浏览全部资源
扫码关注微信
1..上海交通大学化学化工学院,上海 200240
2..江苏中宏环保科技有限公司,江阴 214400
Published:20 February 2024,
Received:25 June 2023,
Accepted:24 July 2023
扫 描 看 全 文
引用:岳欣彦, 任腾, 王仕峰, 许麒. 橡胶再生用解交联助剂研究进展. 高分子通报, 2024, 37(2), 205–214
Citation: Yue, X. Y.; Ren, T.; Wang, S. F.; Xu, Q. Progress in de-crosslinking agents for reclamation of rubber. Polym. Bull. (in Chinese), 2024, 37(2), 205–214
引用:岳欣彦, 任腾, 王仕峰, 许麒. 橡胶再生用解交联助剂研究进展. 高分子通报, 2024, 37(2), 205–214 DOI: 10.14028/j.cnki.1003-3726.2024.23.214.
Citation: Yue, X. Y.; Ren, T.; Wang, S. F.; Xu, Q. Progress in de-crosslinking agents for reclamation of rubber. Polym. Bull. (in Chinese), 2024, 37(2), 205–214 DOI: 10.14028/j.cnki.1003-3726.2024.23.214.
开发高效、低能耗、环境友好的橡胶再生方法对橡胶工业的绿色可持续发展具有重要意义。其中,废旧橡胶再生用解交联化学助剂的选择尤为关键。本文介绍了橡胶的再生机理,并根据作用机理分类,将解交联助剂归纳为自由基类、亲核类、相转移催化类、烯烃复分解类、催化类与氧化类等6类,总结了各类助剂的作用机理及研究进展,并讨论了其应用技术瓶颈。最后,展望了废旧橡胶再生利用面临的挑战和未来发展方向。
Efficient
energy-saving and environment-friendly rubber reclaiming method is of significance to realize the green and sustainable development of rubber industry. The selection of de-crosslinking chemical agents is the key for waste rubber reclamation. The reclamation mechanism of rubber was introduced. And six types of de-crosslinking agents were categorized according to the mechanism: free radical
nucleophile
phase transfer catalysis
olefin metathesis
catalysis and oxidation. The mechanism and research progress of various agents were reviewed. Subsequently
the shortcomings of their application technology were also discussed. Finally
the challenges and future development of waste rubber recycling were recommended.
废旧橡胶再生解交联助剂再生方法
Waste rubberReclamationDe-crosslinking agentsReclaiming methods
田晓龙, 郭磊, 王孔烁, 汪传生. 废旧轮胎循环与资源化利用发展现状. 中国材料进展, 2022, 41(1), 22–29.
Mohajerani, A.; Burnett, L.; Smith, J. V.; Markovski, S.; Rodwell, G.; Rahman, M. T.; Kurmus, H.; Mirzababaei, M.; Arulrajah, A.; Horpibulsuk, S.; Maghool, F. Recycling waste rubber tyres in construction materials and associated environmental considerations: a review. Resour. Conserv. Recycl., 2020, 155, 104679.
Seghar, S.; Asaro, L.; Rolland-Monnet, M.; Aït Hocine, N. Thermo-mechanical devulcanization and recycling of rubber industry waste. Resour. Conserv. Recycl., 2019, 144, 180–186.
唐帆, 强金凤, 路丽珠, 黎广, 蒋水金. 废橡胶再生工艺与高值化利用绿色化进展. 橡胶科技, 2020, 18(3), 128–133.
Chittella, H.; Yoon, L. W.; Ramarad, S.; Lai, Z. W. Rubber waste management: a review on methods, mechanism,and prospects. Polym. Degrad. Stabil., 2021, 194, 109761.
Abbas-Abadi, M. S.; Kusenberg, M.; Shirazi, H. M.; Goshayeshi, B.; Van Geem, K. M. Towards full recyclability of end-of-life tires: challenges and opportunities. J. Clean. Prod., 2022, 374, 134036.
