Open In App

Irreflexive Relation on a Set

Last Updated : 02 Jan, 2023
Summarize
Comments
Improve
Suggest changes
Like Article
Like
Save
Share
Report
News Follow

A relation is a subset of the cartesian product of a set with another set. A relation contains ordered pairs of elements of the set it is defined on. To learn more about relations refer to the article on “Relation and their types“.

What is Irreflexive Relation?

A relation R on a set A is called irreflexive relation if  

(a, a) ∉ R ∀ a ∈ A, 
where R is a subset of (A x A), i.e. the cartesian product of set A with itself.

This means if element “a” is present in set A, then a relation “a” to “a” (aRa) should not be present in the relation R. If any such aRa is present in R then R is not an irreflexive relation.

Example:

Consider set A = {a, b}.

Then R = { (a, a), (a, b) } is not irreflexive relation.
and R1 = { (a, b), (b, a) } is a irreflexive relation

Properties of Irreflexive Relation

  1. Empty relation on any set is always irreflexive.
  2. Universal relation on any non-empty set is never irreflexive.
  3. An empty relation defined on any set is always irreflexive.

How to verify Irrefelxive Relation?

The process of verifying irreflexive relation is as follows:

  • Manually check for the existence of every aRa in the relation.
  • If any of the tuples exist then the relation is not irreflexive else it is irreflexive.

Follow the below illustration for a better understanding

Consider set A = { 1, 2, 3, 4 } and relation R = { (1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 4) }

For R to be irreflexive, it should not have any of (1, 1), (2, 2), (3, 3), (4, 4).

For 1 in A:
    => {1, 1} is not present.
    => So not 1R1 is satisfied.

For 2 in A:
    => {2, 2} is not present.
    => So not 2R2 is satisfied.

For 3 in A:
    => {3, 3} is not present.
    => So not 3R3 is satisfied.

For 4 in A:
    => {4, 4} is present.
    => So not 2R2 is not satisfied.

So R is not a irreflexive relation.

Below is the code implementation of the idea:

C++




#include <bits/stdc++.h>
using namespace std;
 
class Relation {
public:
    bool checkIrreflexive(set<int> A,
                          set<pair<int, int> > R)
    {
        // Property 1
        if (R.size() == 0) {
            return true;
        }
 
        for (auto i = A.begin(); i != A.end(); i++) {
 
            // Making a tuple of same element
            auto temp = make_pair(*i, *i);
 
            if (R.find(temp) != R.end()) {
 
                // If aRa tuple exists in relation R
                return false;
            }
        }
 
        // None of aRa tuples exists in relation R
        return true;
    }
};
 
// Driver code
int main()
{
    // Creating a set A
    set<int> A{ 1, 2, 3, 4 };
 
    // Creating relation R
    set<pair<int, int> > R;
 
    // Inserting tuples in relation R
    R.insert(make_pair(1, 2));
    R.insert(make_pair(2, 1));
    R.insert(make_pair(2, 3));
    R.insert(make_pair(3, 2));
    R.insert(make_pair(3, 4));
 
    Relation obj;
 
    // R is irreflexive as aRa tuple is not present
    if (obj.checkIrreflexive(A, R)) {
        cout << "Irreflexive Relation" << endl;
    }
    else {
        cout << "Not a Irreflexive Relation" << endl;
    }
 
    return 0;
}


Java




// Java code implementation for the above approach
import java.io.*;
import java.util.*;
 
class pair {
  int first, second;
  pair(int first, int second)
  {
    this.first = first;
    this.second = second;
  }
}
 
class GFG {
 
  static class Relation {
    boolean checkIrreflexive(Set<Integer> A,
                             Set<pair> R)
    {
      // Property 1
      if (R.size() == 0) {
        return true;
      }
      for (var i : A) {
        if (R.contains(new pair(i, i))) {
          // If aRa tuple exists in relation R
          return false;
        }
      }
      // None of aRa tuples exists in relation R
      return true;
    }
  }
 
  public static void main(String[] args)
  {
    // Creating a set A
    Set<Integer> A = new HashSet<>();
    A.add(1);
    A.add(2);
    A.add(3);
    A.add(4);
 
    // Creating relation R
    Set<pair> R = new HashSet<>();
 
    // Inserting tuples in relation R
    R.add(new pair(1, 2));
    R.add(new pair(2, 1));
    R.add(new pair(2, 3));
    R.add(new pair(3, 2));
    R.add(new pair(3, 4));
 
    Relation obj = new Relation();
 
    // R is irreflexive as aRa tuple is not present
    if (obj.checkIrreflexive(A, R)) {
      System.out.println("Irreflexive Relation");
    }
    else {
      System.out.println(
        "Not a Irreflexive Relation");
    }
  }
}
 
// This code is contributed by lokeshmvs21.


Python3




class Relation:
    def checkIrreflexive(self, A, R):
         
        # Property 1
        if len(A) > 0 and len(R) == 0:
            return False
         
        # Property 2
        elif len(A) == 0:
            return True
 
        for i in A:
            if (i, i) in R:
                 
                # If aRa tuple exists in relation R
                return False
         
        # None of aRa tuples exists in relation R
        return True
 
 
# Driver code
if __name__ == '__main__':
     
    # Creating a set A
    A = {1, 2, 3, 4}
 
    # Creating relation R
    R = {(1, 4), (1, 2), (3, 2), (2, 3), (3, 4), (1, 3)}
 
    obj = Relation()
 
    # R in not reflexive as (4, 4) tuple is not present
    if obj.checkIrreflexive(A, R):
        print("Irreflexive Relation")
    else:
        print("Not Irreflexive Relation")


C#




// C# code implementation for the above approach
using System;
using System.Collections.Generic;
 
class pair {
  public int first, second;
  public pair(int first, int second)
  {
    this.first = first;
    this.second = second;
  }
}
 
public class GFG {
 
  class Relation {
    public bool checkIrreflexive(HashSet<int> A,
                                 HashSet<pair> R)
    {
       
      // Property 1
      if (R.Count == 0) {
        return true;
      }
      foreach(var i in A)
      {
        if (R.Contains(new pair(i, i)))
        {
           
          // If aRa tuple exists in relation R
          return false;
        }
      }
      // None of aRa tuples exists in relation R
      return true;
    }
  }
 
  static public void Main()
  {
    // Creating a set A
    HashSet<int> A = new HashSet<int>();
    A.Add(1);
    A.Add(2);
    A.Add(3);
    A.Add(4);
 
    // Creating relation R
    HashSet<pair> R = new HashSet<pair>();
 
    // Inserting tuples in relation R
    R.Add(new pair(1, 2));
    R.Add(new pair(2, 1));
    R.Add(new pair(2, 3));
    R.Add(new pair(3, 2));
    R.Add(new pair(3, 4));
 
    Relation obj = new Relation();
 
    // R is irreflexive as aRa tuple is not present
    if (obj.checkIrreflexive(A, R)) {
      Console.WriteLine("Irreflexive Relation");
    }
    else {
      Console.WriteLine("Not a Irreflexive Relation");
    }
  }
}
 
// This code is contributed by lokesh


Javascript




class Relation {
    constructor() { }
 
    checkIrreflexive(A, R) {
        // Property 1
        if (R.size === 0) {
            return true;
        }
 
        for (const i of A) {
            // Making a tuple of same element
            const temp = [i, i];
 
            if (R.has(temp)) {
                // If aRa tuple exists in relation R
                return false;
            }
        }
 
        // None of aRa tuples exists in relation R
        return true;
    }
}
 
// Driver code
function main() {
    // Creating a set A
    const A = new Set([1, 2, 3, 4]);
 
    // Creating relation R
    const R = new Set();
 
    // Inserting tuples in relation R
    R.add([1, 2]);
    R.add([2, 1]);
    R.add([2, 3]);
    R.add([3, 2]);
    R.add([3, 4]);
 
    const obj = new Relation();
 
    // R is irreflexive as aRa tuple is not present
    if (obj.checkIrreflexive(A, R)) {
        console.log("Irreflexive Relation");
    } else {
        console.log("Not a Irreflexive Relation");
    }
}
 
main();
 
//  This code is contributed by akashish__


Output

Irreflexive Relation

Time Complexity: O(N * log M) where N is the size of set and M is number of pairs in relation
Auxiliary Space: O(1)



Next Article
Article Tags :
Practice Tags :

Similar Reads

three90RightbarBannerImg
  翻译: