagin and Halpern (1985/88), Modica and Rusticchini (1994; 1999), \dots , Halpern and Rêgo (2005, 2006)
- Lots of recent papers, mainly in Econ:
	- 7 papers in TARK 2007, 6 papers in GAMES 2008

Conclusions

- I have suggested solution concepts for dealing with
	- **o** fault tolerance
	- computation
	- (lack of) awareness
- Still need to take into account (among other things):
	- "obedient" players who follow the recommended protocol
		- Alvisi et al. call these "altruistic" players
	- **•** "known" deviations: hoarders and altruist in a scrip system
	- asynchrony
	- computational equilibria in extensive form games
		- computation happens during the game