Ahmad Hassan, A.; Zhang, Z.; Formela, K.; Wang, S. F. Thermo-oxidative exfoliation of carbon black from ground tire rubber as potential reinforcement in green tires. Compos. Sci. Technol., 2021, 214, 108991.
Wiśniewska, P.; Wang, S. F.; Formela, K. Waste tire rubber devulcanization technologies: state-of-the-art, limitations and future perspectives. Waste Manag., 2022, 150, 174–184.
Bowles, A. J.; Fowler, G. D.; O' Sullivan, C.; Parker, K. Sustainable rubber recycling from waste tyres by waterjet: a novel mechanistic and practical analysis. Sustain. Mater. Technol., 2020, 25, e00173.
Bockstal, L.; Berchem, T.; Schmetz, Q.; Richel, A. Devulcanisation and reclaiming of tires and rubber by physical and chemical processes: a review. J. Clean. Prod., 2019, 236, 117574.
Asaro, L.; Gratton, M.; Seghar, S.; Aït Hocine, N. Recycling of rubber wastes by devulcanization. Resour. Conserv. Recycl., 2018, 133, 250–262.
Saiwari, S.; Dierkes, W. K.; Noordermeer, J. W. M. Comparative investigation of the devulcanization parameters of tire rubbers. Rubber Chem. Technol., 2014, 87(1), 31–42.
Thaicharoen, P.; Thamyongkit, P.; Poompradub, S. Thiosalicylic acid as a devulcanizing agent for mechano-chemical devulcanization. Korean J. Chem. Eng., 2010, 27(4), 1177–1183.
De, D.; Das, A.; De, D.; Dey, B.; Debnath, S. C.; Roy, B. C. Reclaiming of ground rubber tire (GRT) by a novel reclaiming agent. Eur. Polym. J., 2006, 42(4), 917–927.
De, D.; De, D.; Singharoy, G. M.Reclaiming of ground rubber tire by a novel reclaiming agent. I. Virgin natural rubber/reclaimed GRT vulcanizates. Polym. Eng. Sci., 2007, 47(7), 1091–1100.
De, D.; De, D. Processing and material characteristics of a reclaimed ground rubber tire reinforced styrene butadiene rubber. Mater. Sci. Appl., 2011, 2(5), 486–495.
Ghorai, S.; Bhunia, S.; Roy, M.; De, D. Mechanochemical devulcanization of natural rubber vulcanizate by dual function disulfide chemicals. Polym. Degrad. Stabil., 2016, 129, 34–46.
Ghosh, J.; Ghorai, S.; Bhunia, S.; Roy, M.; De, D. The role of devulcanizing agent for mechanochemical devulcanization of styrene butadiene rubber vulcanizate. Polym. Eng. Sci., 2018, 58(1), 74–85.
De, D.; Maiti, S.; Adhikari, B.Reclaiming of rubber by a renewable resource material (RRM). II. Comparative evaluation of reclaiming process of NR vulcanizate by RRM and diallyl disulfide. J. Appl. Polym. Sci., 1999, 73(14), 2951–2958.
王金, 王鹏, 袁博, 刘安华. 大蒜汁作为橡胶再生剂的研究. 橡胶工业, 2006, 53(1), 27–30.
Moore, C. G.; Trego, B. R.Structural characterization of vulcanizates. Part II. Use of triphenylphosphine to determine the structures of sulfur linkages in unaccelerated natural rubber–sulfur vulcanizate networks. J. Appl. Polym. Sci., 1961, 5(15), 299–302.
Leong, S. Y.; Lee, S. Y.; Koh, T. Y.; Ang, D. T. C. 4R of rubber waste management: current and outlook. J. Mater. Cycles Waste Manag., 2023, 25(1), 37–51.
周彦豪, 尚贵才, 胡丽萍, 陈福林, 童速玲, 高琼芝. 废旧硫化胶再生法脱硫机理. 橡胶工业, 2003, 50(8), 453–456.
