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Abstract. The objective in this study is to investigate the
influence of the spatial resolution of the rainfall input on
the model calibration and application. The analysis is car-
ried out by varying the distribution of the raingauge network.
A meso-scale catchment located in southwest Germany has
been selected for this study. First, the semi-distributed HBV
model is calibrated with the precipitation interpolated from
the available observed rainfall of the different raingauge net-
works. An automatic calibration method based on the com-
binatorial optimization algorithm simulated annealing is ap-
plied. The performance of the hydrological model is ana-
lyzed as a function of the raingauge density. Secondly, the
calibrated model is validated using interpolated precipitation
from the same raingauge density used for the calibration as
well as interpolated precipitation based on networks of re-
duced and increased raingauge density. Lastly, the effect of
missing rainfall data is investigated by using a multiple lin-
ear regression approach for filling in the missing measure-
ments. The model, calibrated with the complete set of ob-
served data, is then run in the validation period using the
above described precipitation field. The simulated hydro-
graphs obtained in the above described three sets of exper-
iments are analyzed through the comparisons of the com-
puted Nash-Sutcliffe coefficient and several goodness-of-fit
indexes. The results show that the model using different rain-
gauge networks might need re-calibration of the model pa-
rameters, specifically model calibrated on relatively sparse
precipitation information might perform well on dense pre-
cipitation information while model calibrated on dense pre-
cipitation information fails on sparse precipitation informa-
tion. Also, the model calibrated with the complete set of ob-
served precipitation and run with incomplete observed data
associated with the data estimated using multiple linear re-
gressions, at the locations treated as missing measurements,
performs well.
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(tadas@ucsd.edu)

1 Introduction

Precipitation data is one of the most important inputs re-
quired in hydrological modeling and forecasting. In a
rainfall-runoff model, accurate knowledge of precipitation is
very essential for accurately estimating discharge. This is
due to that fact that representation of precipitation is impor-
tant in determining surface hydrological processes (Syed et
al., 2003; Zehe et al., 2005). Beven (2001) noted that no
model, however well founded in physical theory or empiri-
cally justified by past performance, will be able to produce
accurate hydrograph predictions if the inputs to the model
do not characterize the precipitation inputs. Precipitation is
governed by complicated physical processes which are inher-
ently nonlinear and extremely sensitive (Bárdossy and Plate,
1992). Precipitation is often significantly variable in space
and time within a catchment (Krajewski et al., 2003). Singh
(1997) provides detailed hydrological literature on the effect
of spatial and temporal variability in hydrological factors on
the stream flow hydrograph. Wilson et al. (1979) indicated
that the spatial distribution and the accuracy of the rainfall
input to a rainfall-runoff model influence considerably the
volume of storm runoff, peak runoff and time-to-peak. Sun
et al. (2002) demonstrated that errors in storm-runoff esti-
mation are directly related to spatial data distribution and the
representation of spatial conditions across a catchment. They
found that the accuracy of storm-runoff prediction depends
very much on the extent of spatial rainfall variability. How-
ever, Booij (2002) showed that the effect of the model resolu-
tion on extreme river discharge is much higher compared to
the effect of the input resolution. Bormann (2006) indicated
that high quality simulation results require high quality input
data, but not necessarily always highly resolved data.

Raingauges are fundamental tools that provide an estimate
of rainfall at a point. Generally, point measurements of rain-
gauge accumulations are distributed in space over the catch-
ment by interpolation techniques (e.g., kriging, Thiessen
polygons, and inverse distance method). A large number
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of earlier studies investigated the influence of the density
of the raingauge network on the simulated discharge, with
both real and synthetic precipitation and discharge data sets
(Krajewski et al., 1991; Peters-Lidard and Wood, 1994; Seed
and Austin, 1990; Duncan et al., 1993; St-Hilarie et al.,
2003). Michaud and Sorooshian (1994) observed that in-
adequate raingauge densities in the case of the sparse net-
work produced significant errors in the simulated peaks in
a midsized semi-arid catchment. They also found consider-
able consistent reductions in the simulated peaks due to the
spatial averaging of rainfall over certain spatial resolution.
Many researchers have reported the effect of raingauge net-
work degradation on the simulated hydrographs (e.g., Brath
et al., 2004; Dong et al., 2005). More recently, Anctil et
al. (2006) showed that model performance reduces rapidly
when the mean areal rainfall is computed using a number
of raingauges less than a certain number. They also ob-
served that some raingauge network combinations provide
better forecasts than when all available raingauges were used
to compute areal rainfall. Nevertheless, inadequate represen-
tation of spatial variability of precipitation in modeling can
be partially responsible for modeling errors. This may also
lead to the problem in parameter estimation of a conceptual
model. Chaubey et al. (1999) found large uncertainty in esti-
mated model parameters when detailed variations in the input
rainfall were not taken into account. Oudin et al. (2006) ob-
served that random errors in rainfall input considerably affect
model performance and parameter values, although, model
results were nearly insensitive to random errors in potential
evapotranspiration input. They also indicated that the sensi-
tivity of a rainfall-runoff model to input errors might depend
partially on the model structure itself. Chaplot et al. (2005)
investigated the effect of the accuracy of spatial rainfall infor-
mation on the modeling of water, sediment, and NO3-N loads
for two medium sized catchments under a range of climates,
surface areas and environmental conditions. They observed
that at both catchments, runoff and nitrogen fluxes are var-
ied only slightly with decreasing gauge concentration. They
argued that model performance is only slightly affected by
data errors because they are able to adjust their parameters
in order to compensate for input errors within a reasonable
range.

Therefore, it may be of interest to investigate the results
of the simulations obtained with the rainfall input when the
model is parameterized according to a different type of input
data. In fact, it is, frequently the case that a raingauge net-
work changes due to an addition or subtraction of raingauges.
The raingauge network can be strengthened by the addition
of new instruments or by using weather radar, so that a more
detailed representation of rainfall is allowed, but for calibra-
tion purposes, past observations are available only over the
original, less numerous measuring points. Conversely, in the
case of an operational flood forecasting system, the oppo-
site situation may occur. In the flood forecasting system, the
rainfall-runoff model is usually calibrated using all the avail-

able flood events and precipitation data. However, during the
operational forecasting time, the precipitation data from all
past observation stations may not be available due to a mal-
functioning of a few of the observations in the network or the
observation data may not be available online. In such cases, it
is important to understand if the parameters calibrated using
the rainfall coming from one type of network have the abil-
ity to represent the phenomena governing the rainfall-runoff
process with the input provided by the different configuration
of the raingauge network.

Therefore, the aim of this paper is to investigate the influ-
ence of rainfall observation networks on model calibration
and application. A method based on the combinatorial op-
timization algorithm simulated annealing (Aarts and Korst,
1989) is used to identify a uniform set of locations for a par-
ticular number of raingauges. First, the semi-distributed con-
ceptual rainfall-runoff model HBV is used to investigate the
effect of the number of raingauges and their locations on the
sensitivity of the hydrological model results. The hydrolog-
ical modeling performances of the networks are being ana-
lyzed through the comparison of Nash-Sutcliffe coefficient
and other goodness-of-fit indices. Secondly, the influence of
the rainfall observation network on model calibration and ap-
plication is examined. This study seeks to determine whether
the parameters calibrated using the rainfall coming from one
type of network have the ability to represent the phenom-
ena governing the rainfall-runoff process with the input pro-
vided by a different configuration of the raingauge network.
The model is calibrated using precipitation interpolated from
different raingauge networks. The calibrated model is then
run for the validation period using the precipitation obtained
from the raingauge network, which was not used for the cali-
bration. Lastly, the simulation experiments are being carried
out to analyze the reliability of supplementing missing pre-
cipitation measurements used for the calibration with data
estimated using a multiple linear regression and running the
model using that precipitation combined with available ob-
served precipitation.

2 The study area and data

The upper Neckar catchment, located in southwest Germany,
was selected as test catchment. The study area covers an
area of approximately 4000 km2. The study catchment area
was divided into thirteen subcatchments depending on the
available discharge gauges (Fig. 1).

The sizes of different subcatchments of the upper Neckar
catchment are summarized in Table 1. The elevation for
the catchment ranges from about 250 m a.s.l. to around
1000 m a.s.l., with a mean elevation of 546 m a.s.l. Slopes
in general are mild; approximately 90% of the area has
slopes varying from 0◦ to 15◦. Though slopes in some ar-
eas in the Swabian Jura or in the Black Forest may have
values up to 50◦. The physiographical factors considered
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A. Bárdossy and T. Das: Rainfall network on model calibration and application 79Fig. 1 Study area: Upper Neckar catchment showing different subcatchments and discharge 
gauges (Upper-right: location of the study domain in the state of Baden Württemberg in 
southwest Germany). 
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Fig. 1. Study area: Upper Neckar catchment showing different
subcatchments and discharge gauges (Upper-right: location of the
study domain in the state of Baden-Württemberg in southwest Ger-
many).

in this study were derived from different sources: (1) Dig-
ital Elevation Model with a spatial resolution of 50 m×50 m;
(2) a digitized soil map of the state of Baden-Württemberg
at the scale 1:200 000 and (3) Land use map (LANDSAT
satellite image for the year 1993) with a spatial resolution
of 30 m×30 m. Daily discharge data from 13 gauging sta-
tions was used for model evaluation. All data was provided
by the State Institute for Environmental Protection Baden-
Württemberg (LUBW). The daily precipitation total, daily
maximum and minimum temperature data distributed in and
around the study catchment were acquired from the German
Weather Service (DWD). The climate of the study area is
characterized by warm-to-hot summers with generally mild
winters. The coldest and hottest months in the study area are
January and July respectively. The daily mean air tempera-
ture in January is about−0.8◦C and in July is about 17◦C
according to the daily mean temperature records available
for the period from 1961 to 1990. The annual variation of
precipitation in the study area shows a multi-modal distribu-
tion. June and October are the wettest and driest months,
with monthly means of 126 mm and 64 mm respectively, ac-
cording to the daily amount of raingauge records available
for the period from 1961 to 1990. The mean annual precipi-
tation observed during this period is 908 mm. The study area
has experienced some land use transitions from crop land or
grass land to built-up area or industrial usages in the last sev-
eral decades (Samaniego, 2003). The use of land cover infor-
mation in the HBV model, applied in this study, is static. We
have used land use information from the LANDSAT satellite
image for the year 1993. The uncertainty might be intro-
duced due to this reason and should be explored, but it was
not considered in this study since it was not the primary aim.

Table 1. Summary of the sizes of the different subcatchments. The
table also contains the drainage area of each discharge gauges.

Gauging station (River)
Subcatchment Drainage
size [km2] area [km2]

1 Rottweil (Neckar) 454.65 454.65
2 Oberndorf (Neckar) 240.13 694.78
3 Horb (Neckar) 420.18 1114.96
4 Bad Imnau (Eyach) 322.94 322.94
5 Rangendingen (Starzel) 119.89 119.89
6 Tuebingen Blaesibg (Steinlach) 140.21 140.21
7 Kirchentellinsfurt (Neckar) 613.33 2311.33
8 Wannweil (Echaz) 135.26 135.26
9 Riederich (Erms) 169.84 169.84
10 Oberensingen (Aich) 178.18 178.18
11 Suessen (Fils) 345.74 345.73
12 Plochingen (Fils) 349.09 694.83
13 Plochingen (Neckar) 472.05 3961.49

2.1 Raingauge selection method and data preparation

The raingauges that have no missing measurements for the
period from 1961 to 1990 and are located within or up to
30 km from the study catchment were used as a basis of
complete raingauge network. The raingauge networks were
selected from the complete network, consisting of 51 rain-
gauges, using the combinatorial optimization algorithm sim-
ulated annealing (Aarts and Korst, 1989). The main idea be-
hind the raingauge selection algorithm is to identify a uni-
form set of locations for a particular number of raingauges
over the catchment. This means that for number of stations
objective functions consisting of the mean distance of the sta-
tion to the whole catchment and the minimum distance be-
tween the stations were considered. While the first objective
was minimized to get internal stations and the second ob-
jective was maximized so not to take stations that were very
close to each other. The selection algorithm was applied re-
peatedly to obtain optimal locations of different number of
raingauges. Seven networks consisting of different number
of raingauges ranging from 5 to 51 were obtained. Figure 2
shows the spatial distribution of the selected raingauge net-
works.

The basic inputs for the HBV model are precipitation,
air temperature and potential evapotranspiration. The point
measurements obtained from the selected raingauge net-
works were interpolated on a 1 km2 grid using the external
drift kriging method (Ahmed and de Marsily, 1987). The
networks were kept constant for each subcatchment during
the interpolation of meteorological variables. This means
that the weights were adjusted. For subcatchments some of
the weights might have become very small – in this sense
the number of raingauges with significant influence might be
smaller. Due to the fact that the selected rainfall networks are
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Fig. 2 Spatial distributions of selected raingauge networks. 
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Fig. 2. Spatial distribution of the selected raingauge networks.

uniformly dense over the whole catchment they are more or
less uniform for each subcatchment.

Note that the rate of increase of precipitation decreases
with increasing elevation. The square root of the topographic
elevation was assumed as a good approximation to account
for this variation and it was used as the drift variable for pre-
cipitation (Hundecha and B́ardossy, 2004). Because the tem-
peratures show a fairly constant lapse rate, topographic ele-
vation was used as the drift variable for interpolating the tem-
perature from the available point measurements. For precip-
itation the experimental variogram is calculated for each day
when the daily precipitation amount exceeds some threshold
values (maximum greater than 10 mm or mean greater than
5 mm). The experimental variogram is then fitted with theo-
retical variogram using automatic fitting procedure. The av-
erage variogram is used in the remaining days when the daily
precipitation amount is low. The average variogram is also

used through out the whole period for smaller network den-
sities (e.g., 5 raingauge network) as experimental variograms
should not be calculated from such small samples. For tem-
perature interpolation the average variogram is used for ev-
ery day. A combination of two theoretical variogram mod-
els, the spherical variogram and the pure nugget effect vari-
ogram (Kitanidis, 1997), is used in this study. Figure 3 shows
the average daily variance over each grid of the catchment.
The variance is calculated, using the interpolated precipita-
tion computed with the 51 raingagues, over the calibration
and validation periods. There is high variability in precipita-
tion in the northwest part, close to Black forest, and southeast
part, close to Swabian Alb, of the catchment. The temporal
variability of precipitation is non homogeneous, which might
influence the quality of interpolation and hydrological model
results.
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A. Bárdossy and T. Das: Rainfall network on model calibration and application 81Fig. 3 Average daily variance (mm2day-2) over each grid of the catchment. The variance is 

calculated, using the interpolated precipitation computed with the 51 raingague network over 

the period 1961-1990. 
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Fig. 3. Average daily variance (mm2day−2) over each grid of the
catchment. The variance is calculated, using the interpolated pre-
cipitation computed with the 51 raingagues for the period 1961-
1990.

The potential evapotranspiration was computed using the
Hargreaves and Samani method (Hargreaves and Samani,
1985) on the same grid used for the interpolation of mete-
orological variables.

Figure 4 depicts the average daily variance obtained us-
ing the averaged areal precipitation over the catchment, com-
puted with the selected network densities, for the simulation
period (1961–1990). As can be seen that the variability of
the interpolated precipitation decreases with the increasing
number of raingauges, but there is no change in the variabil-
ity beyond a certain number of raingauges. The reason for
this is that the contribution of individual stations to the areal
average is the higher if less number of stations are used for
interpolation. Thus, the interpolation using the smallest num-
ber of observations resembles the most variances calculated
for each single location.

3 Model and methods

The HBV model is a semi-distributed conceptual model
and was originally developed at the Swedish Meteorological
and Hydrological Institute (SMHI) (Bergström and Forsman,
1973). The area to be modeled is divided into a number of
subcatchments and each subcatchment is further divided into
a number of zones based on elevation, land use or soil type or
combinations of them. Snow accumulation and melt, actual
soil moisture and runoff generation processes are calculated
for each zone using conceptual routines. The snow accumu-
lation and melt routine uses the degree-day approach. Ac-
tual soil moisture is calculated by considering precipitation
and evapotranspiration. Runoff generation is estimated by a
non-linear function of actual soil moisture and precipitation.
The dynamics of the different flow components at the sub-
catchment scale are conceptually represented by two linear
reservoirs. The upper reservoir simulates the near surface

Fig. 4 Average daily variance (mm2day-2) of areally averaged precipitation vs. number of 

raingauges. The areal averaged precipitation is calculated using the interpolated precipitation 

obtained using different selected raingauge network for the period 1961-1990.  

 

24.0

25.0

26.0

27.0

28.0

29.0

30.0

31.0

32.0

33.0

0 10 20 30 40 50 6

Number of raingauges

A
ve

ra
ge

 d
ai

ly
 v

ar
ia

nc
e 

of
 a

re
al

ly
 

av
er

ag
ed

 p
re

ci
pi

ta
tio

n 
(m

m
2 da

y-2
)

0

 

  51 5 15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1

Fig. 4. Average daily variance (mm2day−2) of areally averaged
precipitation vs. number of raingauges. The variance is calculated,
using the interpolated precipitation computed with different rain-
gague networks for the period 1961–1990.

and interflow in the sub-surface layer, while the lower reser-
voir represents the base flow. Both reservoirs are connected
in series by a constant percolation rate. Finally, there is a
transformation function, consisting of a triangular weighting
function with one free parameter, for smoothing the gener-
ated flow. The flow is routed from one node to the other
of the river network by means of the Muskingum method.
Additional description on the HBV model can be found in
Lindström et al. (1997) and Hundecha and Bárdossy (2004).

For this study, we considered topographic elevation in
defining the zones. This is due to the reason that elevation
affects the distribution of the basic meteorological variables
such as precipitation and temperatures as well as the rate
of evaporation and snow melt and accumulation. Elevation
zones were defined using a contour interval of 75 m. The el-
evation of the study area varies from about 250 m to around
1000 m, so therefore a maximum of 10 elevation zones were
defined in each subcatchment. The mean daily precipitation
amount and the mean daily temperature were assigned as in-
put to each zone. The meteorological variables for each zone
were estimated as the mean of the interpolated values on the
regular grids of 1 km2 located within a given zone. The po-
tential evapotranspiration was also averaged over each zone
from the potential evapotranspiration calculated on 1 km2

grids located within a given zone.

3.1 Model calibration and simulations

The HBV model was calibrated using the interpolated pre-
cipitation obtained from the different raingauge networks.
Other input data, daily mean temperature and daily poten-
tial evapotranspiration, were kept constant for each calibra-
tion. The automatic calibration method based on the com-
binatorial optimization algorithm simulated annealing (Aarts
and Korst, 1989) was used to optimize the model parame-
ters. For this optimization, an objective function composed

www.hydrol-earth-syst-sci.net/12/77/2008/ Hydrol. Earth Syst. Sci., 12, 77–89, 2008
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of the Nash-Sutcliffe coefficient corresponding to daily and
annual time steps was maximized, while a reasonable range
was fixed to constrain model parameters. Note that the model
calibration and validation were performed using the daily
discharges at each subcatchment outlet (total number of sub-
catchments is 13). During the calibration, the model parame-
ters of the head water subcatchments were optimized before
the mixed subcatchments.

The standard split sampling model calibration procedure
was followed. The model calibration period runs from 1961
to 1970. The subsequent period up to 1990 was used to val-
idate the calibrated model. The interpolated precipitation,
based on daily recorded observations, from the different rain-
gauge networks was used to simulate the model discharges
for the calibration and validation periods. The meteorologi-
cal conditions do not differ strongly between the calibration
and validation periods for the same raingauge network.

3.2 Simulation comparison statistics

The simulation results obtained using different raingauge
networks were compared using the following different statis-
tical criteria: the Nash-Sutcliffe coefficient, the relative bias,
the peak error and the root mean squared error.

The Nash-Sutcliffe coefficient (R2
m) (Nash and Sutcliffe,

1970) is defined as

R2
m = 1 −

N∑
i=i

(Qs(ti) − Qo(ti))
2

N∑
i=1

(Qo(ti) − Qo)2

(1)

whereQo(ti) andQs(ti) are observed and simulated daily
discharge at time stepti respectively andQo is mean ob-
served daily discharge andN is the total number of time
steps.

The relative bias was computed to examine the model per-
formance with regard to its ability to maintain the water bal-
ance. Additionally the peak error was calculated to check the
model’s estimation capacity of the peak flow.

The relative bias (rel. bias) is defined as:

rel.bias=

N∑
i=1

(Qs(ti) − Qo(ti))

N∑
i=1

Qo(ti)

(2)

Accordingly, the peak error is defined based on the rela-
tive difference between the mean annual simulated peak dis-
chargeQs (max) and the mean annual observed peak discharge
Qo(max):

peak error=
Q̄s(max) − Q̄o(max)

Q̄o(max)
(3)

The root mean squared error (RMSE) was also calculated.

Further more, the mean model performance(R2
mm) is cal-

culated using the Nash-Sutcliffe coefficient values obtained
at the discharge gauges during the calibration and validation
periods.

R2
mm =

1

L

L∑
i=1

[R2
m(calibration)i + R2

m(validation)i]

2
(4)

where R2
m(calibration)i and R2

m(validation)i are Nash-
Sutcliffe coefficients during calibration and validation peri-
ods for gaugei andL is the total number of gauges.

Note that higher values ofR2
mm indicate better mean model

performance.
Models are not developed for reproducing known past ob-

servations. The purpose is to apply them under different
conditions (weather, climate or land use). Therefore model
quality should also be measured from this viewpoint. The
value of model parameters’ transferability (Tm) is computed
by subtracting the model performance for the validation pe-
riod from the model performance obtained in the calibration
period.

Tm= max
(
R2

m(calibration)i−R2
m(validation)i, 0

)
i=1,...,L

(5)

A better performance on the validation period could be con-
sidered as purely random, thus the difference is limited by
zero. Lower values ofTm indicate less loss of the model per-
formance in the validation period and better model parame-
ters’ transferability.

Additionally, the mean absolute error and root mean
squared error were calculated using the model simulated and
observed discharges for each annual maximum flood event.

4 Results and discussion

4.1 Model results using different raingauge densities

A summary of the model performance for the calibration and
validation periods for selected three gauges is shown in Ta-
ble 2. The model performances are shown for the gauges at
Horb (Neckar) and Suessen (Fils) because these two gauges
are representative gauges located in the upstream and down-
stream of the catchment and Plochingen (Neckar) are be-
ing the outlet of the catchment. The network consisting of
5 raingauges yields the minimum model performance both
the calibration and validation periods, whereas the highest
model performance was observed using the 20 raingauge net-
work for the gauge at Horb (Neckar) in the validation period.
Moreover, increasing the raingauge numbers above 20 did
not improve the model performance. The best model per-
formance in the validation period for Suessen (Fils) was ob-
served using the 15 raingauge network. On the other hand,
the best model performance for the Plochingen (Neckar) was
observed using the 30 raingauge network. This shows the in-
fluence of the spatial distribution of raingauges within each
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A. Bárdossy and T. Das: Rainfall network on model calibration and application 83

Table 2. Model performance using precipitation interpolated from different numbers of raingauges in the calibration and validation periods.

Number of
Calibration period

raingauges
Horb (Neckar) Suessen (Fils) Plochingen (Neckar)

R2
m Rel. bias Peak error RMSE R2

m Rel. bias Peak error RMSE R2
m Rel. bias Peak error RMSE

5 0.82 −0.05 −0.17 7.70 0.72 0.00 −0.14 3.33 0.84 −0.03 −0.06 20.54
10 0.83 0.04 −0.10 7.37 0.77 −0.02 −0.12 3.08 0.86 0.00 −0.10 18.80
15 0.86 0.01 −0.13 6.76 0.75 −0.02 −0.12 3.18 0.87 0.01 −0.10 18.53
20 0.86 0.02 −0.11 6.80 0.77 0.01 −0.10 3.03 0.87 0.00 −0.08 18.42
30 0.85 0.02 −0.08 6.86 0.77 −0.01 −0.11 3.02 0.88 −0.01 −0.12 18.59
40 0.85 0.02 −0.08 7.04 0.77 −0.03 −0.10 3.05 0.86 0.00 −0.07 18.97
51 0.84 0.04 −0.05 7.24 0.76 0.00 −0.12 3.11 0.86 −0.02 −0.08 19.13

Validation period
Horb (Neckar) Suessen (Fils) Plochingen (Neckar)

R2
m Rel. bias Peak error RMSE R2

m Rel. bias Peak error RMSE R2
m Rel. bias Peak error RMSE

5 0.81 0.06 −0.12 8.47 0.76 0.08 −0.19 3.03 0.84 0.05 −0.01 20.85
10 0.81 0.05 −0.11 8.61 0.79 0.09 −0.14 2.82 0.87 0.04 −0.09 19.20
15 0.83 0.09 −0.12 8.05 0.80 0.09 −0.19 2.76 0.87 0.07 −0.06 18.96
20 0.85 0.09 −0.12 7.99 0.79 0.13 −0.15 2.86 0.87 0.06 −0.06 18.99
30 0.84 0.09 −0.09 7.80 0.80 0.10 −0.17 2.78 0.89 0.05 −0.10 18.65
40 0.83 0.10 −0.09 7.99 0.79 0.09 −0.15 2.81 0.86 0.06 −0.06 19.35
51 0.82 0.11 −0.07 8.16 0.77 0.12 −0.16 2.93 0.87 0.04 −0.06 19.10

Fig. 5 Mean Nash-Sutcliffe coefficient calculated on the daily time step resulting from 

different raingauge networks for the calibration period (left panel) and validation period (right 

panel). The mean values are calculated from the Nash-Sutcliffe coefficients obtained at all 

gauges over the catchment. 
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Fig. 5. Mean Nash-Sutcliffe coefficient calculated on the daily time step resulting from different raingauge networks for the calibration
period (left panel) and validation period (right panel).

subcatchment. It seems that the hydrological model used
for this study can be well adjusted to the different precip-
itation observation densities. A higher spatial model reso-
lution might have lead to different results. The number of
raingauges within a subcatchment is not necessarily increas-
ing with the increase of the total number of stations. For
example, for Horb the number of stations within the catch-
ment is 5 for the 15 raingauge network and 6 for all denser
networks. It can be seen that all stations within the whole
catchments are included in all networks consisting of at least
20 raingauges (Fig. 2). The improvement in precipitation in-
terpolation seems to be very small, as expected, if raingauges
outside the investigation area are also considered. Thus, the
subsequent hydrological modeling cannot be improved.

Figure 5 shows the mean Nash-Sutcliffe coefficient calcu-
lated on the daily time step for the calibration and validation
periods. The mean values were calculated from the Nash-
Sutcliffe coefficients obtained at all gauges over the catch-
ment. The mean values were calculated to assess the model
performance on the calibration and validation periods sepa-
rately, and to check the model transferability.

A considerable deterioration in model performance was
observed when using the network consisting of 5 raingauges,
for both the calibration and validation periods (Fig. 5). The
mean performances also show that consideration of stations
located at far outside the catchment cannot improve the pre-
cipitation interpolation considerably so that it could be re-
flected through improved model performance.
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 1

Fig. 6 Seasonal Nash-Sutcliffe coefficients using the precipitation interpolated from different 

number of raingauges during the validation period for the gauges at Suessen (Fils) (left panel) 

and Plochingen (Neckar) (right panel).  
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Fig. 6. Seasonal Nash-Sutcliffe coefficients of the daily step using the precipitation interpolated from different number of raingauges during
the validation period for the gauges at Suessen (Fils) (left panel) and Plochingen (Neckar) (right panel).

Table 3. Mean model performance and parameters’ transferabil-
ity obtained using the precipitation interpolated from different rain-
gauge networks. The values are calculated from the Nash Sutcliffe
coefficients on daily time step at all the discharge gauges over the
catchment.

Number of Mean model Model parameters’
raingauges performance transferability

5 0.74 0.12
10 0.78 0.03
15 0.80 0.04
20 0.80 0.04
30 0.82 0.04
40 0.80 0.05
51 0.80 0.05

Table 3 represents the mean model performance and model
parameters’ transferability, calculated using the Eqs. (4) and
(5) respectively, corresponding to the different raingauge net-
works.

The mean transferability of the model is nearly constant
for all precipitation networks except the 5 raingauge case.
The reason might be the model resolution lead to an “over
fit” for this case. The low transferability values indicate that
the model parameters could be reasonably assessed if at least
10 precipitation stations were considered. A least value of
mean model performance was observed using the network
consisting of 5 raingauges.

There is a considerable difference in the seasonal variabil-
ity of precipitation; winter precipitation covers the area more
or less uniformly, whereas, convective rainfall in summer
leads to high spatial variability. Therefore a seasonal inves-
tigation of the model performances is reasonable. Figure 6
shows the seasonal model performance for the Suesen (Fils)
and Plochingen (Neckar) gauges.

Figure 6 indicates that the poorest model performance for

all raingauge densities was observed in summer. The results
corresponding to the 5 raingauge network are the least con-
clusive. All other networks lead to similar performances.
This is not surprising as external stations cannot capture local
convective events. A better performance could be expected
only from a denser internal network.

The purpose of modeling is often related to floods; there-
fore the model performance for large events is of special in-
terest. Subsequently event statistics were calculated for each
annual maximum flood event. Figure 7 shows the mean abso-
lute error and root mean squared error for the gauge at Horb
(Neckar).

The results show a considerable scatter. Differences in
the performance are mainly event dependent. On average,
the absolute error with respect to the annual maximum dis-
charges for the gauge at Horb (Neckar) ranges between 6.9%
and 8.4% using the precipitation interpolated from varying
raingauge networks. For the 5 and 10 station networks for
some events unusually bad performances could be observed.
In general the higher densities lead to slightly better model
results. The results support the findings corresponding to
the mean performance, specifically that improvements will
mainly be achieved by using all internal observations.

The simulations were not insensitive to the spatial variabil-
ity of the precipitation fields obtained using different number
of raingauges; the model results using interpolated precip-
itation from different raingauge networks did not produce
the same hydrograph (not shown). In general, this study
showed that using too coarse a raingauge network for esti-
mating the rainfall fields can give rise to remarkable poor
hydrological simulation results, even though, the simulation
results can not be improved further with addition of more
raingauges beyond a certain number. The results are in agree-
ment with other similar hydrological studies, for example
Brath et al. (2004) and Dong et al. (2005).
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Fig. 7 Event statistics for each annual maximum flood event using different raingauge networks 

during the validation period for the gauge at Horb (Neckar): mean absolute error (left panel) and 

root mean squared error (right panel). 
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Fig. 7. Event statistics for each annual maximum flood event using different raingauge networks during the validation period for the gauge
at Horb (Neckar): mean absolute error (left panel) and root mean squared error (right panel).

4.2 Influence of the rainfall observation network on model
calibration and application

In the following section, the aim of the simulation exper-
iment was to investigate the influence of the spatial reso-
lution of the rainfall input on the calibration of a concep-
tual model. First, the semi-distributed HBV model was cal-
ibrated with the precipitation interpolated from the available
observed rainfall of varying raingauge networks. The cali-
brated model was then run using the same precipitation used
for the calibration as well as interpolated precipitation based
on networks of reduced and increased raingauge density.

For example, the model was first calibrated using precipi-
tation interpolated from 10 and 20 raingauges. The calibrated
model using 10 raingauges was then run using precipitation
obtained from 20 raingauges for the validation period and
vice versa. This experiment is indicated in tables and fig-
ures, later on, as follows:10/10 is calibrated with 10 rain-
gauges and simulated with 10 raingauges,20/20is calibrated
with 20 raingauges and simulated with 20 raingauges,10/20
is calibrated with 10 raingauges and simulated with 20 rain-
gauges and20/10is calibrated with 20 raingauges and simu-
lated with 10 raingauges.

The model calibrated using less detailed precipitation (pre-
cipitation from 10 raingauges) slightly improves more often
when it was run using relatively more detailed precipitation
(precipitation from 20 raingauges) (Table 4). On the other
hand, the model performance obtained using precipitation
from 20 raingauges deteriorated when the same model was
run using precipitation obtained from 10 raingauges. Three
of the five subcatchments, shown in Table 4, demonstrate the
same pattern.

The parameter values, as noted by Brath et al. (2004),
may compensate for an incomplete representation of the pre-
cipitation field within a reasonable range. Yet, only pro-
vided the model parameters were updated by performing re-
calibration, for which the new input precipitation was esti-
mated from the reduced raingauges network. But there was

 1

Fig. 8 Nash-Sutcliffe coefficient obtained using different level of precipitation input 

information for the validation period for selected five gauges. 10/10: calibrated with 10 

raingauges and simulated with 10 raingauges; 20/20: calibrated with 20 raingauges and 

simulated with 20 raingauges; 10/20: calibrated with 10 raingauges and simulated with 20 

raingauges and 20/10: calibrated with 20 raingauges and simulated with 10 raingauges and 

20/20MulRgre indicates model calibrated with 20 raingauges and simulated with 20 

raingauges (rainfall estimated at 10 locations considered as missing measurements). 
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Fig. 8. Nash-Sutcliffe coefficient on the daily time step obtained
using different level of precipitation input information for the vali-
dation period for selected five gauges.

no such type of compensation for the second case when the
calibrated model using 20 raingauges was run using precipi-
tation obtained from the 10 raingauge network. This demon-
strates the inability of the 10 raingauges to adequately repre-
sent the precipitation field for the catchment.

The reason for bad performance with missing data is due
to possible systematic differences in precipitation. These can
occur due to different elevations or geographical exposition
of the whole dataset compared to the remaining stations. A
systematic under or overestimation should be avoided.

However, these can be reduced by a data filling algorithm.
The following simulation experiment was carried out in or-
der to investigate whether the estimated precipitation at rain-
gauges with missing values (for example offline stations only
used for model calibration), together with the precipitation
data from the remaining stations that were used during the
model calibration, has any benefit over the model operated
by precipitation from the reduced raingauges. As the first
step missing precipitation values are estimated using a mul-
tiple linear regression (Montgomery and Peck, 1982) based
on the long available common time series. The interpolation
was then carried out using external drift kriging treating the
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Table 4. Model performances using the input precipitation information obtained from different number of raingauges.

Rottweil Horb Suessen Plochingen Plochingen
(Neckar) (Neckar) (Fils) (Fils) (Neckar)

10/10

R2
m 0.74 0.81 0.79 0.82 0.87

Rel. bias −0.05 0.05 0.09 0.12 0.04
Peak error −0.23 −0.11 −0.14 −0.16 −0.09
RMSE 3.74 8.61 2.82 5.03 19.20

20/20

R2
m 0.78 0.85 0.79 0.81 0.87

Rel. bias 0.00 0.09 0.13 0.17 0.06
Peak error −0.07 −0.12 −0.15 −0.16 −0.06
RMSE 3.49 7.99 2.86 5.07 18.99

10/20

R2
m 0.74 0.82 0.78 0.80 0.88

Rel. bias −0.18 −0.03 0.13 0.19 0.01
Peak error −0.36 −0.25 −0.13 −0.12 −0.13
RMSE 3.75 8.10 2.91 5.22 18.06

20/10

R2
m 0.69 0.77 0.79 0.82 0.84

Rel. bias 0.13 0.19 0.09 0.10 0.08
Peak error 0.08 0.00 −0.16 −0.20 −0.01
RMSE 4.28 9.32 2.79 4.95 20.84

10/10: calibrated with 10 raingauges and simulated with 10 raingauges;20/20: calibrated with 20 raingauges and simulated with 20 rain-
gauges;10/20:calibrated with 10 raingauges and simulated with 20 raingauges and20/10:calibrated with 20 raingauges and simulated with
10 raingauges.

values estimated for the missing stations as uncertain data.
The model, calibrated with the precipitation data obtained
from 20 raingauges, was then run in the validation period us-
ing the precipitation field above described.

Figure 8 shows the model performance for selected five
gauges during the validation period using the different level
of input precipitation information. The data shown in Ta-
ble 4 is partly used to prepare Fig. 8 for easier comparison.
In the following tables and figures20/20MulRgre indicates
model calibrated with 20 raingauges and simulated with 20
raingauges (rainfall estimated at 10 locations considered as
missing measurements). The results from five gauges are
shown as they are representative and also these gauges are
wide spread in upstream and downstream over the catchment.

The model performed well when it was calibrated using
precipitation from 20 raingauges and was run with an incom-
plete observed data set combined with data generated using
the multiple linear regression technique at the locations of the
remaining 10 raingauges (Fig. 8). The reason for this is that
systematic differences of the rainfall fields are removed by
the multiple linear regressions. The similar results are also
observed in other subcatchments (not shown).

The performance for flood events was also investigated.
Figure 9 depicts the mean absolute error and root mean
squared error for the gauge at Rottweil (Neckar).

On average, the absolute error with respect to the an-
nual maximum discharges for the gauge at Rottweil (Neckar)

ranges between 6.8% and 8.2%. The highest error was ob-
served when the calibrated model using 20 raingauges was
run using 10 raingauges. The error reduced to 6.9% when
the calibrated model using 20 raingauges was run using 20
raingauges, however, with 10 raingauges of precipitation data
estimated using the multiple linear regression technique and
the remaining 10 from the observed data. This analysis also
supports that the missing measurements can and should be
supplemented using a data filling algorithm (in our case mul-
tiple linear regression) if additional precipitation information
was used for model calibration.

Models are also used for water management purposes, thus
their correct balances of different time periods are also of im-
portance. A summary of the Nash-Sutcliffe coefficients at a
7 day and 30 day time step in the validation period is shown
in Table 5. The Nash-Sutcliffe coefficients of the daily time
step for the same gauges are shown in Fig. 8. Regarding
modeling of runoff at higher time steps, the model perfor-
mance in terms of the Nash-Sutcliffe coefficient shows a sim-
ilar pattern as that shown in Fig. 8 at the daily time step. As
shown that the model performance improves at the higher ag-
gregation time steps for three of the five subcatchments and
slightly deteriorates for the catchments Suessen (Fils) and
Plochingen (Fils). The reason for this might be that the Fils
originates from a karstic area where subsurface catchments
might differ from the surface ones.
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Fig. 9 Event statistics for each annual maximum flood event during the validation period using 

precipitation obtained from different raingauge networks and estimated precipitation for the 

gauge at Rottweil (Neckar): mean absolute error (left panel) and root mean squared error (right 

panel). 10/10: calibrated with 10 raingauges and simulated with 10 raingauges; 20/20: 

calibrated with 20 raingauges and simulated with 20 raingauges; 10/20: calibrated with 10 

raingauges and simulated with 20 raingauges and 20/10: calibrated with 20 raingauges and 

simulated with 10 raingauges and 20/20MulRgre indicates model calibrated with 20 raingauges 

and simulated with 20 raingauges (rainfall estimated at 10 locations considered as missing 

measurements). 
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Fig. 9. Event statistics for each annual maximum flood event during the validation period using precipitation obtained from different
raingauge networks and estimated precipitation for the gauge at Rottweil (Neckar): mean absolute error (left panel) and root mean squared
error (right panel).

Table 5. Nash-Sutcliffe coefficients at 7 days and 30 days time step obtained using different level of precipitation input information for
selected five gauges for the validation period.

Gauge Number of raingauges
Nash-Sutcliffe coefficient

7 days time
step

30 days time
step

Rottweil (Neckar)
20/10 0.76 0.82
20/20MulRgre 0.86 0.90

Horb (Neckar)
20/10 0.80 0.82
20/20MulRgre 0.89 0.91

Suessen (Fils)
20/10 0.82 0.80
20/20MulRgre 0.82 0.80

Plochingen (Fils)
20/10 0.85 0.83
20/20MulRgre 0.85 0.82

Plochingen (Neckar)
20/10 0.88 0.90
20/20MulRgre 0.90 0.92

20/10: calibrated with 20 raingauges and simulated with 10 raingauges and20/20MulRgre indicates model calibrated with 20 raingauges
and simulated with 20 raingauges (rainfall estimated at 10 locations considered as missing measurements) (see text).

5 Conclusions

In this paper attempts have been made to investigate the in-
fluence of the spatial representation of the precipitation input,
interpolated from different raingauge density, on the calibra-
tion and application of the semi-distributed HBV model. The
precipitation input was interpolated using the external drift
kriging method from the point measurements of the selected
raingauge networks. The performance of the HBV model
was assessed using different model performance evaluation
criteria for the calibration and validation periods.

A number of simulation experiments were carried out in
accordance to the study objective. A first set of experi-

ments considered the spatial representation of precipitation
from varying raingauge networks. It showed that the number
and spatial distribution of raingauges affect the simulation
results. It was found that the overall model performances
worsen radically with an excessive reduction of raingauges.
However, the overall performances were not significantly im-
proved by increasing the number of raingauges more than a
certain threshold number specially if stations around but out-
side the catchments are considered. A significant inability to
represent the spatial precipitation fields using network con-
sisting of less number of raingauges are observed in the sum-
mer season particularly for the smaller subcatchments. These
results are model and resolution specific. Higher spatial
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model resolution can lead to a higher sensitivity on precip-
itation observation density. The influence of raingauge den-
sity in other regions might be very different depending on the
rainfall type (convective or advective), seasonality of precip-
itation, importance of snow accumulation and melt, topog-
raphy and land use. The more the hydrological processes
are complicated the more precipitation observations might
be necessary. Temporal variability is influencing the hydro-
graph considerably. However, this was not the main interest
of this paper - we tried to concentrate on the spatial aspect.
A combined space-time investigation would of course be of
great interest, which, is beyond the scope of this paper.

A second set of analysis considered the model calibration
using precipitation interpolated from one type of raingauge
network and was run using precipitation interpolated from
another type of raingauge network. The analysis indicated
that models using different raingauge networks might need
their parameters recalibrated. Specifically, the HBV cali-
brated with dense precipitation information fails when run
with relatively sparse precipitation information. However,
the HBV model calibrated with sparse precipitation informa-
tion can perform well when run with dense precipitation in-
formation.

A third set of experiments analyzed the reliability of sup-
plementing missing precipitation measurements used for the
calibration with data estimated using a multiple linear re-
gression technique, and running the model using that pre-
cipitation combined with observed precipitation. The results
showed that the model performs well when it was calibrated
with a complete set of observed precipitation and run with an
incomplete observed data set combined with estimated data
instead of running the calibrated model using incomplete ob-
served data only. This result offers an encouraging perspec-
tive for the implementation of such a procedure for an oper-
ational flood forecasting system. Further research is needed
in this direction to prove the practical applicability.
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