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Abstract. The objective of the study is to investigate the ter understanding of the water cycle on land surfaces with
potential of retrieving superficial soil moisture contemt,§ an impact on several applications ranging from drought and
from multi-temporal L-band synthetic aperture radar (SAR) flood prediction (e.gHong and Kainay1996 Pauwels et
data and hydrologic modelling. The study focuses on as-al.,, 2002 to meteorology Betts et al. 1996 and agriculture
sessing the performances of an L-band SAR retrieval algo{Bastiaanssen et aR005. Due to the high sensitivity to soil
rithm intended for agricultural areas and for watershed spamoisture content (e.dou et al, 2000, microwave remote
tial scales (e.g. from 100 to 10000Kn The algorithm  sensing holds a great deal of potential for the retrievat af
transforms temporal series of L-band SAR data into soilln fact, considerable progresses have been made on the use of
moisture contents by using a constrained minimization techimicrowave remote sensing systems (dagkson et 311993
nique integrating a priori information on soil parameters. TheKerr et al, 200% Njoku et al, 2003 Wagner et a].2003 Shi
rationale of the approach consists of exploiting soil moistureet al, 2006 Loew, 2008 to measure superficial soil moisture
predictions, obtained at coarse spatial resolution (e.g. 15-€ontent at coarse spatial resolution (e.g. 15-58)ki@n the
30 km?) by point scale hydrologic models (or by simplified contrary, the use of SAR data for the retrieval of soil moisture
estimators), as a priori information for the SAR retrieval al- maps at high spatial resolution (e.g. 2.5sA® 3 km?) has
gorithm that provides soil moisture maps at high spatial resobeen generally limited up to date and no operational algo-
lution (e.g. 0.01 krA). In the present form, the retrieval algo- rithm is yet available, while numerous research approaches
rithm applies to cereal fields and has been assessed on simaxist (for a review sedloran et al, 2004. An important part
lated and experimental data. The latter were acquired by thef the limitations to monitor superficial soil moisture con-
airborne E-SAR system during the AgriSAR campaign car-tents by means of SAR systems, is due to the fact that the
ried out over the Demmin site (Northern Germany) in 2006. observed backscatter significantly depends not only on soil
Results indicate that the retrieval algorithm always improvesroughness, soil moisture and plant water content but also on
the a priori information on soil moisture content though the crop structure. As a consequence, there generally exist many
improvement may be marginal when the accuracy of priorcombinations of surface parameters mapping the same SAR
m, estimates is better than 5%. observable, so the retrieved “optimal” solution (e.g. most
probable or minimum root mean square (rms) error) may be
characterized by poor accuracydtalino et al.2002. This
1 Introduction problem can be tackled by introducing a priori information
about the surface parameters and using multi-temporal SAR
The monitoring of the spatial and temporal distribution of data Mattia et al, 2009.
soil moisture content,) is of major importance for a bet-

In this context, the objective of this paper is to assess
an algorithm for the retrieval, at high spatial resolution,
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modelling. The higher penetration of L-band SAR signal into g0 g gy “gm
the canopy, with respect to shorter wavelengths such as C,
or X-bands, reduces the sensitivity to vegetation constituents’ 440

and is expected to improve the SAR capability to monitor _ & 230

soil moisture content. In particular, for cereal crops it is pos- #
sible to disregard the interaction between L-band SAR signal -’
and crop canopy, at least at HH polarizatidfattia et al, 250
2007. For this reason, the presented algorithm focuses on _ _ y
soil moisture retrieval of cereal fields. W
The rationale of the approach consists of exploiting soil % 0 1 2 3 '
moisture predictions, obtained at coarse spatial resolution : Map Scle 150,00
by point scale hydrologic models (or by simplified, es-
timators), as a priori information for the SAR retrieval al-
gorithm. An important aspect for the study is also to ob-
tain indications about the errors affecting the modelling of
prior soil moisture predictions. The latter may arise from
several factors including incorrect meteorological forcing
and model approximations. For this reason, more tharthe participation of 16 European Institutes. The experiment
one source of meteorological data and two hydrologic mod-encompassed multi-temporal airborne and spaceborne SAR
els, namely the TOPMODEL-based land-atmosphere transand optical acquisitions together with extensive in situ mea-
fer scheme (TOPLATS)Ramiglietti and Wood1994 and  surements of bio-physical parameters. The principal objec-
the Process Oriented Multiscale EvapoTranspiration modetive of the campaign was to assess the impact of the future
(PROMET) Mauser and Schdlici1998 Mauser and Bach ~ ESA Sentinel-1 and -2 missions for land applications and to
2008, have been employed. In addition, in order to assesgrovide a well documented database to investigate the bio-
the potential of simplified empirical approaches as proxy of physical parameter retrieval. In the following sections, a
soil moisture predictions the use of the Antecedent Precipi-short summary of the data set is reported, more details can
tation Index (API) (e.gCrow and Zhan2007) has also been be found in Hajnsek et al.2008.
investigated.
The retrieval algorithm has been assessed on multi2.1 In situ data
temporal L-band SAR data acquired by the German
Aerospace Centre (DLR) E-SAR system during the AgriSAR The Demmin site is an agricultural area characterized by an
2006 campaignHajnsek et al.2008. However, the algo- average annual rainfall of approximately 489 mm and an av-
rithm has been developed with a view to the possible futureerage temperature ranging betweefib8uly and 2 in Jan-
use of data acquired by the L-band spaceborne Phased Arrayary. The study area, extending over approximately 25 km
type L-band Synthetic Aperture Radar (PalSAR) system athearby the Goermin village (53.98 N, 13.25E), is cultivated
the highest repetition time (i.e. default acquisition mode). Inmainly with winter wheat, winter barley, maize, winter rape
this respect, despite the fact that the E-SAR airborne systerand sugar beet. From 19 April through July 26, in situ
acquired fully polarimetric L-band SAR data, the presentedmeasurements of volumetric soil moisture content and fresh
algorithm exploits only single polarized HH multi-temporal biomass were collected, roughly every week, over two win-
SAR data. ter wheat fields (namely field 230 and 250) and two winter
In the next sections, the AgriSAR 2006 data set, the re-barely fields (namely field 440 and 450), all of which larger
trieval algorithm and the approach adopted for the modellingthan 5 ha. Figuré shows a land use map of the study area on
of prior soil moisture values are described. Then, the experiwhich the location of the investigated fields is also identified.
mental assessment of the retrieval algorithm is discussed anki total 44 observations (4 fielasl1 dates) have been con-
conclusions are summarized. sidered in the analysis. In addition, on field 250 there was
a ground station with Time Domain Reflectometry (TDR)
probes continuously measuring soil moisture content at five
2 The experimental data set different depths, a Bowen Ratio Energy Balance (BREB) sta-
tion and a Large Aperture Scintillometer (LAS) (a detailed
The ground and SAR data analyzed in this study were col-description of these stations is giverRauwels et al2008.
lected during the AgriSAR campaign conducted over theFigure2 shows the temporal behavior of in situ soil moisture
Demmin agricultural site, in Mecklenburg-Western Pomera-measurements for the above-mentioned four cereal fields and
nia (Northern Germany), from April to July 2006i§jnsek  also the continuous TDR observations at 0-9 cm. It is worth
et al, 2008. The campaign was funded by the Europeanemphasizing that the study area is characterized by an al-
Space Agency (ESA), coordinated by DLR and included most flat topography (i.e. altitude variations withf60 m),

Net$

ooot’8

Fig. 1. Land use map of the Goermin study area. The location of
fields 230, 250, 440 and 450 is also identified on the map.
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Fig. 2. In situ measurements of volumetric soil moisture content Fig- 3. L-band E-SAR backscattering coefficient versus in situ mea-

(at 5-10 cm) sampled over four cereal fields (i.e. 230, 250, 440 ancured soil moisture content. Data were acquired over the wheat field

450) and TDR measurements continuously collected over field 250230 during the entire growing season. Error bars accounting for the
op calibration errors, i.et1 dB, and a fit using a geometric model
(i.e.y = ag x*+4ay) forthe H H (continuous line) and V (dashed

due to which the variability of soil moisture content recorded line) backscatter are also shown.

across the site, per each date, is generally limited within 4—
6% [m® m~3]. T2 prr T

2.2 SARdata ) % % * * *

A time series of 11 geocoded and coregistered L-band SAR\(IE/ 16 %
images acquired, from April to July 2006, by the airborne B 4} |
E-SAR system along the West-East track have been used ir ;| '8 ‘*’ % * %

the analysis. Data were acquired at incidence angles rang |

ing between 25and 55 and processed by DLR4@jnsek et “{ 20

al, 2009. The range and azimuth spatial resolution of the ©

geocoded products is 2m and 4.5m, respectively. The pixel 27 ]

spacing is 2mx2m and the radiometric accuracy is better [ %

than 2 dB Gcheiber et a]2007). —24r +
In order to better understand the extent to which it is pos- R, ‘ ) R

sible to disregard the interaction between L-band SAR signal - 2 3 4 o °

and wheat canopy, an assessment of the sensitivity of L-banc. Fresh biomass (Kg/m?)

backscatter to surface parameters has been carried out.

terFtlg usroeilsfn?)?sijrzh(?c\)/\rlw ttgr?t Zenr:jsﬁlggz gfol;nt;asgd rzzglésciiz\i/tely':ig' 4 L-_band, HH polarized E_-SAR backscattering coef_ricient ver-

. . ' Sus in situ measured fresh biomass. Data were acquired over the
The ‘?'ata refer tP the entire exDe”m?_m_al cam.palgn and WelGheat field 230 during the entire growing season. Error bars ac-
acquired over field 230. The sensitivity 1o, is better at  counting for thes calibration errors, i.e+1 dB, and a fit using a
HH than at VV polarization and better for fairly dry than wet geometric model (i.ey = ag x% + ap) for the HH (continuous
soils. In average, there is an increment of approximately 2 dBine) backscatter are also shown.
at HH polarization per 5vol. % increments in soil moisture
content. However, there is also an important scatter of HH
and VV backscatter, which is probably partly due to calibra- backscattering and the fresh biomass sampled on field 230.
tion errors (error bars equal b1 dB) and partly to changes While Fig. 3 shows that the backscatter increases in average
in surface conditions. In Particular, Fig.shows that at H by approximately 7 dB when the soil moisture increases from
polarization there is a negligible interaction with the crop 5 to 35%, a strong increase in the biomass leads to an almost
canopy as almost no correlation is found between the HHzero increase in the backscatter (the contribution from the
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ground corresponds to the lowest biomass value in Fig. 4)and accurate estimates of soil moisture contitdt{ia et al,

In other words, the wheat canopy has only a very minor im-2006. More precisely, the technique minimizes the follow-
pact on the HH backscatter, which then has been modelleéhg cost function:

as simply due to surface scattering. This approximation is in

agreement with previous studies (eTgure’ et al, 19949, 1 & 100y — Fo(0. 5. et )2

however future work is required to better assess its valid-c — — +

ity. Indeed, while numerous recent studies have addressed N = (A (00)n)?

the scattering of winter wheat at C-band (eGpokmartin, 1 Y\ — Pl

et al, 2000 Marliani et al, 2002 Mattia et al, 2003a Pi- — Z pm.—pmz (1)
card et al, 2003 Della Vecchia et a).2006), relatively little M 1= (A (pm))

work has been carried out at L-band. The surface scattering ,ara v is the number obg observationsF (-) is the IEM
model adopted in this study is the Integral Equation MOdeImodeI (depending on the SAR incidence angle and wave-

(IEM) (Fung and Cherl992), which is an asymptotic model lenath. i.e.d and. and on theM surface parameten
developed to bridge the gap between the Small Perturbation, gin, €. ; P ),

1 TS Dm are the a priori estimates of surface parametarggo)
Method (SPM) model and the Kirchhoff approximation (KA) ey ges the backscatter calibration, statistical and model er-
Ulaby et al.(1982), thus covering a wide range of roughness

diti cularl band I > rors andA’(p) is the error affecting the prior estimates of
conditions particularly at L-band. From an electromagneticg 5o parameters. The latter basically consist of the sur-

poin_t of yiew, .the IEM essen_tially is a second iteration of face height standard deviatiom)( the surface autocorrela-
the iterative Kirchhoff approxmatmnl.(s_zka and MCCO,V, tion function (ACF), the surface correlation lengtf) énd
1982. One drawback of this approach is that the COHdItIOI’lSthe soil relative dielectric constan¢’(, which in turn de-

for the convergence of the iterative series are not Known &,q,4s on the soil moisture content and on the soil texture
priori. Itis worth noting that the IEM model was built to pre- composition. An exponential shape for the ACF has been as-
dict both single and multiple scattering contributions to SUr ¢ imed because past studies (Mgttia et al, 1997 2003h

face scatter ing. It was expected to pr.edic.t well both co andshowed that this is the shape most often observed in field
cross polarized components over a quite wide range of roughr'neasurements. To relate the soil dielectric constant to the

ness parameters. However, some of the assumptions made ji| \metric soil moisture content, the empirical expression

the IEM development have been subsequently recognized gg, e d hyHallikainen et al(1985 has been employed. This
simplistic by the same original authors (for a critical review g, ression models the soil dielectric constant as a second or-
of the IEM seeAlvarez—Perez200]). An improved version e, polynomial irvn,,, which can be analytically inverted. In

of IEM was rlgltralasgd r':HS'eh Ft aI.(199r7l), a furthe.r ver-f order to obtain estimates of soil moisture content, the algo-
sion was published i€hen et al(2000. The expressions of i firstly estimates the soil dielectric constant, and then

cross-polaris_ed scattering coefficient have been continuousl\[/jses the inverted empirical expression of Hallikainen to de-
amended until recenthdhen et al.2003. However, the ex- e the soil moisture content. To simplify, it will be assumed
pressions of co-polarized backscattering coefficient (i.e. SiNthat =3 and(pp—1 )=, 1, m,). In the implementation

. . . . - m=41, - LRS) v/-
gle scgt?[ermg contn_bunon) have not changed V\,"th respect Q¢ 1he algorithm theV op observations have been obtained
the or|g|'nal IEM. It is fpr this reason that in this paper the by usingN multi-temporal L-band, HH polarization, E-SAR
expressions of the original IEM model are used. backscattering. The use of multi-temporal data is beneficial
for the accuracy of the retrieved soil moisture content un-
der the condition that the surface roughness remains almost
constant during the time-spaii( of the N acquisitions. For
h lorith ; | ) instance, for a temporal series @fimages, disregarding the
T be p(;oposeo(lj algorithm trgns orms al temporal sedrulas hresence of vegetation, the number of surface parameters to
L-band SAR data, acquired at HH pol arization and 1oW- pe estimated iv+2 (N soil moisture values and 2 surface
medium incidence angles (approximatively°2@0°) over . uhness parameters, namebnd the correlation length.
cereal fields, into soil moisture values. According to the For N equals to 1 there is the worst ratio (i.¢/3) between
abpve_—reported ;en3|t|V|ty anaIyS|§: _at L-band and HH POsindependent measurements and parameters to be estimated
larization, there is a reduced sensitivity of backscatter to the(highly inaccurate retrieval). Whereas far large the ratio
fresh blomas_s of_ cereal fields. On the contrary, the most iMiendsto 1 (highly accurate retrieval). In order to minimize
portant contribution to HH backscatter comes from the songn iterative efficient approach based on the Generalized Re-

and its moisture variations. As a consequence, the ad_opte uced Gradient Method &sdon et a].1978 was employed.
approach disregards the presence of vegetation and inverts

the IEM surface scattering model by using a constrained op3.1  Numerical assessment of the algorithm performances
timization technique, which integrates a priori information

on soil parameters (such as vertical surface roughness antb characterize the performances of the developed retrieval
soil moisture content, see later on Segtto obtain robust algorithm a simulation study was carried out. A synthetic

3 The Retrieval algorithm
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Table 1. Mean values of synthetic ground data 1.60 ‘
Soil Date = S50t E
parameters Ist 2nd  3rd 19) s
S 4 uAnE - E
Surface heightstd (cm) 1.2 1.2 1.2 SR
Correlation length (cm) 15.0 15.0 15.0 >
Real part ok, 6.0 11.0 17.0 £ 1.30
’;; AN~ 3 ) 3
data set of ground data was built simulating three different f E T
acquisition dates (i.eV=3), Table 1 reports the average val- ~— 1.10 - I L b
ues of the considered surface parameters. Then, the IEM ) P L BT ST ST
model was employed to obtain the backscatter values at L- O e
band, HH polarization and 23ncidence, associated to the 1 2 3 4 5 6 7 8
surface parameters of Talle In order to simulate the pres- A(my)(%)

ence of measurement errors (including radiometric, statisti-

cal and model errors) a zero-mean Gaussian noise with in-

creasing standard deviation (std) (ranging fratd 15 dB) Fig. 5. Gain of the retrieval algorithm versus initial error on soil
has been superposed to the IEM predictiodspriori in- ~ Mmoisture content4’ (m,)) for measurement errora\( (oo)) rang-
formation for the retrieval algorithm have been obtained byin9 from 0.5t0 1.5dB.

perturbing the surface parameters reported in Tablgh a
zero mean Gaussian noise with increasing std (ranging from

10 to 30% of the total variability range of surface param- _the method. Let us consider a study area of 28 brms]st-.
ing of three homogeneous sub-areas (of the same size): one

eters). It should be emphasized that the simulated a priorllairly wet (e.g. 24%:2%), one medium wet (e.q. 17%2%)

information still represents an ideal unplased case (the €2 nd the third one fairly dry (e.9. 1042%). Over this area,
ror was at zero mean). Finally the retrieval algorithm has

been applied to the synthetic data set and the results havttg1e .SAR retrieval algorithm is applu_ad using as a priort infor-
i mation an average value of 17% (in this case the rms error
been analyzed. A necessary condition that should be a

ways fulfilled by the algorithm is that the final error, com- between the constant guess and the true soil moisture val-

. es of the fairly wet, medium wet and dry areas is approxi-
puted as the rms error between retrieved and observed soi . !
: T ; . mately 7%, 2% and 7%, respectively). Under these circum-
moisture values (i.eA’ (m,)), is smaller than the initial er-

. tances, the algorithm is expected to retrieve approximately

ror, computed as the rms error between prior and observe . .

; . o . e following mean and rms error values for the three classes:
soil moisture values (i.eA’(m,)). Of course, the higher

_ 0, 0, 0, 0, 0, 0, -
the ratioA’ (m,)/A' (m,) (referred to as gaing)), the bet- 24 /&5/.0’ 17. /6t2% an_d 10 .’&5A)' Hence, the thr(_ae su.p
. . areas with different soil moisture content can be identified
ter the algorithm performs. For this reason, thegarame-

ter has been adopted to synthetically represent the algorithrr"ﬁmd separated (within 1-std). In other words, despite the

performances in the numerical study. Fig@ahows the gain of the retrieval algorithm may often be relatively small

. . " . (mainly due to the high measurement error budget), still the
gain parameter(), obtained by applying the retrieval algo- . X ) . ]
4 . - asset of providing soil moisture maps at high resolution can
rithm over the synthetic data set, versus the initial rms er-

; . . be regarded as a valuable feature. In the following an ex-
ror A'(m,) for increasing values of measurement errors (re- erimental assessment of the algorithm performances will be
ferred to A®(0p)). Figure5 shows that the algorithm gain P 9 P

increases with the initial erron! (m,) and that lower mea- carried out

surement errora® (og) coincide with increasing values 6f.

In other words, if the prior information on soil moisture con- 4 Modelling of prior soil moisture values

tentis already quite good (e.g. better than 5%), the algorithm

gain is expected to be marginal (i@.~ 1) unless the mea- In order to obtain a priori information on soil moisture con-
surement error is very small (e.g. less or equal to 0.50 dB)tent, at coarse scale, the TOPLATS and PROMET hydrologic
On the other hand, fon!(m,) approximately equal to 7% models and the API index have been exploited. The hydro-
and A (o) equal to 0.75dB, the expected gain is approxi- logic models were applied at the point scale. It is thus not
mately 1.3, corresponding to a final rms ereof (m,) ap- possible to assign a spatial scale to the model simulations.
proximately equal to 5%. The above-illustrated characteris-The point scale prior information was used for the entire test
tics of the algorithm together with the fact that its output pro- site. This is a valid assumption, because 1) the test site is
vides soil moisture maps at high resolution (e.g. 0.003)km relatively small, and meteorological forcing can be assumed
prompts the following didactic example on the potential of to be homogeneous for the entire test site, and 2) the land
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cover properties (winter wheat) were very homogeneous for PROMET solves the surface energy balance in an iterative
the test site as well. When the methodology is extended foway. The ground heat flux is estimated using a soil tem-
larger domains, however, a grid resolution in the order ofperature modelNuerth 2008. Actual evapotranspiration
1km can be recommended. is simulated within PROMET using the Penman-Monteith

In the next subsections the three approaches are briefly dequation Monteith 1963. Canopy surface resistance is sim-
scribed, Sect.4then illustrates a comparison between mod- Ulated as a function of vegetation type using a resistance net-
elled and observed soil moisture values. work approachBaldocchi et al. 1987, while the soil resis-
tance is estimated based on the approadfegfiesor(1978.

A four layer soil model (0-5, 5-20, 20-65, 65-200cm) is
used to calculate soil water fluxes and soil temperature pro-
files. The change of volumetric soil moisture content, per-
%olation, exfiltration, capillary rise and surface runoff are ex-
licitly considered. The infiltration into the soil layer is de-
cribed using the model &thilip (1957). The soil water re-

4.1 TOPLATS

The TOPMODEL-based land atmosphere transfer schem
(TOPLATS) model has its foundation in the concept that
shallow groundwater gradients set up spatial patterns of soig

mmsture ﬂ:jat mﬂuen;:e mﬂltdra(;mp and tr)ur;off du?r?g StOrM 4o ntion model oBrooks and Corey1964 is used to relate
events, and evaporation and drainage between these eveng%" moisture content to soil suction head. A detailed descrip-

The assumption is made that these grad.ients can b,e _eStfl'on of the model is given biylauser and Schdlic{1998 and
mated from local topography, through a soil-topographic iN-\1auser and Bacli2008. A physical snow model extends

dex GSivapalan et 8]1987. From this foundation, the model PROMET to allow for simulations in cold climateSttasser
was expanded to include infiltration and resistance-base%nd Mauser2007)

evaporation processes, a gurfac_e vege_tatlon layer, and a SUF b ROMET simulations are based on GIS information as
face energy balance equation with an improved ground hea

flux parameterization, and the effect of atmospheric stability 9. soil maps and land use information. Meteorological forc-
: in migh ither provi from ion network
on heat fluxesKamiglietti and Woogd 1994 Peters-Lidard g data might be either provided from station networks as

et al, 1997. The model was originally developed to simu- well as from gridded forcing fields. PROMET has been ex-

tensively validated in different geographic locations in Cen-
late the surface water and energy balance for warm seaso y geograp

(Famigliettiand Wood1994 Peters-Lidard et 311997). Af- Tl Europe (Upper Rhine Valley — 10 kif, Bavarian

. fxlpine Foreland — 20Q100 kn¥, Upper Danube catchment
terwards, winter processes (frozen ground and a snow pack), 76000 kR, Weser catchment — 35000 Rjrusing evapo-

. : o ef?anspiration measurements of micrometeorological stations
ter bodies, and a two-layer vegetation parameterization were

added Pauwels and Wood.999. For a detailed model de- _at the local gcale and by comparison to thermal remot_e sens-
L N ] ing informations at the regional scal#&user and Schdlich
scription, we refer td-amiglietti and Wood1994; Peters- .
. . 1998 Ludwig and Mauser2000.
Lidard et al.(1997), andPauwels and Woo(l1999. Loaiza . . : : :
: . . It provides interfaces to integrate remote sensing derived
Usuga and PauwelR008 list an overview of the field ex- . Lo :
. : : information into the model. It has been used together with
periments and test sites for which the model has been ap- " . . )
: i optical and microwave remote sensing data to improve land
plied, based on which it can be concluded that the model can . :
. o surface simulationdBach and Mausg003 used the model
adequately simulate the partitioning of the energy and mas§ . . o .
balances into their different terms 0 improve crop yield prediction and s_urface.runoff predic-
' tion by combining PROMET results with optical (Landsat-
TM) and microwave (ERS) remote sensing datachnei-
4.2 PROMET der (2003 used LANDSAT-TM data to determine vegeta-
tion model parameters and improve plant growth simula-
The physically based land surface model PROMET (Pro-tions. Loew et al.(2007) compared PROMET simulations
cess Oriented Multiscale EvapoTranspiration model) is usedt different spatial scales with soil moisture information de-
in the present study to simulate the surface energy budrived from active microwave datd ¢ew et al, 2006, and
get and exchange of water and matter within the soil-plantfound a good agreement between the spatial patterns of ob-
atmosphere continuum. The model describes the actual evagerved and simulated soil moisture at multiple scales.
otranspiration and water balance at different scales, ranging
from point scale, to microscale and mesoscMaiser and 4.3 Antecedent soil moisture simulation
Schdlich 1998 Mauser and Bach2008. The model con-
sists of a kernel which is based on five sub-modules (radi-Precipitation information is available on a regular basis from
ation balance, soil model, vegetation model, aerodynamia large number of stations. Simple concepts to derive in-
model, snow model) to simulate the actual water and enformation on actual soil moisture status, based exclusively
ergy fluxes and a spatial data modeler, which provides anan precipitation data, have therefore been developed. One
organizes the spatial input data on the field-, micro andsimple approach is based on the concept of the so called An-