Sutanto, P.; Laksmana, F. L.; Picchioni, F.; Janssen, L. P. B. M. Modeling on the kinetics of an EPDM devulcanization in an internal batch mixer using an amine as the devulcanizing agent. Chem. Eng. Sci., 2006, 61(19), 6442–6453.
Dijkhuis, K. A. J.; Babu, I.; Lopulissa, J. S.; Noordermeer, J. W. M.; Dierkes, W. K. A mechanistic approach to EPDM devulcanization. Rubber Chem. Technol., 2008, 81(2), 190–208.
Campbell, D. S.Structural characterization of vulcanizates part X. Thiol-disulfide interchange for cleaving disulfide crosslinks in natural rubber vulcanizates. J. Appl. Polym. Sci., 1969, 13(6), 1201–1214.
Studebaker, M. L. Lithium aluminum hydride analysis of sulfur-cured vulcanizates. Rubber Chem. Technol., 1970, 43(3), 624–650.
Dorigato, A.; Rigotti, D.; Fredi, G. Recent advances in the devulcanization technologies of industrially relevant sulfur-vulcanized elastomers. Adv. Ind. Eng. Polym. Res., 2023, 6(3), 288–309.
Moore, C. G.; Trego, B. R.Structural characterization of vulcanizates. Part IV. Use of triphenylphosphine and sodium di-n-butyl phosphite to determine the structures of sulfur linkages in natural rubber, cis-1,4-polyisoprene, and ethylene–propylene rubber vulcanizate networks. J. Appl. Polym. Sci., 1964, 8(5), 1957–1983.
Gregg, E. C. Jr, Katrenick, S. E. Chemical structures in cis-1,4-polybutadiene vulcanizates. model compound approach. Rubber Chem. Technol., 1970, 43(3), 549–571.
Nicholas, P. P. The scission of polysulfide crosslinks in scrap rubber particles through phase transfer catalysis. Rubber Chem. Technol., 1982, 55(5), 1499–1515.
Milani, M.; Schork, F. J.; Liotta, C. L.; Poehlein, G. W. Model compound studies of the devulcanization of rubber via phase transfer catalysis. Polym. React. Eng., 2001, 9(1), 19–36.
Alimuniar, A.; Yarmo, M. A.; Ab Rahman, M. Z.; Kohjiya, S.; Ikeda, Y.; Yamashita, S. Metathesis degradation of natural rubber. Polym. Bull., 1990, 23(1), 119–126.
Stelzer, F.; Hummel, K.; Sommer, F.; Baumegger, A. E.; Lesiak, M. C. Determination of carbon black in rubber vulcanizates by metathesis degradation. Rubber Chem. Technol., 1987, 60(4), 600–605.
Thorn-Csányi, E. Quantitative metathetic degradation of rubbers and sulfur crosslinked rubbers—including tires. Rubber Chem. Technol., 1994, 67(5), 786–796.
Ouardad, S.; Peruch, F. Metathetic degradation of trans-1,4-polyisoprene with ruthenium catalysts. Polym. Degrad. Stabil., 2014, 99, 249–253.
Burelo, M.; Martínez, A.; Cruz-Morales, J. A.; Tlenkopatchev, M. A.; Gutiérrez, S. Metathesis reaction from bio-based resources: synthesis of diols and macrodiols using fatty alcohols, β-citronellol and natural rubber. Polym. Degrad. Stabil., 2019, 166, 202–212.
Gutiérrez, S.; Tlenkopatchev, M. A. Metathesis of renewable products: degradation of natural rubber via cross-metathesis with β-pinene using Ru-alkylidene catalysts. Polym. Bull., 2011, 66(8), 1029–1038.
Smith, R. F.; Boothroyd, S. C.; Thompson, R. L.; Khosravi, E. A facile route for rubber breakdown via cross meta-thesis reactions. Green Chem., 2016, 18(11), 3448–3455.
