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Horn Theory: An Introduction, Part 1
By Bjørn Kolbrek

This author presents a two-part introduction to horns—their definition, 
features, types, and functions.

Article prepared for www.audioXpress.com

T
his article deals with the theory of acous-
tical horns, as it applies to loudspeakers. 
It reviews the basic assumptions behind 
classical horn theory as it stands, presents 

the different types of horns, and discusses their 
properties. Directivity control, wave-front shapes, 
and distortion are also discussed. 

In this article, I try to keep the math 
simple, and, where it is required, I explain 
or illustrate the meaning of the equations. 
The focus is on understanding what is 
going on in a horn. The practical aspects 
of horn design are not treated here.

TERMINOLOGY
The article includes the following termi-
nology:
Impedance: Quantity impeding or re-
ducing flow of energy. Can be electrical, 
mechanical, or acoustical.
Acoustical Impedance: The ratio of 
sound pressure to volume velocity of air. 
In a horn, the acoustical impedance will 
increase when the cross-section of the 
horn decreases, as a decrease in cross sec-
tion will limit the flow of air at a certain 
pressure.
Volume Velocity: Flow of air through a 
surface in m3/s, equals particle velocity 
times area.
Throat: The small end of the horn, 
where the driver is attached.
Mouth: The far end of the horn, which 
radiates into the air.
Driver: Loudspeaker unit used for driv-
ing the horn.
c: The speed of sound, 344m/s at 20° C.

ρ0: Density of air, 1.205 kg/m3.
f: Frequency, Hz.
ω: Angular frequency, radians/s, ω = 2πf.
k: Wave number or spatial frequency,  

radians/m, k = 2 f

c c

ω π= .

S: Area.
p: Pressure.
ZA: Acoustical impedance.
j: Imaginary operator, j = √-1.

THE PURPOSE OF A HORN
It can be useful to look at the purpose 
of the horn before looking at the theory. 
Where are horns used, and for what?

Throughout the history of electroa-
coustics, there have been two important 
aspects:

• Loading of the driver
• Directivity control

You would also think that increasing the 
output would be one aspect of horns, but 
this is included in both. Increasing the 
loading of the driver over that of free air 
increases efficiency and hence the out-
put, and concentrating the sound into a 
certain solid angle increases the output 
further. 

Loading of the Driver. The loudspeaker, 
which is a generator of pressure, has an 
internal source impedance and drives an 
external load impedance. The air is the 
ultimate load, and the impedance of air is 
low, because of its low density.

The source impedance of any loud-
speaker, on the other hand, is high, so 

there will be a considerable mismatch 
between the source and the load. The 
result is that most of the energy put into 
a direct radiating loudspeaker will not 
reach the air, but will be converted to 
heat in the voice coil and mechanical 
resistances in the unit. The problem is 
worse at low frequencies, where the size 
of the source will be small compared to 
a wavelength and the source will merely 
push the medium away. At higher fre-
quencies, the radiation from the source 
will be in the form of plane waves that 
do not spread out. The load, as seen from 
the driver, is at its highest, and the system 
is as efficient as it can be.

If you could make the driver radiate 
plane waves in its entire operating range, 
efficient operation would be secured at all 
frequencies. The driver would work into 
a constant load, and if this load could be 
made to match the impedances of the 
driver, resonances would be suppressed. 
This is because the driver is a mechani-
cal filter, which needs to be terminated 
in its characteristic impedance, ideally a 
pure resistance. If the driver is allowed 
to radiate plane waves, resistive loading 
is secured.

The easiest way to make the driver 
radiate plane waves is to connect it to a 
long, uniform tube. But the end of the 
tube will still be small compared to a 
wavelength at low frequencies. To avoid 
reflections, the cross section of the tube 
must be large compared to a wavelength, 
but, at the same time, it must also be 
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small to fit the driver and present the 
required load. To solve this dilemma, you 
need to taper the tube.

When you do this, you can take radia-
tion from the driver in the form of plane 
waves and transform the high pressure, 
low velocity vibrations at the throat into 
low pressure, high velocity vibrations that 
can efficiently be radiated into the air. 
Depending on how the tube flares, it is 
possible to present a load to the driver that 
is constant over a large frequency range.

Directivity Control. The directivity of 
a cone or dome diaphragm is largely un-
controlled, dictated by the dimensions 
of the diaphragm, and heavily depen-
dent on frequency, becoming sharper 
and sharper as frequency increases. You 
can solve this problem by using multiple 
driving units and digital signal process-
ing, but a far simpler and cheaper way to 
achieve predictable directivity control is 
to use a horn. The walls of the horn will 
restrict the spreading of the sound waves, 
so that sound can be focused into the 
areas where it is needed, and kept out of 
areas where it is not.

Directivity control is most important 
in sound reinforcement systems, where a 
large audience should have the same dis-
tribution of low and high frequencies, and 
where reverberation and reflections can be 
a problem. In a studio or home environ-
ment, this is not as big a problem.

As the art and science of electroacous-
tics has developed, the focus has changed 
from loading to directivity control. Most 
modern horns offer directivity control at 
the expense of driver loading, often pre-
senting the driver with a load full of reso-
nances and reflections. Figure 1 compares 
the throat impedance of a typical constant 
directivity horn (dashed line) with the 
throat impedance of a tractrix horn (solid 
line)1. The irregularities above 8kHz come 
from higher order modes.

FUNDAMENTAL THEORY
Horn theory, as it has been developed, 
is based on a series of assumptions and 
simplifications, but the resulting equa-
tions can still give useful information 
about the behavior. I will review the as-
sumptions later, and discuss how well 
they hold up in practice.

The problem of sound propagation in 
horns is a complicated one, and has not 
yet been rigorously solved analytically. 

Initially, it is a three-dimensional prob-
lem, but solving the wave equation in 3D 
is very complicated in all but the most 
elementary cases. The wave equation for 
three dimensions (in Cartesian coordi-
nates) looks like this2

2 2 2 2
2

2 2 2 2
c 0

t x y z

 ∂ φ ∂ φ ∂ φ ∂ φ− + + = 
∂ ∂ ∂ ∂ 

	
			  (1)

This equation describes how sound waves 
of very small (infinitesimal) amplitudes 
behave in a three-dimensional medium. 
I will not discuss this equation, but only 
note that it is not easily solved in the case 
of horns.

In 1919, Webster3 presented a solu-
tion to the problem by simplifying equa-
tion 1 from a three-dimensional to a 
one-dimensional problem. He did this 
by assuming that the sound energy was 
uniformly distributed over a plane wave-
front perpendicular to the horn axis, and 
considering only motion in the axial di-
rection. The result of these simplications 
is the so-called “Webster’s Horn Equa-
tion,” which can be solved for a large 
number of cases:

2
2d d lnS d

k 0
dx dx dx

φ φ+ − φ =
		

			  (2)

where

k = 
2 f

c

π
, the wave number or spatial fre-

quency (radians per meter),
φ is the velocity potential (see appendix 
for explanation), and S is the cross-sec-
tional area of the horn as a function of x.

The derivation of equation 2 is given 
in the appendix. You can use this equa-
tion to predict what is going on inside 
a horn, neglecting higher order effects, 
but it can’t say anything about what is 
going on outside the horn, so it can’t 
predict directivity. Here are the assump-
tions equation 2 is based on4,5:
1. Infinitesimal amplitude: The sound 
pressure amplitude is insignificant com-
pared to the steady air pressure. This 
condition is easily satisfied for most 
speech and music, but in high power 
sound reinforcement, the sound pres-
sure at the throat of a horn can eas-
ily reach 150-170dB SPL. This article 
takes a closer look at distortion in horns 
due to the nonlinearity of air later, but 
for now it is sufficient to note that the 
distortion at home reproduction levels 

is insignificant.
2. The medium is considered to be a 
uniform fluid. This is not the case with 
air, but is permissible at the levels (see 
1) and frequencies involved.
3. Viscosity and friction are neglected. 
The equations involving these quanti-
ties are not easily solved in the case of 
horns.
4. No external forces, such as gravity, act 
on the medium.
5. The motion is assumed irrotational.
6. The walls of the horn are perfectly 
rigid and smooth.
7. The pressure is uniform over the 
wave-front. Webster originally consid-
ered tubes of infinitesimal cross-section, 
and in this case propagation is by plane 
waves. The horn equation does not re-
quire plane waves, as is often assumed. 
But it requires the wave-front to be a 
function of x alone. This, in turn, means 
that the center of curvature of the wave-
fronts must not change. If this is the 
case, the horn is said to admit one-pa-
rameter (1P) waves6, and according to 
Putland7, the only horns that admit 1P 
waves are the uniform tube, the para-
bolic horn with cylindrical wave-fronts, 
and the conical horn. For other horns, 
you need the horn radius to be small 
compared to the wavelength.

Because the horn equation is not able to 
predict the interior and exterior sound 
field for horns other than true 1P horns, 
it has been much criticized. It has, how-
ever, been shown8, 9 that the approxima-
tion is not as bad as you might think in 
the first instance. Holland10 has shown 
that you can predict the performance of 
horns of arbitrary shape by considering 
the wave-front area expansion instead of 
the physical cross-section of the horn. I 
have also developed software based on 
the same principles, and have been able 
to predict the throat impedance of horns 
with good accuracy.

SOLUTIONS
This section presents the solution of 
equation 2 for the most interesting horns, 
and looks at the values for throat imped-
ance for the different types. You can cal-
culate this by solving the horn equation, 
but this will not be done in full math-
ematical rigor in this article.

The solution of equation 2 can, in a 
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general way, be set up as a sum of two 
functions u and v:

φ = Au + Bv 	 (3)
where A and B represent the outgoing 
(diverging) and reflected (converging) 
wave, respectively, and u and v depend on 
the specific type of horn. 

In the case of an infinite horn, there is 
no reflected wave, and B = 0. This article 
first considers infinite horns, and pres-
ents the solutions for the most common 
types11. The solutions are given in terms 
of absolute acoustical impedance,

c
o

tS

ρ ; 

you can find the specific throat imped-
ance (impedance per unit area) by mul-
tiplying by St, the throat area, and the 
normalized throat resistance by multiply-
ing by t

c
o

S

ρ
.

THE PIPE AND THE  
PARABOLIC HORN
Both these horns are true 1P 
horns. The infinite pipe of uni-
form cross-section acts as a pure 
resistance equal to

c
o

A
t

z
S

ρ
=

	
			
	
		  (4)
An infinite, uniform pipe does not 
sound very useful. But a suitably 
damped, long pipe (plane wave 
tube) closely approximates the re-
sistive load impedance of an in-
finite pipe across a wide band of 
frequencies, and is very valuable 
for testing compression drivers12, 
13. It presents a constant frequency 
independent load, and as such acts like 
the perfect horn.

The parabolic horn is a true 1P horn 
if it is rectangular with two parallel sides, 
the two other sides expanding linearly, 
and the wave-fronts are concentric cylin-
ders. It has an area expansion given as

S = Stx. The expression for throat im-
pedance is very complicated, and will not 
be given here.

The throat impedances for both the 
uniform pipe and the parabolic horn are 
given in Fig. 2. Note that the pipe has the 
best, and the parabolic horn the worst, 
loading performance of all horns shown.

CONICAL HORN
The conical horn is a true 1P horn in 

spherical coordinates. If you use spheri-
cal coordinates, the cross-sectional area 
of the spherical wave-front in an axi-
symmetric conical horn is S = Ω(x+x0)2, 
where x0 is the distance from the vertex 
to the throat, and Ω is the solid angle of 
the cone. If you know the half angle θ 
(wall tangent angle) of the cone,

 Ω = 2π(1 - cosθ). 	 (5)
In the case where you are interested in 
calculating the plane cross-sectional area 
at a distance x from the throat,

( )
2

0
t

x x
S x S

x0

+ =   

. 		
			  (6)

The throat impedance of an infinite con-
ical horn is

c 2 2
o 0 0

A 2 2t 0

k x jkx
z

S 1 k x

 ρ +
=   + 

. 		
			  (7)

You should note that equation 7 is iden-
tical to the expression for the radiation 
impedance of a pulsating sphere of radius 
x0.

The throat resistance of the conical 
horn rises slowly (Fig. 2). At what fre-
quency it reaches its asymptotic value de-
pends on the solid angle Ω, being lower 
for smaller solid angle. This means that 
for good loading at low frequencies, the 
horn must open up slowly. 

As you will see later, a certain mini-
mum mouth area is required to mini-
mize reflections at the open end. This 
area is larger for horns intended for low 
frequency use (it depends on the wave-
length), which means that a conical horn 
would need to be very long to provide 

satisfying performance at low frequen-
cies. As such, the conical expansion is 
not very useful in bass horns. Indeed, 
the conical horn is not very useful at all 
in applications requiring good loading 
performance, but it has certain virtues in 
directivity control.

EXPONENTIAL HORN
Imagine you have two pipes of unequal 
cross-sectional areas S0 and S2, joined by 
a third segment of cross-sectional area 
S1, as in Fig. 3. At each of the disconti-
nuities, there will be reflections, and the 
total reflection of a wave passing from S0 
to S2 will depend on S1. It can be shown 
that the condition for least reflection oc-
curs when

S1 = √S0S2. 	 (8)
This means that S1 = S0k and S2 = S1k, 

thus S2 = S0k2. Further expansion 
along this line gives for the nth 
segment, Sn = S0kn, given that each 
segment has the same length. If k 
= em, and n is replaced by x, you 
have the exponential horn, where 
the cross-sectional area of the 
wave-fronts is given as S = Stemx. 
If you assume plane wave-fronts, 
this is also the cross-sectional area 
of the horn at a distance x from 
the throat.

The exponential horn is not a 
true 1P-horn, so you cannot ex-
actly predict its performance. But 
much information can be gained 
from the equations.

The throat impedance of an in-
finite exponential horn is

c 2
o

A 2t

m m
z 1 j

S 2k4k

 ρ  = − +
  

               
(9)

When m = 2k or f = mc

4π
, the throat 

resistance becomes zero, and the horn 
is said to cut off. Below this frequency, 

FIGURE 2: Throat acoustical resistance rA and reac-
tance xA as a function of frequency for different horn 
types.

FIGURE 3: Joined pipe segments.
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the throat impedance is entirely reactive 
and is

c 2
o

A 2
t

m m
z j 1

S 2k 4k

 ρ  = − −
  

. 		
			  (10)

The throat impedance of an exponential 
horn is shown in Fig. 2. Above the cut-
off frequency, the throat resistance rises 
quickly, and the horn starts to load the 
driver at a much lower frequency than 
the corresponding conical horn. In the 
case shown, the exponential horn throat 
resistance reaches 80% of its final value 
at 270Hz, while the conical horn reaches 
the same value at about 1200Hz.

An infinite horn will not transmit 
anything below cutoff, but it’s a different 
matter with a finite horn, as you will see 
later.

You should note that for an exponen-
tial horn to be a real exponential horn, 
the wave-front areas, not the cross-sec-
tional areas, should increase exponential-
ly. Because the wave-fronts are curved, 
as will be shown later, the physical horn 
contour must be corrected to account for 
this.

HYPERBOLIC HORNS
The hyperbolic horns, also called hyper-
bolic-exponential or hypex horns, were 
first presented by Salmon14, and is a gen-
eral family of horns given by the wave-
front area expansion

2

t
0 0

x x
S S cosh Tsinh

x x

 
= +  

. 		
			  (11)
T is a parameter that sets the shape of 
the horn (Fig. 4). For T = 1, the horn is 
an exponential horn, and for T → ∝ the 
horn becomes a conical horn.
x0 is the reference distance given as xo = 

c

c

2 fπ   where fc is the cutoff frequency.
A representative selection of hypex con-
tours is shown in Fig. 4.

Above cutoff, the throat impedance of 
an infinite hyperbolic horn is

2c
o

A 2 2
t

2 2

1 T1

z j
S 1 T 1 T

1 1

 
− 

µρ µ = + − − − − µ µ 

, (12)

and below cutoff, the throat impedance is 
entirely reactive and is

2c
o

A 2
t

2

1 1
1

z j
S 1 T

1

 
− µ µρ  =  − − µ 

		
			  (13)

where
µ is the normalized frequency, µ= 

c

f

f
.

The throat impedance of a hypex horn 
with T = 0.5 is shown in Fig. 2. The 
throat impedance of a family of horns 
with T ranging from 0 to 5 is shown in 
Fig. 5.

Exponential and hyperbolic horns have 
much slower flare close to the throat than 
the conical horn, and thus have much 
better low frequency loading. When T < 
1, the throat resistance of the hyperbolic 
horn rises faster to its asymptotic value 
than the exponential, and for T < √2 it 
rises above this value right above cutoff. 
The range 0.5 < T < 1 is most useful 
when the purpose is to improve loading. 
When T = 0, there 
is no reactance com-
ponent above cutoff 
for an infinite horn, 
but the large peak in 
the throat resistance 
may cause peaks in 
the SPL response of 
a horn speaker.

Due to the slower 
flaring close to the 
throat, horns with 
low values of T will 
a lso have some-
what higher distor-
tion than horns with 
higher T values.

WHAT IS CUTOFF?
Both exponential 
and hyperbolic horns 
have a property called 
cutoff. Below this 
frequency, the horn 
transmits nothing, 
and its throat imped-

ance is purely reactive. But what happens 
at this frequency? What separates the ex-
ponential and hyperbolic horns from the 
conical horn that does not have a cutoff 
frequency?

To understand this, you first must 
look at the difference between plane and 
spherical waves10. A plane wave propa-
gating in a uniform tube will not have 
any expansion of the wave-front. The 
normalized acoustical impedance is uni-
form and equal to unity through the en-
tire tube.

A propagating spherical wave, on the 
other hand, has an acoustical impedance 
that changes with frequency and distance 
from the source. At low frequencies 
and small radii, the acoustical imped-
ance is dominated by reactance. When 
kr = 1—i.e., when the distance from the 
source is 

2

λ
π

—the reactive and resistive 
parts of the impedance are equal, and 
above this frequency, resistance domi-
nates.

The difference between the two cases 
is that the air particles in the spherical 
wave move apart as the wave propa-
gates; the wave-front becomes stretched. 
This introduces reactance into the sys-
tem, because you have two components 
in the propagating wave: the pressure 
that propagates outward, and the pres-

FIGURE 4: A family of representative 
hypex contours, T = 0 (lower curve), 0.5, 
1, 2, 5, and infinite (upper curve). FIGURE 5: Throat impedance of a family of hypex horns.
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sure that stretches the wave-front. The 
propagating pressure is the same as in 
the non-expanding plane wave, and gives 
the resistive component of the imped-
ance. The stretching pressure 
steals energy from the propagat-
ing wave and stores it, introduc-
ing a reactive component where 
no power is dissipated. You can 
say that below kr = 1, there is re-
actively dominated propagation, 
and above kr = 1 there is resistive 
dominated propagation.

If you apply this concept to the 
conical and exponential horns by 
looking at how the wave-fronts 
expand in these two horns, you 
will see why the cutoff phenom-
enon occurs in the exponential 
horn. You must consider the flare 
rate of the horn, which is defined 
as (rate of change of wave-front 
area with distance)/(wave-front 
area).

In a conical horn, the flare rate 
changes throughout the horn, 
and the point where propagation 
changes from reactive to resistive 
changes with frequency through-
out the horn.

In an exponential horn, the 
flare rate is constant. Here the 
transition from reactive to resis-
tive wave propagation happens at 
the same frequency throughout 
the entire horn. This is the cutoff 
frequency. There is no gradual 
transition, no frequency depen-
dent change in propagation type, 
and that’s why the change is so 
abrupt.

FINITE HORNS
For a finite horn, you must con-
sider both parts of equation 3. 
By solving the horn equation this 
way3, 15, you get the following 
results for pressure and volume 
velocity at the ends of a horn:

pm = apt + bUt (14)
Um = fpt + gUt (15)

where p and U denote the pres-
sure and volume velocity, respec-
tively, and the subscripts denote 
the throat and mouth of the horn. 
You can now find the impedance 
at the throat of a horn, given that 
you know a, b, f, and g:

m
t

m

gZ b
Z

a fZ

−=
− 	 (16)

where Zm is the terminating impedance 
at the mouth.

The expressions for a, b, f, and g are 
quite complicated, and are given by 
Stewart15 for the uniform tube, the coni-
cal, and the exponential horn.

You see that the value of mouth 
impedance will dictate the value 
of the throat impedance. As ex-
plained previously, there will usu-
ally be reflections at the mouth, 
and depending on the phase and 
magnitude of the reflected wave, 
it may increase or decrease the 
throat impedance. A horn with 
strong reflections will have large 
variations in throat impedance.

Reflections also imply stand-
ing waves and resonance. To avoid 
this, it is important to terminate 
the horn correctly, so that reflec-
tions are minimized. This will be 
discussed in the next section.

It’s interesting to see what ef-
fect the length has on the perfor-
mance of a horn. Figure 6 shows 
the throat impedance of 75Hz 
exponential horns of different 
lengths, but the same mouth size. 
As the horn length increases, the 
throat resistance rises faster to a 
useful value, and the peaks in the 
throat impedance become more 
closely spaced.

Finite horns will transmit 
sound below their cutoff f re-
quency. This can be explained as 
follows: the horn is an acousti-
cal transformer, transforming the 
high impedance at the throat to 
a low impedance at the mouth. 
But this applies only above cutoff. 
Below cutoff there is no trans-
former action, and the horn only 
adds a mass reactance.

An infinite exponential horn 
can be viewed as a finite exponen-
tial horn terminated by an infinite 
one with the same cutoff. As you 
have seen, the throat resistance 
of an infinite exponential horn is 
zero below cutoff, and the throat 
resistance of the finite horn will 
thus be zero. But if the imped-
ance present at the mouth has a 
non-zero resistance below cutoff, 
a resistance will be present at the 
throat. This is illustrated in Fig. 7, 
where a small exponential horn 
with a mouth three times larger 

FIGURE 6: The effect of increasing the length of a 75Hz 
exponential horn with krm = 0.5. The lengths are (top to 
bottom) 50, 100, and 200cm.

FIGURE 7: Finite exponential horn terminated by an 
infinite pipe.
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than its throat is terminated by an infi-
nite pipe (a pure acoustical resistance). 
The acoustical resistance present at the 
throat below cutoff approaches that of 
the pipe alone, one third of the value 
above cutoff.

The same is true for any mouth ter-
mination. As long as there is a resistive 
impedance present at the mouth below 
cutoff, power can be drawn from the 
horn.

TERMINATION OF THE HORN
I have briefly mentioned that there can 
be reflections from the mouth of a horn. 
The magnitude of this reflection de-
pends on frequency and mouth size.

Consider a wave of long wavelength16. 
While it is progressing along a tube, it 
occupies a constant volume, but when it 
leaves the tube, it expands into an ap-
proximate hemispherical shape (Fig. 8). 
The volume thus increases, the pressure 

falls, increasing the velocity of air inside 
the tube, pulling it out. This produces an 
impulse that travels backwards from the 
end of the tube, a reflection.

It’s a different matter at higher fre-
quencies. The relative volume of a half-
wavelength of sound is much smaller, 
and the resulting volume increase is less, 
producing fewer reflections (Fig. 9).

You may ask what the optimum size 
of the end of the tube is, to minimize 
reflection in a certain frequency range. 
This has been investigated since the 
early 1920s2, 5, 16, 17, 18 and has led to the 
general assumption that if the mouth 
circumference of an exponential horn is 
at least one wavelength at the cutoff fre-
quency of the horn, so that krm ≥ 1, the 

APPENDIX
Derivation of the  
Webster Horn Equation
This derivation is based on the infinitesi-
mal amplitude, one-parameter plane wave 
assumption, as discussed in Part 1.

Consider a flaring horn as shown in 
Fig. A, where dx is the short axial length 
between two plane wave-fronts of area 
S. The volume of this element is Sdx, 
where S is given as an arbitrary function 
of x. Fluid (air) will flow into this ele-
ment from one side, and out of it on the 
other side, due to the passage of sound 
waves. The change in the mass of the 
fluid in this volume is

( )S
dx

t

∂ ρ
−

∂
with dx not changing with time.

The particle velocity of the fluid mov-
ing along the x-axis through the element 
is u, and the difference in the mass of 
fluid entering one plane and leaving the 
other, is

( )uS
dx

x

∂
ρ

∂
this is ρ (the density of the medium) 
times the change in volume velocity, uS, 
with x. Because the fluid is continuous, 
these two quantities must be equal, so

( ) ( )uS S

x t

∂ ∂ ρ
ρ = −

∂ ∂

Expand both sides to get

S u S
u S S

x x t t

∂ ∂ ∂ ∂ρ   ρ + = − ρ +      ∂ ∂ ∂ ∂

Now introduce the concept of veloc-
ity potential, which you can consider as 
similar to electric potential along a resis-
tive conductor. If this conductor has a re-
sistance R per unit length, the resistance 
of a small length ∂x is R∂x. If a current I 
flows through the conductor, the voltage 
drop (electrical potential) across ∂x is

∂U = -RI∂x.
Setting R = 1, you have

U
I

x

∂= −
∂ .

Acoustically, you may say that 
the velocity potential replaces U, 
and the particle velocity replaces I.  
Thus u = -

x

∂φ
∂

. 

You also have the relation that
 2

s 0
0 2 2t t c t

∂ ρ∂ρ ∂ φ= ρ =
∂ ∂ ∂

, 

where s is the condensation of the me-
dium, and ρ0 is the static density of the 
medium. For infinitesimal amplitudes, ρ 
= ρ0, and A

0
t

∂ =
∂

, because the area at a 
given value of x is independent of time. 
After substitution, you have

2 2

2 2 2
1 A 1

0
A x xx c t

∂ φ ∂ ∂φ ∂ φ + − = ∂ ∂ ∂ ∂ .

Because 1 S 1nS

S x x

∂ ∂=
∂ ∂

, you can write this as

2 2

2 2 2
1nS 1

0
x xx c t

∂ φ ∂ ∂φ ∂ φ+ − =
∂ ∂∂ ∂

This is the fundamental horn equation 
for infinitesimal amplitudes. If you have 
simple harmonic motion (a sine or cosine 
wave of a single frequency), you can write 
φ = φ1 cos ωt, which gives ∂2φ/∂t2 = -ω2φ, 
ω = 2πf. By using this substitution, and 
remembering that k = ω/c, you get

2
2d d1nS d

k 0
dx dx dx

φ φ+ − φ =
                                           ,  

which is the most convenient form of the 
horn equation.         	 ■

FIGURE A: Plane wave propagation in 
a horn.

FIGURE 8: Waves with long wavelength 
at the end of a tube16.

FIGURE 9: Waves with short wavelength 
at the end of a tube16.
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reflections will be negligible. rm is the 
radius of the mouth.

The effect of different mouth sizes 
is shown in Fig. 10, where the throat 
impedance of a 100Hz exponen-
tial horn is shown. The throat 
impedance is calculated assum-
ing plane wave-fronts, and using 
the impedance of a piston in an 
infinite wall as termination. The 
mouth sizes correspond to krm 
= 0.23, 0.46, 0.70, and 0.93. You 
can see that for higher values of 
krm, the ripple in the throat im-
pedance decreases.

When krm is increased beyond 
1, however, the ripple increases 
again, as shown in Fig. 11. This 
led Keele to investigate what the 
optimum horn mouth size would 
be19. For a horn termination sim-
ulated by a piston in an infinite 
baffle, he found the optimum krm 
to be slightly less than 1, the exact 
value depending on how close to 
cutoff the horn is operating. His 
findings were based on the plane 
wave assumption, which, as you 
will see in the next section, does 
not hold in practice.

As a historical side note, Flan-
ders also discovered increased 
mouth reflections for krm larger 
than 1 for a plane wave exponen-
tial horn18 in 1924.

If the same horn is calculated 
assuming spherical waves, there 
is no obvious optimum mouth 
size. If you consider the throat 
impedance of two 100Hz horns 
with krm = 0.93 and 1.4, assum-
ing spherical wave-fronts and the 
same mouth termination as be-
fore, you can see that the ripple 
decreases, not increases, for high-
er values of krm (Fig. 12).

The reason may be that the 
wave-front expansion of a horn 
where the cross-section is cal-
culated as S = Stemx will have a 
flare rate that decreases toward 
the mouth. This is because the 
wave-fronts bulge (Fig. 13). The 
areas of the curved wave-fronts 
are larger than those of the plane 
ones, and the distance between 
them is also larger. But the dis-
tance between successive curved 

wave-fronts increases faster than their 
areas, so the outer parts of the horn will 
have a lower cutoff. The required krm 
for optimum termination becomes larg-

er, and it increases as the horn is made 
longer.

These considerations are valid for 
exponential horns. What, then, about 

hyperbolic and conical horns? 
Hyperbolic horns with T < 1 
will approximate the exponential 
horn expansion a certain distance 
from the throat, and the mouth 
termination conditions will be 
similar to those for an exponen-
tial horn. Conical horns show 
no sign of having an optimum 
mouth size. As length and mouth 
size increase, simulations show 
that the throat impedance ripple 
steadily decreases, and the horn 
approaches the characteristics of 
an infinite horn.

In conclusion, you may say 
that the mouth area of a horn 
can hardly be made too large, but 
it can easily be made too small. 
krm in the range 0.7-1 will usu-
ally give smooth response for 
bass horns, while midrange and 
tweeter horns will benefit from 
values ≥ 1.

Another factor you need to 
consider is the termination at the 
throat. If there is a mismatch be-
tween the driver and the horn, 
the reflected waves traveling from 
the mouth will again be reflected 
when they reach the throat, pro-
ducing standing waves in the 
horn.

CURVED WAVE-FRONTS
By logical reasoning, the assump-
tion that the wave-fronts in a 
horn are plane cannot be true. 
If it was so, the speed of sound 
along the horn walls would need 
to be greater than the speed of 
sound along the axis. This can-
not be the case, and the result is 
that the wave-front on the axis 
must gain on that at the horn 
walls, so the wave-fronts will de-
fine convex surfaces. In a circular 
conical horn the wave-fronts are 
spherical with centers at the apex. 
In the uniform tube, the wave-
fronts are plane. In both cases the 
wave-fronts cut the axis and the 
walls at right angles. It is, there-
fore, logical to assume that this 

FIGURE 10: Throat impedance of finite horns10, krm = 
(top to bottom) 0.23, 0.46, 0.70, and 0.93.
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will happen in other horn types, too.

WAVE-FRONTS IN HORNS
In 1928, Hall conducted a detailed inves-
tigation of the sound field inside horns4, 
20 showing how the wave-fronts curve 
in an exponential and a conical horn. 
The wave-fronts in a 120Hz exponential 
horn at the cutoff frequency are shown 
in Fig. 14, where you can see that the 
wave-fronts are very nearly normal to 
the walls.

It’s a different matter at 800Hz (Fig. 
15). At a certain distance from the 
throat, the pressure wave-fronts become 
seriously disturbed. Hall attributes this 
to reflections at the outer rim of the 
mouth that are more powerful than at 
the center, because the discontinuity is 
greater. Another explanation8 is that 
higher order modes (see Part 2) will dis-
tort the shape of the amplitude wave-
fronts. This is also most evident in Fig. 
15. In a flaring horn, higher order modes 
will not appear at the same frequen-
cies throughout the horn. Close to the 
throat, where the radius is small, they 
will appear at fairly high frequencies, but 
closer to the mouth they will appear at 
lower frequencies.

Conical horns do not look any better 
than exponential horns. Hall also inves-
tigated a large conical horn, 183cm long, 
throat diameter 2cm, and mouth diam-
eter 76cm. Simulations show that the 
horn does not have significant mouth 
reflections, because the throat impedance 
is close to that of an infinite horn. Still 
the amplitude wave-fronts are seriously 
disturbed, even close to the throat, which 
does not happen in an exponential horn 
(Fig. 16). You can see two nodal lines, 
each about halfway between the horn 
wall and the axis. This is a result of high-
er order modes, and can be predicted.

The frequency where Ra = Xa—i.e., 
where the throat acoustical resistance 
and reactance are equal—is about 1kHz 
for this horn. This indicates that higher 
order modes are a problem in conical 
horns even below the frequency where it 
has useful loading properties.

TRACTRIX HORN
The tractrix is a kind of horn generated 
by the revolution of the tractrix curve 
around the x-axis. The equation for the 
tractrix curve is given as

2 2
m xm r r 2 2

m m x
x

r
x r 1n r r

r

+ −
= − −

		
			  (17)
where
rm is the mouth radius, usually taken as

 
c

c

c

2 2 f

λ
=

π π , where fc is the horn cut-
off frequency, and rx is the radius of 
the horn at a distance x from the horn 

mouth (Fig. 17).
Because the radius 

(or cross-section) is 
not a function of x, as 
in most other horns, 
the tractrix contour 
is not as straightfor-
ward to calculate, but 
it should not pose any 
problems.

The tractrix horn 
expands faster than the 
exponential horn close 
to the mouth, as you 
will see in Part 2.FIGURE 11: Increasing ripple for oversized mouth, krm = 1.4.

FIGURE 12: Throat impedance of horns 
with krm = 0.93 and 1.4, assuming 
spherical wave-fronts.

FIGURE 13: Comparing plane and 
curved wave-fronts in an exponential 
horn.

FIGURE 14: Wave-fronts in an exponen-
tial horn at 120Hz4.

FIGURE 15: Wave-fronts in an exponen-
tial horn at 800Hz4.

FIGURE 16: Wave-fronts in a conical 
horn at 800Hz4.
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The tractrix curve was first employed 
for horn use by P.G.A.H. Voigt, and 
patented in 192621. In more recent times 
it was popularized by Dinsdale22, and 
most of all by Dr. Bruce Edgar23, 24. The 
main assumption in the tractrix horn is 
that the sound waves propagate through 
the horn as spherical wave-fronts with 
constant radius, rm, which also is tangent 
to the walls at all times (Fig. 18).

For this requirement to hold, the 
wave-front must be spherical at all fre-
quencies, and the velocity of the sound 
must be constant throughout the horn.

A theory of the tractrix horn was 
worked out by Lambert25. The throat 
impedance of a horn was calculated 
using both a hemisphere and a piston 

as radiation load, and the results com-
pared to measurements. It appeared that 
the wave-front at the mouth was nei-
ther spherical nor plane. Also, directivity 
measurements showed increased beam-
ing at higher frequencies. This means 
that the tractrix horn does not present a 
hemispherical wave-front at the mouth 
at all frequencies. It does come close at 
low frequencies, but so does almost every 
horn type.

The throat impedance of a 100Hz 
tractrix horn, assuming wave-fronts 
in the form of flattened spherical caps 
and using the radiation impedance of a 
sphere with radius equal to the mouth 
radius as mouth termination, is shown 
in Fig. 19.

Next month Part 2 will continue this 
in-depth look at various horn types.    aX
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FIGURE 19: Throat impedance of a tractrix horn.

FIGURE 17: Dimensions of the tractrix 
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FIGURE 18: Assumed wave-fronts in a 
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Horn Theory:  
An Introduction, Part 2

By Bjørn Kolbrek

The author continues his look at the various horn types and how they work.

Article prepared for www.audioXpress.com

Spherical Wave Horn
The spherical wave (or Kugelwellen) 
horn was invented by Klangfilm, the mo-
tion picture division of Siemens, in the 
late 1940s26, 27. It is often mistaken for 
being the same as the tractrix horn. It’s 
not. But it is built on a similar assump-
tion: that the wave-fronts are spherical 
with a constant radius. The wave-front 
area expansion is exponential.

To calculate the spherical wave horn 
contour, first decide a cutoff frequency fc 
and a throat radius yo (Fig. 20). The con-
stant radius r0 is given as

0
c

c
r

f
=

π
 	 (18)

The height of the wave-front at the 
throat is

2 2
0 0 0 0h r r y= − − 	 (19)

The area of the curved wave-front at the 
throat is
S0 = 2πr0h0

and the area of the wave-front with 
height h is 2πr0h. Thus for the area to 
increase exponentially, h must increase 
exponentially:

h = h0emx 	 (20)
where x is the distance of the top of the 
wave-front from the top of the throat 
wave-front and 

    m = c4 f

c

π . 

Now that you know the area of the wave-
front, you can find the radius and the 
distance of this radius from the origin.
S = 2πr0h

2S
y h= −

π
	 (21)

xh = x – h + h0	 (22)

The assumed wave-fronts in a spherical 
wavehorn are shown in Fig. 21. Notice 
that the wave-fronts are not assumed to 
be 90° on the horn walls. Another prop-
erty of the spherical wave horn is that it 
can fold back on itself (Fig. 22), unlike 
the tractrix horn, which is limited to a 
90° tangent angle.

The throat impedance of a 100Hz 
spherical wave horn—assuming wave-
fronts in the form of flattened spheri-
cal caps and using the radiation imped-
ance of a sphere with radius equal to the 
mouth radius as mouth termination—is 
shown in Fig. 23. You can see that it is 

not very different from the throat im-
pedance of a tractrix horn.

Tube, Solid State,  
Loudspeaker Technology

FIGURE 20: Dimensions of a spherical 
wave horn.

FIGURE 21: Assumed wave-fronts in 
spherical wave horns.

FIGURE 22: Spherical wave horn folding 
back.



2  audioXpress   2008				    www.audioXpress .com

Le Cléac’h Horn
Jean-Michel Le Cléac’h presented a horn 
that does not rely on an assumed wave-
front shape. Rather, it follows a “natural 
expansion.” The principle is shown in 
Fig. 24. Lines 0-1 show the wave-front 
surface at the throat (F1). At the point 

it reaches F2, the 
wave-front area 
has expanded, 
and to account 
for this, a small 
triangular ele-
ment (or, really, a 
sector of a circle) 
b1 is added.

T h e  w a ve -
front expansion 
f rom b1 (line 
3-4) continues in 
element a3, and 
an element b2 is 
added to account 

for further wave expansion at F3. The 
process is repeated, and the wave-front 
becomes a curved surface, perpendicular 
to the axis and the walls, but without 
making any assumptions regarding the 
shape prior to the calculations. The wave-
fronts are equidistant from each other, 
and appear to take the shape of flattened 
spherical caps. The resulting contour of 
the horn is shown in Fig. 25.

The wave-front expands according to 
the Salmon family of hyperbolic horns. 
There is no simple expansion equa-
tion for the contour of the Le Cléac’h 
horn, but you can calculate it with the 
help of spreadsheets available at http:// 
ndaviden.club.fr/pavillon/lecleah.html

Oblate Spheroidal  
Waveguide
This horn was first investigated by Free-
hafer28, and later independently by Ged-
des6, who wanted to develop a horn suit-
able for directivity control in which the 
sound field both in-
side and outside the 
horn could be accu-
rately predicted. To do 
this, the horn needed 
to be a true 1P-horn. 
Geddes investigated 
several coordinate 
systems, and found 
the oblate spheroi-
dal (OS) coordinate 
system to admit 1P 
waves. Putland7 later 
showed that this was 
not strictly the case. 
More work by Ged-
des29 showed that 
the oblate spheroidal 

waveguide acts like a 1P horn for a re-
stricted frequency range. Above a certain 
frequency dictated by throat radius and 
horn angle, there will be higher order 
modes that invalidate the 1P assump-
tions.

The contour of the oblate spheroidal 
waveguide is shown in Fig. 26. It follows 
the coordinate surfaces in the coordinate 
system used, but in ordinary Cartesian 
coordinates, the radius of the horn as a 
function of x is given as

( )2 2 2
t 0r r tan x= + θ 	 (23)

where
rt is the throat radius, and
θ0 is half the coverage angle.
The throat acoustical impedance is not 
given as an analytical function; you must 
find it by numerical integration. The 
throat impedance for a waveguide with 
a throat diameter of 35.7mm and θ0 = 30 
is shown in Fig. 27.

FIGURE 27: Normalized throat impedance of a 60° included 
angle infinite oblate spheroidal waveguide.FIGURE 25: Contour of a Le Cléac’h horn.

FIGURE 26: Contour of the oblate sphe-
roidal waveguide.

FIGURE 23: Throat impedance of a spherical wave horn.

FIGURE 24: The principle of the Le 
Cléac’h expansion.
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The OS waveguide does not have a 
sharp cutoff like the exponential or hy-
perbolic horns, but it is useful to be able 
to predict at what frequency the throat 
impedance of the waveguide becomes too 
low to be useful. If you set this frequency 
at the point where the throat resistance is 
0.2 times its asymptotic value30, so that 
the meaning of the cutoff frequency be-
comes similar to the meaning of the term 
as used with exponential horns, you get

0
c

t

sin0.2c
f

r

θ
=

π  	 (24)

You see that the cutoff of the waveguide 
depends on both the angle and the throat 
radius. For a low cutoff, a larger throat 
and/or a smaller angle is required. For 
example, for a 1″ driver and 60° includ-
ed angle (θ0 = 30), the cutoff is about 
862Hz.

The advantages of the OS waveguide 
are that it offers improved loading over a 
conical horn of the same coverage angle, 
and has about the same directional prop-
erties. It also offers a very smooth transi-
tion from plane to spherical wave-fronts, 
which is a good thing, because most driv-
ers produce plane wave-fronts.

The greatest disadvantage of the OS 
waveguide is that it is not suitable for 
low-frequency use. Bass and lower mid-
range horns based on this horn type will 
run into the same problems as conical 
horns: the horns become very long and 
narrow for good loading.

To sum up, the OS waveguide pro-
vides excellent directivity control and 
fairly good loading at frequencies above 
about 1kHz.

OTHER HORNS
Three other horn types assuming curved 
wave-fronts that are worth mentioning 
are: the Western Electric horns, the Wil-
son modified exponential, and the Iwata 
horn. What these horns have in common 
is that they do not assume curved wave-
fronts of constant radius.

The Western Electric type horn17 uses 
wave-fronts of constantly increasing ra-
dius, all being centered around a vertex a 
certain distance from the throat (Fig. 29).

In the Wilson modified exponential 
horn31, the waves start out at the throat 
and become more and more spherical. 
The horn radius is corrected in an it-
erative process based on the wall tangent 

angle, and the contour lies inside that of 
the plane-wave exponential horn, being 
a little longer and with a slightly small-
er mouth flare tangent angle (Fig. 28). 
Unfortunately, the Wilson method only 
corrects the wave-front areas, not the 
distance between the successive wave-
fronts.

There is not much information avail-
able about the Iwata horn32, 33, just a 
drawing and dimensions, but no descrip-
tion of the concept. It looks like a ra-
dial horn, and seems to have cylindri-
cal wave-fronts expanding in area like 
a hypex-horn with T = √2. The ratio of 
height to width increases linearly from 
throat to mouth.

DIRECTIVITY CONTROL
Control of directivity is an important 
aspect of horn design. An exponential 
horn can provide the driver with uniform 
loading, but at high frequencies, it starts 
to beam. It will therefore have a cover-
age angle that decreases with frequency, 
which is undesirable in many circum-
stances. Often you want the horn to radi-
ate into a defined area, spilling as little 
sound energy as possible in other areas. 
Many horn types have been designed to 
achieve this.

For the real picture of the directiv-

ity performance of a horn, you need the 
polar plot for a series of frequencies. But 
sometimes you also want an idea of how 
the coverage angle of the horn varies 
with frequency, or how much amplifica-
tion a horn gives. This is the purpose of 
the directivity factor (Q) and the direc-
tivity index (DI)34:
Directivity Factor: The directivity factor 
is the ratio of the intensity on a given axis 
(usually the axis of maximum radiation) 
of the horn (or other radiator) to the 
intensity that would be produced at the 
same position by a point source radiating 
the same power as the horn.
Directivity Index: The directivity index 
is defined as: DI(f ) = 10 log10 Q(f ). It 
indicates the number of dB increase in 
SPL at the observation point when the 
horn is used compared to a point source.

Because intensity is watts per square 
meter, it is inversely proportional to area, 
and you can use a simple ratio of areas35.
Consider a sound source radiating in all 
directions and observed at a distance r. At 
this distance, the sound will fill a sphere 
of radius r. Its area is 4πr2. The ratio of 
the area to the area covered by a perfect 
point source is 1, and thus Q = 1. If the 
sound source is radiating into a hemi-
sphere, the coverage area is cut in half, 
but the same sound power is radiated, 
so the sound power per square meter is 
doubled. Thus Q = 2. If the hemisphere 
is cut in half, the area is 1/4 the area cov-
ered by a point source, and Q = 4.

FIGURE 28: Comparison of the expo-
nential horn with the tractrix and the Wil-
son modified exponential horn22.

FIGURE 29: Wave-fronts in the Western 
Electric type exponential horn17.

FIGURE 30: Contour of the Iwata horn32.
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For a horn with coverage angles α and 
β as shown in Fig. 31, you can compute 
Q as

1

180
Q

sin sin sin
2 2

−
=

α β 
  

 	 (25)

Most constant directivity horns try to 
act as a segment of a sphere. A sphere 
will emit sound uniformly in all direc-
tions, and a segment of a sphere will emit 
sound uniformly in the angle it defines, 
provided its dimensions are large com-
pared to the wavelength11. But when the 
wavelength is comparable to the dimen-
sions of the spherical segment, the beam 
width narrows to 40-50% of its initial 
value.

A spherical segment can control direc-
tivity down to a frequency given as

6

I
25 10

f
x

=
θ




	 (26)

where
fI is the intercept frequency in Hz where 
the horn loses directivity control,
x is the size of the horn mouth in mm in 
the plane of coverage, and
θ is the desired coverage angle in degrees 
in that plane.
You thus need a large horn to control di-
rectivity down to low frequencies.

Most methods of directivity control 
rely on simulating a segment of a sphere. 
The following different methods are list-
ed in historical order.

MULTICELLULAR HORNS
Dividing the horn into many conduits 
is an old idea. Both Hanna36 and Slepi-
an37 have patented multicellular designs, 
with the conduits extending all the way 
back to the source. The source consists 
of either multiple drivers or one driver 
with multiple outlets, where each horn 
is driven from a separate point on the 
diaphragm.

The patent for the traditional mul-
ticellular horn belongs to Edward C. 
Wente38. It was born from the need to 
accurately control directivity, and at the 
same time provide the driver with proper 
loading, and was produced for use in the 
Bell Labs experiment of transmitting the 
sound of a symphonic orchestra from 
one concert hall to another39.

A cut view of the multicellular horn, as 
patented by Wente, is shown in Fig. 32. 
In this first kind of multicellular horn, 
the individual horns started almost paral-
lel at the throat, but later designs often 
used straight horn cells to simplify man-
ufacture of these complex horns. As you 
can see, the multicellular horn is a cluster 
of smaller exponential horns, each with a 
mouth small enough to avoid beaming in 
a large frequency range, but together they 
form a sector of a sphere large enough to 
control directivity down to fairly low fre-
quencies. The cluster acts as one big horn 
at low frequencies. At higher frequencies, 
the individual horns start to beam, but 
because they are distributed on an arc, 
coverage will still be quite uniform.

The multicellular horn has two prob-
lems, however. First, it has the same lower 
midrange narrowing as the ideal sphere 
segment, and, second, the polar pattern 
shows considerably “fingering” at high 
frequencies. This may not be as serious 
as has been thought, however. The -6dB 

beam widths of a typical multicellular 
horn are shown in Fig. 33. The fingering 
at high frequencies is shown in Fig. 34.

The beam width of a multicellular 
horn with different number of cells is 
shown in Fig. 3534. The narrowing in 
beam width where the dimensions of the 
horn are comparable to the wavelength is 
evident.

RADIAL HORNS
The radial or sectoral horn is a much 
simpler concept than the multicellular 
horn. The horizontal and vertical views 
of a radial horn are shown in Fig. 36. 
The horizontal expansion is conical, and 
defines the horizontal coverage angle of 
the horn. The vertical expansion is de-
signed to keep an exponential expansion 
of the wave-front, which is assumed to 
be curved in the horizontal plane. Direc-
tivity control in the horizontal plane is 
fairly good, but has the same midrange 
narrowing as the multicellular horn. In 

FIGURE 34: High frequency fingering of 
EV M253 horn at 10kHz42.

FIGURE 31: Radiation into a solid cone 
of space defined by angles α and β.

FIGURE 32: Multicellular horn38.

FIGURE 33: -6dB beam widths of Elec-
tro-Voice model M253 2 by 5 cell horn42.
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addition, there is almost no directivi-
ty control in the vertical plane, and the 
beam width is constantly narrowing with 
increasing frequency.

REVERSED FLARE HORNS
The reversed flare horn can be con-
sidered to be a “soft diffraction horn,” 
contrary to Manta-Ray horns and other 
modern constant directivity designs that 
rely on hard diffraction for directivity 
control. This class of horns was patented 
for directivity control by Sidney E. Levy 
and Abraham B. Cohen at University 
Loudspeakers in the early 1950s40, 41. 
The same geometry appeared in many 
Western Electric horns back in the early 
1920s, but the purpose does not seem to 
be that of directivity control17.

The principle for a horn with good 
horizontal dispersion is illustrated in Fig. 
37. The wave is allowed to expand in the 

vertical direction 
only, then the di-
rection of expan-
sion is changed. 
The wave-f ront 
expansion is re-
stricted vertically, 
and is released 
horizontally. The 
result is that the 
horizontal pres-
sure that builds up 
in the first part of 
the horn causes 
the wave-front to 
expand more as it 
reaches the sec-
ond part. That it 

is restricted in the vertical plane helps 
further.

Because the wave-front expansion is 
to be exponential all the way, the dis-
continuity at the flare reversal point 
(where the expansion changes direction) 
is small. In addition, the change of cur-
vature at the flare reversal point is made 
smoother in practical horns than what is 
shown in the figure.

CE HORNS
In the early 1970s, Keele, then working 
for Electro-Voice, supplied an answer to 
the problems associated with multicel-
lular and radial horns by introducing a 
completely new class of horns that pro-
vided both good loading for the driver 
and excellent directivity control42.

The principle is based on joining an 
exponential or hyperbolic throat seg-
ment for driver loading with two conical 
mouth segments for directivity control. 
The exponential and conical segments 
are joined at a point where the conical 
horn of the chosen solid angle is an op-
timum termination for the exponential 
horn. Keele defines this as the point 
where the radius of the exponential horn 
is

c

0.95sin
r

k

θ=
	 (27)

where
r is the radius at the junction point,
θ is the half angle of the cone with solid 
angle Ω, 

θ = cos-1 (1 -
2

Ω
π

), and

kc is the wave number at the cutoff fre-

quency, kc = c2 f

c

π .

The problem of midrange narrowing 
was solved by having a more rapid flare 
close to the mouth of the conical part of 
the horn. Good results were obtained by 
doubling the included angle in the last 
third of the conical part. This decreases 
the acoustical source size in the frequen-
cy range of midrange narrowing, causing 
the beam width to widen, and removing 
the narrowing. The result is a horn with 
good directivity control down to the fre-

FIGURE 36: Profile of a radial horn42.

FIGURE 35: Beam width of a multicellular horn constructed as 
shown in the insert34.

FIGURE 37: Wave-front expansion in 
reversed flare horns41.

FIGURE 38: Example of the Electro-
Voice CE constant directivity horns. This 
horn covers 40° by 20°42.
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quency dictated by the mouth size.
For a horn with different horizontal 

and vertical coverage angles, the width 
and height of the mouth will not be 
equal. The aspect ratio of the mouth will 
be given as

H
H

HV

sinX 2R
X sin

2

θ

= = θ , 	 (28)

or, if θH and θV are limited to 120°,

   H

V
R

θ≈
θ

. 	 (29)

The lower frequency of directivity con-
trol will also be dictated by the mouth 
aspect ratio. Substituting equation 26 
into equation 29 and solving for the ratio 
of intercept frequencies, you get

2
IH H

IV V

f

f

 θ≈  θ  . 	 (30)

For a 40° by 20° (H-V) horn, the verti-
cal intercept frequency will be four times 
higher than the horizontal intercept fre-
quency.

Manta-Ray Horns
The Altec Manta-Ray horn sought to 
solve the problems of the CE horns, 
mainly the inability to independently 
specify the horizontal and vertical inter-
cept frequencies43. To achieve directiv-
ity down to a lower frequency in the 
vertical plane, the vertical dimension of 
the mouth must be increased. Because 
the dispersion angle is smaller, the ex-
pansion must start further back, behind 
where the horizontal expansion starts. 
The result is the unique geometry shown 
in Fig. 39 (although it’s not so unique 
anymore).

At the point where the horizontal ex-
pansion starts, the wave is diffracted to 
fill the width of the horn, and dispersion 
is controlled by the horn walls.

The Manta-Ray horn incorporates 
the same rapid mouth flaring as the CE 
horns to avoid midrange narrowing, 
but does not use radial expansion of the 
walls. The reason for this is that radial 
walls produced a “waist-banding” effect, 
in which the horn lost much energy out 
to the sides in the upper midrange. This 
effect cannot be seen in the polar plots 
for the CE horns, which suggests that 
“waist-banding” can be a result of the 
Manta-Ray geometry, and not solely of 
radial wall contours.

NEW METHODS
Most newer constant directivity designs 
have been based on either the conical 
horn, some sort of radial horn (includ-
ing the JBL Biradial design), or diffrac-
tion methods such as the Manta-Ray 
design. The only notable exception is 
the oblate spheroidal waveguide (cov-
ered previously) introduced by Geddes.

The general trend in horns designed 
for directivity control has been to focus 
on the control issue, because it is al-
ways possible to correct the frequency 
response. A flat frequency response does 
not, however, guarantee a perfect im-
pulse response, especially not in the pres-
ence of reflections. Reflected waves in 
the horn at the high levels in question 
will also cause the resulting horn/driver 
combination to produce higher distor-
tion than necessary, because the driver is 
presented with a nonlinear and resonant 
load. (See next section.)

DISTORTION
As mentioned, the horn equation is de-
rived assuming that the pressure varia-
tions are infinitesimal. For the intensities 
appearing at the throat of horns, this as-
sumption does not hold. Poisson showed 
in 1808 that, generally, sound waves can-
not be propagated in air without change 
in form, resulting in the generation of 
distortion, such as harmonics and inter-
modulation products. The distortion is 
caused by the inherent nonlinearity of 
air. 

If equal positive and negative incre-
ments of pressure are impressed on a 
mass of air, the changes in volume of 
that mass will not be equal. The volume 
change for positive pressure will be less 
than that for the equal negative pres-
sure44. You can get an idea of the na-

ture of the distortion from the adiabatic 
curve for air (Fig. 40). The undisturbed 
pressure and specific volume of air ( 1

ρ
) 

is indicated in the point P0V0. Devia-
tion from the tangent of the curve at 
this point will result in the generation 
of unwanted frequencies, the peak of 
the wave being stretched and the trough 
compressed.

The speed of sound is given as
p

c = γ
ρ 	 (31)

where
γ is the adiabatic constant of air, γ = 
1.403.
You can see that the speed of sound in-
creases with increasing pressure. So for 
the high pressure at the peaks of the 
wave-front, the speed of sound is higher 
than at the troughs. The result is that as 
the wave propagates, the peaks will gain 
on the troughs, altering the shape of the 
waveform and introducing harmonics 
(Fig. 41).

There are thus two kinds of distortion 
of a sound wave: one because of the un-
equal alteration of volume, and another 
because of the propagation itself. This 

FIGURE 40: Adiabatic curve for air.

FIGURE 41: Distorted waveform due to 
non-constant velocity of sound5.FIGURE 39: The Manta-Ray geometry43.
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last kind of distortion is most noticeable 
in a plane wave and in waves that expand 
slowly, as in horns, where distortion in-
creases with the length propagated. Both 
kinds of distortion generate mainly a 
second harmonic component.

Fortunately, as the horn expands, the 
pressure is reduced, and the propaga-
tion distortion reaches an asymptotic 
value, which can be found for the horn 
in question, considering how it expands. 
It will be higher for a horn that expands 
slowly near the throat than for one that 
expands rapidly. For example, a hyper-
bolic-exponential horn with a low value 
for T will have higher distortion than a 
conical horn. For an exponential horn, 
the pressure ratio of second harmonic to 
fundamental is given as44

mx / 2
1t2

1 0

pp 1 e

p p c m /22 2

−γ + ω −=
γ

	 (32)

where
p1t is the RMS pressure of the funda-
mental at the throat,
p1 is the RMS pressure of the funda-
mental at x,
p2 is the RMS pressure of the second 
harmonic at x,
p0 is the static pressure of air, and
m is the flare rate of the exponential 
horn.

You can see that distortion increases 
with frequency relative to the cutoff fre-
quency. This is easier to see in the sim-
plification for an infinite exponential 
horn given by Beranek34:

2
2 t

c

f
D % 1.73 10 I

f
−=    	 (33)

where
It is the intensity at the throat, in watts 
per square meter.
Holland et al.45 have investigated the 
distortion generated by horns both with 
the use of a computer model and by 
measurements. The model considered 
the harmonics required at the throat to 
generate a pure sine wave at the mouth 
(backward modeling), and also took re-
flections from the mouth into account. 
For a horn with a 400Hz cutoff and 
4″throat, and a mouth SPL of 150dB, 
the distribution of harmonics is shown in 
Fig. 42. The peak at the cutoff frequency 
is due to the very high level required at 
the throat to generate the required SPL 
at the mouth.

Figure 43 shows the level of the 
harmonics at the throat at 1kHz for a 
given SPL at the mouth. Measurements 
showed that the prediction of the second 
harmonic level was quite accurate, but 
measured levels of the higher harmon-
ics were higher than predicted. This was 
recognized as being due to nonlinearities 
in the driver.

As you can see from the results, the 
level of harmonics is quite low at the 
levels usually encountered in the home 
listening environment, but can be quite 
considerable in the case of high-level 
public address and sound reinforcement 
systems.

One point I need to mention is the 
importance of reducing the amount of 
reflection to reduce distortion. At the 
high levels involved, the reflected wave 
from diffraction slots or from the mouth 
will not combine with the forward prop-
agating wave in a linear manner. The 
result will be higher distortion, and a 
nonlinear load for the driver. A driv-
er working into a nonlinear load will 
not perform at its best, but will produce 
higher distortion levels than it would 
under optimum loading conditions45.

Directivity of the horn also plays a role 
in the total distortion performance46. If 
the horn does not have constant direc-
tivity, the harmonics, because they are 
higher in frequency, will be concentrated 
toward the axis, while the fundamen-
tal spreads out more. This means that 
distortion will be higher on-axis than 
off-axis.

HIGHER ORDER MODES
At low frequencies, you can consider 
wave transmission in most horns as one-
dimensional (1P waves). When the wave-
length of sound becomes comparable 
to the dimensions of the horn, however, 
cross reflections can occur. The mode 
of propagation changes from the sim-
ple fundamental mode to what is called 
higher order modes. The behavior of 
these modes can be predicted for the uni-
form pipe and the conical horn47, 48, 49,  
and it is found that they have cutoff fre-
quencies below which they do not occur. 

FIGURE 42: Level of harmonics at the throat for a sinu-
soidal mouth sound pressure level of 150dB, frequency 
sweep45.

FIGURE 43: Level of harmonics at the throat for a 1kHz sinusoi-
dal wave at the mouth, level sweep45.
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In 1925, Hoersch conducted a theo-
retical study of higher order modes in a 
conical horn, and calculated the equipres-
sure contours for two kinds of modes. 
The results (Fig. 44) show the equipres-
sure contours including both the radial 
and non-radial vibrations. The left part of 
the figure shows a pattern that resembles 
what Hall measured in a conical horn 
(Fig. 16). For a flaring horn such as the 
exponential, however, the higher order 
modes will occur at different frequencies 
at different places in the horn8.

Higher order modes will also be gen-
erated by rapid changes in flare, such 
as discontinuities, so the slower and 
smoother the horn curvature changes, 
the less the chance for generating higher 
order modes.

The effect of the higher order modes 
is to disturb the shape of the pressure 
wave-front, so that directivity will be 
unpredictable in the range where the 
modes occur. According to Geddes, they 
may also have a substantial impact on the 
perceived sound quality of horns50.

CLOSING REMARKS
In this article, I have tried to present 
both classical and modern horn theory in 
a comprehensive way. A short article like 
this can never cover all aspects of horns. 
But I hope it has provided useful infor-
mation about how horns work, maybe 
also shedding light on some lesser known 
aspects and research.

Finally, I would like to thank Thomas 
Dunker and David McBean for proof-
reading, discussion, and suggestions.    
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