macroscale. The simulations are made on hourly basis. tecedent Precipitation Index (API). As the API is exclusively
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based on precipitation data as model input, it has been Widel)fable 2 TDR Soil moisture values versus API.
used in rainfall-runoff applications to parameterize the soil
moisture conditions in hydrological catchments (&itner weather  m, values (Y) vs. API (X): Y=A+BX
et al, 1969 Rose 1998 Descroix et al. 2002 Vries and stations A (%) B R
Hromadka1993. The AP} for dayi is defined as -

Goermin 9.7 0.8 0.60

APl; = y;APl,_1 + P; (2 Greisfwald 9.6 0.7 0.65

where P; is the observed precipitation [mm] on dayand

y; is the corresponding API recession coefficient at that day

which is used to parameterize the loss of water in the soi4.4 Comparison of modelled and observed soil moisture
column due to evapotranspiration, groundwater recharge and  values

lateral soil water fluxes.

Given some information on the antecedent precipitation,In a previous study, Pauwels et al. (2008) have thoroughly in-
one might use the API as a prior proxy for soil moisture vestigated the water and energy balance for a winter wheat of
conditions on an operational basis as precipitation informathe Demmin site (i.e. field 250). In particular, a remarkable
tion is (at least) available in terms of short term forecasts onagreement between the time series of TDR measurements re-
the global scale. However, large uncertainties in API resultported in Fig.1 and TOPLATS and PROMET predictions,
from uncertainties in the available precipitation information i.e. an rms error better than 4%, was found. However, the
as well as in the parameterization of the corresponding recessbjective of this section is to assess the extent to which point
sion coefficienty. Different approaches to parameterize  scale hydrologic model predictions can represent not only
have been proposed. Its value might vary in betwe@&rf@r the temporal but also the spatial variability of soil moisture
dry conditions and .D for wet soil conditionsCrow, 20073. content over the Goermin study area. For this reason, the
An exponential decay of the forpn=¢ % has been proposed, TOPLATS, PROMET and API predictions have been com-
whereas the factat is the inverse of the characteristic time pared to in situ measurements of volumetric soil moisture
of soil moisture depletion. Its value might be empirically content (sampled at a soil depth of between 5 and 10cm)
calibrated or it might be parameterized using additional in-collected over four different cereal fields during the entire
formation like e.g. the ratio of potential evapotranspiration AgriSAR 2006 campaign (see Fi@). In the analysis two
to maximum available soil moistur€todhury et al.1993 sets of meteorological forcing data, acquired by the weather
Descroix et al.2002. In the present study we follow the pa- stations located at the Goermin village and at the town of
rameterization proposed IG§row (20073 whereas the varia- Greisfwald, were employed. For each of the aforementioned
tion of y; is defined as simulated data sets, TabBereports a comparison with the

time series ofn, measured in situ. The rms errak(m,)),
vi=A+ Bcos(2rJD/369 (3) the correlation R) and the parameters of a linear fi(t bet\)/veen
with the parametera=0.85 andB=0.1 andJD the julian  observed (i.eX) and modelled (i.eY) soil moisture values
day, which is a very simple approach to roughly estimate theare shown. In all but one case, i.e. TOPLATS (Greisfwald),
seasonal effects of evapotranspiration loss. The model pahe mean soil moisture values predicted by the models under-
rameters could be calibrated using available in situ soil mois-estimate the observed ones (the bias ranges between 1 and
ture data. In order to keep the model as general as possibld%). The effect is more pronounced for simulations based
no calibration of the model is done for the test site in the on Goermin than Greisfwald weather data (though, in gen-
present study. eral, the impact of using meteorological data collected by a