Sadaka, F.; Campistron, I.; Laguerre, A.; Pilard, J. F.Telechelic oligomers obtained by metathetic degradation of both polyisoprene and styrene-butadiene rubbers. Applications for recycling waste tyre rubber. Polym. Degrad. Stabil., 2013, 98(3), 736–742.
Leimgruber, S.; Trimmel, G. Olefin metathesis meets rubber chemistry and technology. Monatsh. Chem., 2015, 146(7), 1081–1097.
贺玉函, 张雨昕, 张震, 王仕峰. 轮胎橡胶的热氧老化降解研究进展. 合成材料老化与应用, 2020, 49(6), 126–134.
Rajan, V. V.; Dierkes, W. K.; Joseph, R.; Noordermeer, J. W. M. Science and technology of rubber reclamation with special attention to NR-based waste latex products. Prog. Polym. Sci., 2006, 31(9), 811–834.
Kawabata, N.; Yamashita, S.; Furukawa, Y.Reclamation of vulcanized rubbers by chemical degradation. IX. Oxidative degradation of cis-1,4-polyisoprene by phenylhydrazine-iron(II) chloride system. Bull. Chem. Soc. Jpn., 1978, 51(2), 625–628.
Kawabata, N.; Okuyama, B.; Yamashita, S.Reclamation of vulcanized rubber by chemical degradation. XV. Degradation of vulcanized synthetic isoprene by the phenylhydrazine-iron (II) chloride system. J. Appl. Polym. Sci., 1981, 26(4), 1417–1419.
Azhar, N. N. H.; Cheng, A.; Lee, S. Y.; Ang, D. T. C. Thermal and photo oxidative degradation of natural rubber film in the presence of iron (III) stearate. J. Polym. Res., 2022, 29(11), 476.
Deivasigamani, K.; Nanjan, J.; Mani, H. P. Recycling of waste gasket rubber granules by bulk CuCl2 and nano CuCl2: removal of Hg(II) ions by recycled rubber granules. Proc. R. Soc. A., 2017, 473(2197), 20160771.
Dubkov, K. A.; Semikolenov, S. V.; Ivanov, D. P.; Babushkin, D. E.; Panov, G. I.; Parmon, V. N. Reclamation of waste tyre rubber with nitrous oxide. Polym. Degrad. Stabil., 2012, 97(7), 1123–1130.
Dubkov, K. A.; Semikolenov, S. V.; Ivanov, D. P.; Babushkin, D. E.; Voronchikhin, V. D. Scrap tyre rubber depolymerization by nitrous oxide: products and mecha-nism of reaction. Iran. Polym. J., 2014, 23(11), 881–890.
Sadaka, F.; Campistron, I.; Laguerre, A.; Pilard, J. F. Controlled chemical degradation of natural rubber using periodic acid: application for recycling waste tyre rubber. Polym. Degrad. Stabil., 2012, 97(5), 816–828.
Rios, R. R. V. A.; Gontijo, M.; Ferraz, V. P.; Lago, R. M.; Araujo, M. H. Devulcanization of styrenebutadiene (SBR) waste tire by controlled oxidation. J. Braz. Chem. Soc., 2006, 17(3), 603–608.
Ibrahim, S.; Daik, R.; Abdullah, I. Functionalization of liquid natural rubber via oxidative degradation of natural rubber. Polymers, 2014, 6(12), 2928–2941.
Zhang, Z.; Li, J. Y.; Wan, C. Y.; Zhang, Y. X.; Wang, S. F. Understanding H2O2-induced thermo-oxidative reclamation of vulcanized styrene butadiene rubber at low temperatures. ACS Sustain. Chem. Eng., 2021, 9(5), 2378–2387.
强金凤, 黎广, 李涛, 唐帆, 蒋水金. 废旧橡胶回收再利用方法概述. 橡胶科技, 2020, 18(12), 675–677.
0
Views
110
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution