Open In App

Program to find sum of series 1 + 1/2 + 1/3 + 1/4 + .. + 1/n

Last Updated : 16 Feb, 2023
Summarize
Comments
Improve
Suggest changes
Like Article
Like
Save
Share
Report
News Follow

If inverse of a sequence follows rule of an A.P i.e, Arithmetic progression, then it is said to be in Harmonic Progression.In general, the terms in a harmonic progression can be denoted as : 1/a, 1/(a + d), 1/(a + 2d), 1/(a + 3d) …. 1/(a + nd). 
As Nth term of AP is given as ( a + (n – 1)d) .Hence, Nth term of harmonic progression is reciprocal of Nth term of AP, which is : 1/(a + (n – 1)d) 
where “a” is the 1st term of AP and “d” is the common difference.
We can use a for loop to find sum. 
 

C++




// C++ program to find sum of series
#include <iostream>
using namespace std;
  
// Function to return sum of 
// 1/1 + 1/2 + 1/3 + ..+ 1/n
class gfg
{
      
public : double sum(int n)
{
    double i, s = 0.0;
    for (i = 1; i <= n; i++)
    s = s + 1/i;
    return s;
}
};
  
// Driver code
int main()
{
    gfg g;
    int n = 5;
    cout << "Sum is " << g.sum(n);
    return 0;
}
  
// This code is contributed by SoM15242.


C




// C program to find sum of series
#include <stdio.h>
  
// Function to return sum of 1/1 + 1/2 + 1/3 + ..+ 1/n
double sum(int n)
{
  double i, s = 0.0;
  for (i = 1; i <= n; i++)
      s = s + 1/i;
  return s;
}
  
int main()
{
    int n = 5;
    printf("Sum is %f", sum(n));
    return 0;
}


Java




// Java Program to find sum of series
import java.io.*;
  
class GFG {
      
    // Function to return sum of
    // 1/1 + 1/2 + 1/3 + ..+ 1/n
    static double sum(int n)
    {
      double i, s = 0.0;
      for (i = 1; i <= n; i++)
          s = s + 1/i;
      return s;
    }
   
     
    // Driven Program
    public static void main(String args[])
    {
        int n = 5;
        System.out.printf("Sum is %f", sum(n));
          
    }
}
  
// This code is contributed by Nikita Tiwari.


Python3




# Python program to find the sum of series
  
def sum(n):
    i = 1
    s = 0.0
    for i in range(1, n+1):
        s = s + 1/i;
    return s;
  
# Driver Code 
n = 5
print("Sum is", round(sum(n), 6))
  
# This code is contributed by Chinmoy Lenka


C#




// C# Program to find sum of series
using System;
  
class GFG {
      
    // Function to return sum of
    // 1/1 + 1/2 + 1/3 + ..+ 1/n
    static float sum(int n)
    {
        double i, s = 0.0;
          
        for (i = 1; i <= n; i++)
            s = s + 1/i;
              
        return (float)s;
    }
  
      
    // Driven Program
    public static void Main()
    {
        int n = 5;
          
        Console.WriteLine("Sum is "
                           + sum(n));
          
    }
}
  
// This code is contributed by vt_m.


PHP




<?php
// PHP program to find sum of series
  
// Function to return sum of
// 1/1 + 1/2 + 1/3 + ..+ 1/n
function sum( $n)
{
    $i;
    $s = 0.0;
    for ($i = 1; $i <= $n; $i++)
        $s = $s + 1 / $i;
    return $s;
}
  
    // Driver Code
    $n = 5;
    echo("Sum is ");
    echo(sum($n));
      
//This code is contributed by vt_m
?>


Javascript




<script>
// javascript Program to find sum of series
      
// Function to return sum of
// 1/1 + 1/2 + 1/3 + ..+ 1/n
function sum(n)
{
  var i, s = 0.0;
  for (i = 1; i <= n; i++)
      s = s + 1/i;
  return s;
}
     
// Driven Program
var n = 5;
document.write(sum(n).toFixed(5));
  
// This code is contributed by Amit Katiyar 
</script>


Output: 
 

2.283333

Time Complexity: O(n)

Auxiliary Space: O(1), since no extra space has been taken.

 



Next Article

Similar Reads

three90RightbarBannerImg
  翻译: