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Abstract—In this paper, we want to introduce experimental
economics to the field of data mining and vice versa. It continues
related work on mining deterministic behavior rules of human
subjects in data gathered from experiments. Game-theoretic
predictions partially fail to work with this data. Equilibria also
known as game-theoretic predictions solely succeed with experi-
enced subjects in specific games – conditions, which are rarely
given. Contemporary experimental economics offers a number of
alternative models apart from game theory. In relevant literature,
these models are always biased by philosophical plausibility
considerations and are claimed to fit the data. An agnostic
data mining approach to the problem is introduced in this
paper – the philosophical plausibility considerations follow after
the correlations are found. No other biases are regarded apart
from determinism. The dataset of the paper “Social Learning in
Networks” by Choi et al 2012 is taken for evaluation. As a result,
we come up with new findings. As future work, the design of a
new infrastructure is discussed.
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I. INTRODUCTION

There are many scientific disciplines promising to predict
outcomes of pugnacious, social and economical interactions
of humans on the granularity level of individual decisions
[1]. One of them is game theory, where people are assumed
to be intelligent and autonomous, and to act pursuant to
their existing preferences. It is important to underline that
game theory is a mathematical discipline, whose task was
never to define human preferences, but to calculate based on
their definition. A preference is an order on outcomes of an
interaction. One can be regarded as rational, if one always
makes decisions, whose execution has referred to subjective
estimation the most preferred consequences [2], [3]. The
level of intelligence determines the correctness of subjective
estimation. Beyond justifying own decisions, rationality is
a base for predictions of other people’s decisions. If the
concept of rationality is satisfied, and applied mutually, and
even recursively in a human interaction, then the interaction
is called strategic. Game is a notion for the formal structure
of a concrete strategic interaction [4]. A definition of a
game consists of a number of players, their preferences,
their possible actions and the information available for
the actions. A payoff function can replace the preferences
under assumed payoff maximization. The payoff function

defines each player’s outcome depending on his actions, other
players’ actions and random events in the environment. The
game-theoretic solution of a game is a prediction about the
behavior of the players also known as an equilibrium. The
basis for an equilibrium is the assumption of rationality.
Deviating from an equilibrium is outside of rationality,
because it does not maximize the payoff according to the
formal definition. There are games, which have no equilibria.
At least one mixed strategies equilibrium is guaranteed in
finite games [5].

In common language, the notion of game is used for
board games or video games. In game-theoretic literature, it is
extended to all social, economical and pugnacious interactions
among humans. A war can be simplified as a board game.
Some board games were even developed to train people, like
Prussian army war game ‘Kriegspiel Chess’ [6] for their
officers. We like it to train in order to perform better in
games [7]. In most cases, common human behavior in games
deviates from game-theoretic predictions [8], [9]. One can
say without any doubt that if a human player is trained in a
concrete game, he will perform close to equilibrium. But, a
chess master is not necessarily a good poker player and vice
versa. On the other side, a game-theorist can find a way to
compute an equilibrium for a game, but it does not make a
successful player out of him. There are many games we can
play; for most of them, we are not trained. That is why it
is more important to investigate our behavior while playing
general games than playing a concrete game on expert level.
Conducting experiments for gathering data of human game
playing is called experimental economics.

Although general human preferences are a subject of
philosophical discussions [10], game theory assumes that they
can be captured as required for modeling rationality. Regarding
people as rational agents is disputed at least in psychology,
where even a scientifically accessible argumentation exposes
the existence of stable and consistent human preferences as
a myth [11]. The problems of human rationality can not be
explained by bounded cognitive abilities only. ‘... people
argue that it is worth spending billions of pounds to improve
the safety of the rail system. However, the same people
habitually travel by car rather than by train, even though
traveling by car is approximately 30 times more dangerous
than by train!’[12, p.527–530] Since the last six decades
nevertheless, the common scientific standards for econometric
experiments are that subjects’ preferences over outcomes



can be insured by paying differing amounts of money [13].
However, insuring preferences by money is criticized by the
term ‘Homo Economicus’ as well. It is even logically obvious
that researchers, who claim that monetary preferences win
over other preferences, can not be trusted as scientists – they
do not care about anything but money.

The ability of modeling other people’s rationality and
reasoning as well corresponds with the psychological term
‘Theory of Mind’ [14], which lacks almost only in the cases
of autism. For experimental economics, subjects as well as
researchers, who both are supposed to be non-autistic people,
may fail in modeling of others’ minds anyway. In Wason task
at least, subjects’ reasoning does not match the researchers’
one [15]. Human rationality is not restricted to capability for
science-grade logical reasoning – rational people may use no
logic at all [16]. However, people also make serious mistakes
in the calculus of probabilities [17]. Even in mixed strategy
games, where random behavior is of a huge advantage, the
required sequence of random decisions can not be properly
generated by people [18]. Due to bounded cognitive abilities,
every human ‘random’ decision depends on previous ones and
is predictable in this way. In ultimatum games [9, S. 43ff],
the former economists’ misconception of human preferences
is revealed – people’s minds value fairness additionally to
personal enrichment. Our minds originated from the time,
when private property had not been invented and social values
like fairness were essential for survival.

From the view point of data miners fascinated by
human behavior, the sizes of datasets originated from social
networks predominate the ones from experimental economics
by orders of magnitude [9]. Nevertheless, analyzing data
from experimental economics has the same importance for
understanding human psychology as studying Escherichia for
understanding human physiology. Data from experimental
economics has the advantage of originating from simple and
controlled human interactions.

In experimental economics, the models are first constructed
by philosophical plausibility considerations and then are
claimed to fit the data. In this work, we reverse the order
of common research in experimental economics. We follow
the slogan ‘existence precedes essence’ – the philosophical
plausibility considerations follow after the correlations and
regularities are found. For these needs, we analyze the dataset
of the paper ”Social Learning in Networks” by Choi et al
2012 [19]. The only assumption about human behavior is its
determinism.

The next section summarizes related work on data mining
approaches and economical models. Then, the experiment
setup and the gathered data are introduced. Before extracting
rules of behavior, we explain the reasons for the assumption
of determinism. The results and their interpretations follow
afterwards. A suggestion for more efficient research on human
behavior is made in future work. Summary and discussion
conclude this paper.

II. RELATED WORK

A similar approach is already explored on two datasets –
a zero-sum game of mixed strategies and an ultimatum game
[20]. For both datasets, extracted deterministic regularities
outperformed state-of-art models. It was shown that some

regularities can be easily verbalized, what underlines their
plausibility.

A very comprehensive gathering of works in experimental
psychology and economics on human behavior in general
games can be found in [21]. Quantal response equilibrium
became popular as a model for deviations from equilibria
[22]. It is a parametrized shift between mixed strategies
equilibrium and an equal distribution. The basic idea for
quantal response equilibrium is the concept of trembling hand
– people make mistakes with certain probability. Quantal
response equilibrium was used to model the dataset for our
work [19]. Quantal response models could achieve significant
p-value. Unfortunately, the Akaike information criterion [23]
was not calculated to judge the trade-off between fit quality
and model complexity.

III. SOCIAL LEARNING IN NETWORKS

The paper [19], whose underlying dataset we use, addresses
the problem of social learning. Social learning is described as
the process of acquiring knowledge by observation of other
players’ actions. The experimentators created a basic scenario
to gather relevant data of human behavior. The game of this
scenario requires three players. Players have to choose between
two actions −1 or 1. The knowledge, which has to be acquired
by social learning is the state of environment, which is either
−1 or 1. At the beginning of the game, every player might
get one single private signal −1 or 1, which is equal to the
state of environment at probability 2

3 and is the opposite at
probability of 1

3 . There are three information levels – ‘low’,
‘high’ and ‘full’, which denote the probabilities of providing
a signal as 1

3 , 2
3 and 1. A round of this game lasts for 6 turns.

In every turn, each player simultaneously chooses an action,
which should reveal the true state of the environment. From
the 6 turns one is randomly chosen and if a player guessed it
right in this turn, a constant payoff of $2 is paid. Nothing is
paid otherwise.

After first and all further turns, a player might be able
to observe another player’s action. There are three types of
networks – ‘complete’, ‘circle’ and ‘star’, which determine
eligibility for observation. Fig.1 shows these three types.
Arrows point from the observed to the observer. There are
no more signals sent than the one in the beginning of a
round. Every round, the state of the environment is chosen
independently. Undergrad students at New York University
were recruited as subjects for this experiment. All subjects
were not previously trained on this game, but were carefully
instructed about its rules and structure.

In order to calculate all equilibria of this game, one needs
to construct its extensive form – a tree of depth 10 and
branching factor up to 8. Since this game includes hidden and
simultaneous actions, it is a game of imperfect information.
It can be solved using the game-theoretic package GAMBIT
[24]. The resulting equilibria are quite intuitive and are drafted
hereafter. If a player makes a random decision or chooses
always −1 or 1, he gets in average $ 1

2 ∗ 2 = 1 per round. If
a signal is available and is copied as his decision, he gets
in average $ 2

3 ∗ 2 = 1.33 per round. In the complete network
under full information, players can raise their average payoff
up to $1.46 per round, if they, additionally to following own
signal in the first turn, follow the median of the last turns



Fig. 1. Network types with players A, B and C. Arrows point from the
observed to the observer.

TABLE I. NUMBER OF SUBJECTS’ GROUPS FOR 9 GAME
CONFIGURATIONS.

Information/ Low High Full
Network type

Complete 6 5 6

Circle 5 6 6

Star 6 6 6

decisions in subsequent turns. If a player can observe only one
of other players, he either follows his own signal or, in the case
of absent signal, follows the observed player’s decision. If a
player did not get a signal, but can observe two other players,
he follows their decisions, if these are identical.

The described solution is valid for subjects ignorant of
fellows’ payoffs, what rarely happens with humans. There are
numerous works like [25], which underline the claim that other
players’ payoff matters. In [26], it is even shown that the
difference between payoffs is more important than the absolute
value. Therefore, subjects might not only concentrate on their
own payoff, but be driven by pugnacity or graciousness.

IV. DATASET

Table I shows the 3× 3 = 9 game configurations with
available data. From 18 participating subjects, 6 groups of
3 members are created. Every group plays 15 rounds with
6 turns for almost every game configuration. This makes
3∗15∗6 = 270 human decisions from one group playing one
of the game configurations. Summing the numbers from table
I and multiplying them by 270 results the overall number of
single human decision in this dataset, which is 14040 samples.
In a round, a player makes sequence of 6 decisions. A signal
is provided in 1593 decision sequences and absent in 747
decision sequences. The decision sequences are missing only
in rounds of ‘high’ or ‘low’ information.

V. ASSUMPTION OF DETERMINISM

Modeling human behavior outside of game playing with
human subjects should not be confused with prediction
algorithms of artificial players. Quite the contrary, artificial
players can manipulate the predictability of human subjects by
own behavior. For instance, an artificial player, which always
throws ‘stone’ in roshambo, would success at predicting
a human opponent always throwing ‘paper’ in reaction.
Otherwise, if an artificial player maximizes its payoff based
on opponent modeling, it would face a change in human
behavior and have to deal with it. This case is more complex
than a spectator prediction model for an ‘only-humans’
interaction. This work is restricted on modeling behavior

TABLE II. DECISION MAKING IN THE FIRST TURN WITH PROVIDED
SIGNAL.

Signal/ −1 1
Decision

−1 757 51

1 42 743

without participating.
Human behavior can be modeled as either deterministic or

non-deterministic. Although human subjects fail at generating
truly random sequences as demanded by mixed strategies
equilibrium, non-deterministic models are especially used in
case of artificial players in order to handle uncertainties.

‘Specifically, people are poor at being random and poor at
learning optimal move probabilities because they are instead
trying to detect and exploit sequential dependencies. ... After
all, even if people don’t process game information in the
manner suggested by the game theory player model, it may
still be the case that across time and across individuals,
human game playing can legitimately be viewed as (pseudo)
randomly emitting moves according to certain probabilities.’
[27] In the addressed case of spectator prediction models, non-
deterministic view can be regarded as too shallow, because
deterministic models allow much more exact predictions.
Non-deterministic models are only useful in cases, where
a proper clarification of uncertainties is either impossible
or costly. To remind, deterministic models should not be
considered to obligatory have a formal logic shape.

VI. RESULTS OF RULE EXTRACTION

In the first turn of every round for all network types
(2340 samples), players have no history to consult for their
decisions. The inputs, which could impact their choice, are the
round number, the network type, own position in the network,
the information level and the signal provided. Correlation
coefficients to the decision are calculated for these inputs.
The highest correlation of 0.88329 with the decision results
for the signal if such is provided (1593 samples). The second
highest correlation of 0.03703 results for the network type and
is insignificant. Therefore, the decision in the first turn has only
the provided signal as a possible cause.

In the first turn, the rational choice is to copy the signal
as own decision, if players are only interested in their own
payoff. But the data proves that subjects deviate from the
given signal in 5.8% of cases. Table II displays the distri-
butions of decisions in the first turn of every round for all
network types. The Cohen’s Kappa [28] between signal and
decision is 0.883 – subjects deviate almost symmetrically from
the egoistic rationality. A possible assumption could be that
subjects commit a fallacy and try to predict the randomly
chosen current state from previous rounds. Indeed, in the
samples for the first rounds only and with provided signals
(106 samples), the deviation from rational choice is slightly
lower at 3.8%. Since p-value according to the Fischer’s exact
test [29] is 0.5174 between the first rounds and the rest rounds,
the statistical significance of this difference can not be claimed
due to insufficient data. For the next results, the deviation of
5.8% and the Kappa of 0.8832 are taken as the upper bound for
model correctness. Another interpretation of the deviation from



TABLE III. DECISION MAKING IN THE FIRST TURN WITHOUT
PROVIDED SIGNAL (NUMBER OF −1/ALL).

Information/ low high sum
Network type

complete 109/176(62%) 58/84(69%) 167/260(64%)

circle 77/146(53%) 45/86(52%) 122/232(53%)

star 123/184(67%) 39/71(55%) 162/255(64%)

sum 309/506(61%) 142/241(59%) 451/747(60%)

TABLE IV. DECISION MAKING IN THE SECOND TURN; COMPLETE AND
FULL INFORMATION (270 SAMPLES).

Signal −1 1

Last turns decisions’ median/ −1 1
Decision

−1 145 11 131 25

1 23 91 11 103

egoistic rationality by provided signal in the first turn could
be an attempt to sabotage other players’ payoffs as driven by
pugnacity.

For the cases, where neither the signal nor the history
is provided (747 samples), players prefer to choose −1 in
60% of cases. For the network type ‘circle’ (232 samples),
the proportion of −1 is 53% and significantly defers (p-
value is 0.0046) from the rest of network types, which stay
around 64%. In contrast, there is no significant difference
between ‘low’ and ‘high’ information. Table III summarizes
the results – there is no ‘complete’ information included,
because ‘complete’ means that the signal is always provided.
For the first round (50 samples), the proportion of −1 is 78%
and defers significantly (p-value is less than 0.0001) from
the rest. We can assume that players prefer −1 rather than
a random choice in the case they don’t have any information.
This preference might be interpreted as an erroneous attempt to
establish cooperation by communicating missing knowledge. It
can also be interpreted as human aversion to random decision
making.

Since the data shows that a player’s decision in the first
turn is equal to the signal at probability of 94.2%, it can
be claimed that if this deviation intends sabotage, then it is
successful. Even in the rounds with complete network and full
information (270 samples), the probability of the first turns
decisions’ median being equal to the actual state drops from
74% to 68% due to this deviation from egoistic rationality.
And the 68% are insignificantly different to 67% probability
of signal being uncompromised. That means that a player has
no incentive to switch from following the signal to observing
other players, even if they are all observable and supplied with
signals. In fact, the signal has a correlation of 0.7414 with
second turns decisions and the last turns median has almost
the same correlation of 0.7352. Table IV shows the confusion
matrices of the decision in the second turn with most correlated
inputs. If the signal and the last turns median are equal (
208 samples), players don’t follow them at probability of only
1.9%.

Fig.2 shows the correlations of three different input
types with the decision in dependence from turn number.
Although it is futile for the players to follow other players’
decision rather than the own signal, the correlation to the signal
drops after the first turn. On the other side, the correlation
to the observed players’ decisions grows significantly. The
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Fig. 2. Signal is provided (1593 samples); correlations between inputs and
the decision. Own previous decision, which is maximally correlated to the
actual decision, is the last one except in the 6th turn, where it is next-to-last.
From the observed decisions, the last one has always the highest correlation.

deviation from egoistic rationality has the consequence that
the correlation between state and the signal is in all turns
higher than the correlation to the players’ decisions, which
are supplied by a signal (Fig.4). Especially in the second turn,
the correlation with actual state is significantly lower, what a
portion of signal supplied players are successfully sabotaged
by observed decisions.

Fig.3 shows significantly high correlation of subjects’ de-
cisions with observed decisions in the case of absent signal.
Following observed decisions causes a significant correlation
with the actual state after the first turn (Fig.4). From the other
side, the correlation to the own decision in the first turn is
also high, although this first turns decision does not have any
reasonable basis without a signal.

Fig.5 and 6 shows the results of rule extraction using
JRip algorithm [30]. This algorithm creates disjunctive sets of
logical rules, which can be easily verbalized. Cross validation
is a well known procedure to estimate model’s generalization
– the model’s performance on unseen data. The quality of
a fit is less meaningful. Generalization correctness is always
significantly higher than the null hypothesis except for the first
turn without provided signal. The null hypothesis is a perma-
nent choice of the majority class. Therefore, its correctness
equals the frequency of this class. The same procedure that
applies to estimation of correctness is applied to Kappa statics.
The generalization errors are significantly higher for players
without provided signal especially in the beginning of a round.
This can be explained by hidden inputs, which determines the
behavior without provided signal. Nevertheless, we can claim
that generalizing deterministic rules deliver a good model for
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Fig. 3. Signal is not provided (747 samples); correlations between inputs
and the decision. Own previous decision, which is maximally correlated to
the actual decision, is the last one except the turns after 3rd, where it is
next-to-last. From the observed decision, the last one has always the highest
correlation.

TABLE V. THE SET OF DERIVED RULES FOR THE 5TH TURN AND
AVAILABLE SIGNAL.

[(Own decision in turn 3 =−1) 695 samples,
∧(Own decision in turn 4 =−1)→−1] 6.3% error

∨
[(Own decision in turn 3 =−1) 28 samples,
∧(Signal =−1)∧ (Player = B)→−1] 21% error

∨
[(Own decision in turn 3 =−1)∧ (1st observed in turn 4 =−1) 15 samples,
∧(GType = star)→−1] 27% error

∨
[(Own decision in turn 4 =−1)∧ (Own decision in turn 2 = 1) 5 samples,
∧(Player =C)∧ (Round ≤ 7)∧ (Observed in turn 2 =−1)→−1] 0% error

∨
[(Observed in turn 3 =−1)∧ (Own decision in turn 3 =−1) 6 samples,
∧(Round ≤ 7)∧ (Round ≥ 5)∧ (Signal =−1)→−1] 0% error

∨
[(Own decision in turn 4 =−1)∧ (Observed in turn 3 =−1) 25 samples,
∧(Player = B)→−1] 40% error

∨
[(Own decision in turn 4 =−1)∧ (Own decision in turn 1 =−1) 12 samples,
∧(Player =C)→−1] 8.3% error

∨
[→ 1] 807 samples,

8.8% error

human behavior in this game.
Finally, we list a set of derived rules for the 5th turn and

available signal. Every rule has a number of samples, which
satisfy its conditions, and a error on the data V.
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Fig. 4. Correlation of the real state to the decision in general (2340 samples),
with and without provided signal. In comparison, correlation between signal
and real state is 0.347. Under 0.058, correlations are insignificant at 95%.
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Fig. 5. Generalization and fit correctness for rule extraction. The null
hypothesis choosing the majority decision mostly results correctness under
53%.

VII. FUTURE WORK

During the work on this paper, we confronted the time consuming
requesting, selection and reformatting of data. Unfortunately, there is
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Fig. 6. Generalization and fit Kappa for rule extraction.

no online portal, where most of the datasets are offered in a common
format. This is an issue, which we will address in the future. Like
in the field of bioinformatics, common formats are an important
part of an interdisciplinary research infrastructure and are needed to
accelerate the progress [31].
As for methodological aspects of Machine Learning in the context of
Experimental Economics, we would like to use the advanced pattern
mining techniques for economic game data analyses. For example, in
papers [32], [33] was made an attempt to use sequential patterns and
similarity dependencies on pattern structures for video game players’
behaviour analysis, in particular sequential attribute dependencies
might be a tool of choice. We will try to apply sequential pattern
mining in a supervised task, where the outcome of a game (or a turn)
is a target attribute [34], [35] to see which patterns better generalize
the user behaviour. These experiments are able not only to broad the
tools of experimental economics, but also help to reveal potentially
new knowledge of human behaviour in games based on sequential
pattern description.

VIII. CONCLUSION

In this paper, data analysis revealed a strong hint of pugnacious
behavior in a social learning scenario. This finding forces to rethink
assumption of egoistic preferences. Second, derived deterministic
rules generalize human behavior and significantly outperform null
hypothesis hereby. And finally, we suggest an interdisciplinary
infrastructure to introduce more efficiency to the research on the
combined field of experimental economics and machine learning.
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