Maximum sum of i*arr[i] among all rotations of a given array
Last Updated :
14 Dec, 2022
Given an array arr[] of n integers, find the maximum that maximizes the sum of the value of i*arr[i] where i varies from 0 to n-1.
Examples:
Input: arr[] = {8, 3, 1, 2}
Output: 29
Explanation: Lets look at all the rotations,
{8, 3, 1, 2} = 8*0 + 3*1 + 1*2 + 2*3 = 11
{3, 1, 2, 8} = 3*0 + 1*1 + 2*2 + 8*3 = 29
{1, 2, 8, 3} = 1*0 + 2*1 + 8*2 + 3*3 = 27
{2, 8, 3, 1} = 2*0 + 8*1 + 3*2 + 1*3 = 17
Input: arr[] = {3, 2, 1}
Output: 7
Explanation: Lets look at all the rotations,
{3, 2, 1} = 3*0 + 2*1 + 1*2 = 4
{2, 1, 3} = 2*0 + 1*1 + 3*2 = 7
{1, 3, 2} = 1*0 + 3*1 + 2*2 = 7
Method 1: This method discusses the Naive Solution which takes O(n2) amount of time.
The solution involves finding the sum of all the elements of the array in each rotation and then deciding the maximum summation value.
- Approach:A simple solution is to try all possible rotations. Compute sum of i*arr[i] for every rotation and return maximum sum.
- Algorithm:
- Rotate the array for all values from 0 to n.
- Calculate the sum for each rotations.
- Check if the maximum sum is greater than the current sum then update the maximum sum.
Implementation:
C++
#include<bits/stdc++.h>
using namespace std;
int maxSum( int arr[], int n)
{
int res = INT_MIN;
for ( int i=0; i<n; i++)
{
int curr_sum = 0;
for ( int j=0; j<n; j++)
{
int index = (i+j)%n;
curr_sum += j*arr[index];
}
res = max(res, curr_sum);
}
return res;
}
int main()
{
int arr[] = {8, 3, 1, 2};
int n = sizeof (arr)/ sizeof (arr[0]);
cout << maxSum(arr, n) << endl;
return 0;
}
|
Java
import java.util.*;
import java.io.*;
class GFG {
static int maxSum( int arr[], int n)
{
int res = Integer.MIN_VALUE;
for ( int i = 0 ; i < n; i++)
{
int curr_sum = 0 ;
for ( int j = 0 ; j < n; j++)
{
int index = (i + j) % n;
curr_sum += j * arr[index];
}
res = Math.max(res, curr_sum);
}
return res;
}
public static void main(String args[])
{
int arr[] = { 8 , 3 , 1 , 2 };
int n = arr.length;
System.out.println(maxSum(arr, n));
}
}
|
Python3
import sys
def maxSum(arr, n):
res = - sys.maxsize
for i in range ( 0 , n):
curr_sum = 0
for j in range ( 0 , n):
index = int ((i + j) % n)
curr_sum + = j * arr[index]
res = max (res, curr_sum)
return res
arr = [ 8 , 3 , 1 , 2 ]
n = len (arr)
print (maxSum(arr, n))
|
C#
using System;
class GFG {
static int maxSum( int [] arr, int n)
{
int res = int .MinValue;
for ( int i = 0; i < n; i++) {
int curr_sum = 0;
for ( int j = 0; j < n; j++)
{
int index = (i + j) % n;
curr_sum += j * arr[index];
}
res = Math.Max(res, curr_sum);
}
return res;
}
public static void Main()
{
int [] arr = { 8, 3, 1, 2 };
int n = arr.Length;
Console.WriteLine(maxSum(arr, n));
}
}
|
PHP
<?php
function maxSum( $arr , $n )
{
$res = PHP_INT_MIN;
for ( $i = 0; $i < $n ; $i ++)
{
$curr_sum = 0;
for ( $j = 0; $j < $n ; $j ++)
{
$index = ( $i + $j ) % $n ;
$curr_sum += $j * $arr [ $index ];
}
$res = max( $res , $curr_sum );
}
return $res ;
}
$arr = array (8, 3, 1, 2);
$n = sizeof( $arr );
echo maxSum( $arr , $n ), "\n" ;
?>
|
Javascript
<script>
function maxSum(arr , n) {
var res = Number.MIN_VALUE;
for (i = 0; i < n; i++) {
var curr_sum = 0;
for (j = 0; j < n; j++) {
var index = (i + j) % n;
curr_sum += j * arr[index];
}
res = Math.max(res, curr_sum);
}
return res;
}
var arr = [ 8, 3, 1, 2 ];
var n = arr.length;
document.write(maxSum(arr, n));
</script>
|
- Complexity Analysis:
- Time Complexity : O(n2)
- Auxiliary Space : O(1)
Method 2: This method discusses the efficient solution which solves the problem in O(n) time. In the naive solution, the values were calculated for every rotation. So if that can be done in constant time then the complexity will decrease.
- Approach: The basic approach is to calculate the sum of new rotation from the previous rotations. This brings up a similarity where only the multipliers of first and last element change drastically and the multiplier of every other element increases or decreases by 1. So in this way, the sum of next rotation can be calculated from the sum of present rotation.
- Algorithm:
The idea is to compute the value of a rotation using values of previous rotation. When an array is rotated by one, following changes happen in sum of i*arr[i].
- Multiplier of arr[i-1] changes from 0 to n-1, i.e., arr[i-1] * (n-1) is added to current value.
- Multipliers of other terms is decremented by 1. i.e., (cum_sum – arr[i-1]) is subtracted from current value where cum_sum is sum of all numbers.
next_val = curr_val - (cum_sum - arr[i-1]) + arr[i-1] * (n-1);
next_val = Value of ?i*arr[i] after one rotation.
curr_val = Current value of ?i*arr[i]
cum_sum = Sum of all array elements, i.e., ?arr[i].
Lets take example {1, 2, 3}. Current value is 1*0+2*1+3*2
= 8. Shifting it by one will make it {2, 3, 1} and next value
will be 8 - (6 - 1) + 1*2 = 5 which is same as 2*0 + 3*1 + 1*2
Implementation:
C++
#include<bits/stdc++.h>
using namespace std;
int maxSum( int arr[], int n)
{
int cum_sum = 0;
for ( int i=0; i<n; i++)
cum_sum += arr[i];
int curr_val = 0;
for ( int i=0; i<n; i++)
curr_val += i*arr[i];
int res = curr_val;
for ( int i=1; i<n; i++)
{
int next_val = curr_val - (cum_sum - arr[i-1])
+ arr[i-1] * (n-1);
curr_val = next_val;
res = max(res, next_val);
}
return res;
}
int main()
{
int arr[] = {8, 3, 1, 2};
int n = sizeof (arr)/ sizeof (arr[0]);
cout << maxSum(arr, n) << endl;
return 0;
}
|
Java
import java.io.*;
class GFG {
static int maxSum( int arr[], int n)
{
int cum_sum = 0 ;
for ( int i = 0 ; i < n; i++)
cum_sum += arr[i];
int curr_val = 0 ;
for ( int i = 0 ; i < n; i++)
curr_val += i * arr[i];
int res = curr_val;
for ( int i = 1 ; i < n; i++)
{
int next_val = curr_val - (cum_sum -
arr[i- 1 ]) + arr[i- 1 ] *
(n- 1 );
curr_val = next_val;
res = Math.max(res, next_val);
}
return res;
}
public static void main(String[] args)
{
int arr[] = { 8 , 3 , 1 , 2 };
int n = arr.length;
System.out.println(maxSum(arr, n));
}
}
|
Python3
def maxSum(arr, n):
cum_sum = 0
for i in range ( 0 , n):
cum_sum + = arr[i]
curr_val = 0
for i in range ( 0 , n):
curr_val + = i * arr[i]
res = curr_val
for i in range ( 1 , n):
next_val = (curr_val - (cum_sum - arr[i - 1 ]) +
arr[i - 1 ] * (n - 1 ))
curr_val = next_val
res = max (res, next_val)
return res
arr = [ 8 , 3 , 1 , 2 ]
n = len (arr)
print (maxSum(arr, n))
|
C#
using System;
class GFG {
static int maxSum( int []arr, int n)
{
int cum_sum = 0;
for ( int i = 0; i < n; i++)
cum_sum += arr[i];
int curr_val = 0;
for ( int i = 0; i < n; i++)
curr_val += i * arr[i];
int res = curr_val;
for ( int i = 1; i < n; i++)
{
int next_val = curr_val - (cum_sum -
arr[i - 1]) + arr[i - 1] *
(n - 1);
curr_val = next_val;
res = Math.Max(res, next_val);
}
return res;
}
public static void Main()
{
int []arr = {8, 3, 1, 2};
int n = arr.Length;
Console.Write(maxSum(arr, n));
}
}
|
PHP
<?php
function maxSum( $arr , $n )
{
$cum_sum = 0;
for ( $i = 0; $i < $n ; $i ++)
$cum_sum += $arr [ $i ];
$curr_val = 0;
for ( $i = 0; $i < $n ; $i ++)
$curr_val += $i * $arr [ $i ];
$res = $curr_val ;
for ( $i = 1; $i < $n ; $i ++)
{
$next_val = $curr_val -
( $cum_sum - $arr [ $i - 1]) +
$arr [ $i - 1] * ( $n - 1);
$curr_val = $next_val ;
$res = max( $res , $next_val );
}
return $res ;
}
$arr = array (8, 3, 1, 2);
$n = sizeof( $arr );
echo maxSum( $arr , $n );
?>
|
Javascript
<script>
function maxSum(arr, n)
{
let cum_sum = 0;
for (let i=0; i<n; i++)
cum_sum += arr[i];
let curr_val = 0;
for (let i=0; i<n; i++)
curr_val += i*arr[i];
let res = curr_val;
for (let i=1; i<n; i++)
{
let next_val = curr_val - (cum_sum - arr[i-1])
+ arr[i-1] * (n-1);
curr_val = next_val;
res = Math.max(res, next_val);
}
return res;
}
let arr = [8, 3, 1, 2];
let n = arr.length;
document.write(maxSum(arr, n) + "<br>" );
</script>
|
- Complexity analysis:
- Time Complexity: O(n).
Since one loop is needed from 0 to n to check all rotations and the sum of the present rotation is calculated from the previous rotations in O(1) time).
- Auxiliary Space: O(1).
As no extra space is required to so the space complexity will be O(1)
Method 3: The method discusses the solution using pivot in O(n) time. The pivot method can only be used in the case of a sorted or a rotated sorted array. For example: {1, 2, 3, 4} or {2, 3, 4, 1}, {3, 4, 1, 2} etc.
- Approach: Let’s assume the case of a sorted array. As we know for an array the maximum sum will be when the array is sorted in ascending order. In case of a sorted rotated array, we can rotate the array to make it in ascending order. So, in this case, the pivot element is needed to be found following which the maximum sum can be calculated.
- Algorithm:
- Find the pivot of the array: if arr[i] > arr[(i+1)%n] then it is the pivot element. (i+1)%n is used to check for the last and first element.
- After getting pivot the sum can be calculated by finding the difference with the pivot which will be the multiplier and multiply it with the current element while calculating the sum
Implementations:
C++
#include <iostream>
using namespace std;
int maxSum( int arr[], int n);
int findPivot( int arr[], int n);
int maxSum( int arr[], int n)
{
int sum = 0;
int i;
int pivot = findPivot(arr, n);
int diff = n - 1 - pivot;
for (i = 0; i < n; i++)
{
sum = sum + ((i + diff) % n) * arr[i];
}
return sum;
}
int findPivot( int arr[], int n)
{
int i;
for (i = 0; i < n; i++)
{
if (arr[i] > arr[(i + 1) % n])
return i;
}
}
int main( void )
{
int arr[] = {8, 13, 1, 2};
int n = sizeof (arr) / sizeof ( int );
int max = maxSum(arr, n);
cout << max;
return 0;
}
|
C
#include<stdio.h>
int maxSum( int arr[], int n);
int findPivot( int arr[], int n);
int maxSum( int arr[], int n)
{
int sum = 0;
int i;
int pivot = findPivot(arr, n);
int diff = n - 1 - pivot;
for (i = 0; i < n; i++)
{
sum= sum + ((i + diff) % n) * arr[i];
}
return sum;
}
int findPivot( int arr[], int n)
{
int i;
for (i = 0; i < n; i++)
{
if (arr[i] > arr[(i + 1) % n])
return i;
}
}
int main( void )
{
int arr[] = {8, 13, 1, 2};
int n = sizeof (arr) / sizeof ( int );
int max = maxSum(arr, n);
printf ( "%d" , max);
return 0;
}
|
Java
import java.util.*;
import java.lang.*;
import java.io.*;
class GFG
{
static int maxSum( int arr[], int n)
{
int sum = 0 ;
int i;
int pivot = findPivot(arr, n);
int diff = n - 1 - pivot;
for (i = 0 ; i < n; i++)
{
sum= sum + ((i + diff) % n) * arr[i];
}
return sum;
}
static int findPivot( int arr[], int n)
{
int i;
for (i = 0 ; i < n; i++)
{
if (arr[i] > arr[(i + 1 ) % n])
return i;
}
return 0 ;
}
public static void main(String args[])
{
int arr[] = { 8 , 13 , 1 , 2 };
int n = arr.length;
int max = maxSum(arr,n);
System.out.println(max);
}
}
|
Python3
def maxSum(arr, n):
sum = 0
pivot = findPivot(arr, n)
diff = n - 1 - pivot
for i in range (n):
sum = sum + ((i + diff) % n) * arr[i]
return sum
def findPivot(arr, n):
for i in range (n):
if (arr[i] > arr[(i + 1 ) % n]):
return i
if __name__ = = "__main__" :
arr = [ 8 , 13 , 1 , 2 ]
n = len (arr)
max = maxSum(arr, n)
print ( max )
|
C#
using System;
class GFG
{
public static int maxSum( int [] arr, int n)
{
int sum = 0;
int i;
int pivot = findPivot(arr,n);
int diff = n - 1 - pivot;
for (i = 0;i < n;i++)
{
sum = sum + ((i + diff) % n) * arr[i];
}
return sum;
}
public static int findPivot( int [] arr, int n)
{
int i;
for (i = 0; i < n; i++)
{
if (arr[i] > arr[(i + 1) % n])
{
return i;
}
}
return 0;
}
public static void Main( string [] args)
{
int [] arr = new int [] {8, 13, 1, 2};
int n = arr.Length;
int max = maxSum(arr,n);
Console.WriteLine(max);
}
}
|
PHP
<?php
function maxSum( $arr , $n )
{
$sum = 0;
$pivot = findPivot( $arr , $n );
$diff = $n - 1 - $pivot ;
for ( $i = 0; $i < $n ; $i ++)
{
$sum = $sum + (( $i + $diff ) %
$n ) * $arr [ $i ];
}
return $sum ;
}
function findPivot( $arr , $n )
{
for ( $i = 0; $i < $n ; $i ++)
{
if ( $arr [ $i ] > $arr [( $i + 1) % $n ])
return $i ;
}
return 0;
}
$arr = array (8, 13, 1, 2);
$n = sizeof( $arr );
$max = maxSum( $arr , $n );
echo $max ;
?>
|
Javascript
<script>
function maxSum(arr, n)
{
let sum = 0;
let i;
let pivot = findPivot(arr,n);
let diff = n - 1 - pivot;
for (i = 0;i < n;i++)
{
sum = sum + ((i + diff) % n) * arr[i];
}
return sum;
}
function findPivot(arr, n)
{
let i;
for (i = 0; i < n; i++)
{
if (arr[i] > arr[(i + 1) % n])
{
return i;
}
}
return 0;
}
let arr = [8, 13, 1, 2];
let n = arr.length;
let ma = maxSum(arr,n);
document.write(ma);
</script>
|
- Complexity analysis:
- Time Complexity: O(n)
As only one loop was needed to traverse from 0 to n to find the pivot. To find the sum another loop was needed, so the complexity remains O(n).
- Auxiliary Space: O(1).
We do not require extra space so the Auxiliary space is O(1)