library
(ElemStatLearn)
set = test_set
X1 =
seq
(
min
(set[, 1]) - 1,
max
(set[, 1]) + 1,
by = 0.01)
X2 =
seq
(
min
(set[, 2]) - 1,
max
(set[, 2]) + 1,
by = 0.01)
grid_set =
expand.grid
(X1, X2)
colnames
(grid_set) =
c
(
'Age'
,
'EstimatedSalary'
)
y_grid =
predict
(classifier,
newdata = grid_set,
type =
'class'
)
plot
(set[, -3], main = 'Decision Tree
Classification
(Test set)',
xlab =
'Age'
, ylab =
'Estimated Salary'
,
xlim =
range
(X1), ylim =
range
(X2))
contour
(X1, X2,
matrix
(
as.numeric
(y_grid),
length
(X1),
length
(X2)),
add =
TRUE
)
points
(grid_set, pch =
'.'
,
col =
ifelse
(y_grid == 1,
'springgreen3'
,
'tomato'
))
points
(set, pch = 21, bg =
ifelse
(set[, 3] == 1,
'green4'
,
'red3'
))