The APl modelling approach is used in the present studystation located 10 km a part from the study area seems to be
to provide a further prior guess on soil moisture for the SAR quite limited). The rms error of PROMET and TOPLATS
based soil moisture retrieval algorithm. Two sets of precipi- predictions (A’ (m,)) is always better than 5%, the-values
tation data P), acquired by two weather stations located ap- are higher than 0.8 and the slope parameters range between
proximately 10 km apart, were used to estimate two APl se-0.47 and 1.05. API predictions are affected by rms errors
ries. The first weather station (referred to as Goermin station)arger than 6.0%, while the slope and correlation parameters
was located on the study area (nearby the Goermin village)are lower than 0.3 and 0.55, respectively. Under these cir-
whereas the second one (referred to as Greisfwald statiomjumstances, it is confirmed that API should be regarded as a
was located in the town of Greisfwald. In order to transfer weak prior proxy for surface soil moisture conditions. Nev-
the API values [mm] to volumetric surface soil moisture a ertheless, it is worth emphasizing that the API asset is its
linear regression between the TDR measurements, collectesimplicity and the fact that it requires as input solely precip-
at 5 cm depth on field 250, and API was calculated. T&ble itation information. On the contrary, SVAT models, such as
reports the parameters of the linear fit, for the two computed®PROMET and TOPLATS, hold a strong potential to provide
API series, namely the API based on precipitation measuredjuite accurate (i.e. better than 5%) prior estimates gfat
by the Goermin and Greisfwald weather stations. least at coarse resolution. However, they require significant
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Table 3. Volumetric moisture conter(in,): hydrologic model predictions versus in situ measurements

Model Hydrologic model (Y) vs. in situ measurements (X)= A + BX

MeanX (%) MeanY (%) A(%) B Al (my) (%) R
PROMET (Goermin) 15.5 13.14 451 0.59 4.35 0.85
TOPLATS (Goermin) 15.5 12.82 5.45 0.47 4.99 0.80
PROMET (Greisfwald) 15.5 14.47 4.09 0.67 4.01 0.81
TOPLATS (Greisfwald) 15.5 17.36 1.09 1.05 4.5 0.86
API (Goermin) 15.5 12.68 8.59 0.26 6.27 0.54
API (Greisfwald) 15.5 12.6 8.05 0.29 6.58 0.47

Table 4. Volumetric moisture conter(in,): perturbed hydrologic model predictions versus in situ measurements

Model Perturbed hydrologic model (Y) vs. in situ measurements{>&: A + BX
MeanX (%) MeanY (%) A(%) B A (my) (%) R
Perturbed PROMET (Goermin) 155 8.16 —-0.97 0.59 8.22 0.85
Perturbed TOPLATS (Goermin) 155 7.84 0.47 047 8.76 0.80

more information on a specific site as model input (e.g. mete- -
orological data, soil and land cover maps, etc.). A drawback N — multi-temporal
of these findings is that, according to the numerical analy- SAR, single F;;ol
sis of Sect.3.1, them, prior predictions of PROMET and tim’e-span T ’
TOPLATS are too accurate to represent a stringent test-bec

for the SAR-retrieval algorithm. For this reason, two fur-
ther data sets, referred to as perturbed PROMET and per-, Ancillary data: Land
turbed TOPLATS, characterized by a bias and an rms errori cover & soil texture
of approximately 7% and 8%, respectively, have been in-

Preprocessing
=) (calibration,
registration, filtering,

cluded in the analysis. These two perturbed data sets havé;| A priori information masking)
been obtained by subtracting from the predictions of the 1| m, & s =[0.5cm,5¢m] 11
PROMET and TOPLATS models a constant value of approx- :'T ____________________ =) Inversion:
imately 5% (more precisely 4.98%). This choice was aimed . ) CQFI_Stfaln?d
at obtaining two data sets affected by biases and rms errord'Ydrologic modeliing: N minimization
higher than those obtained by means of API but still char- T2Pe of m, (initial error: 0

acterized by high correlations with thwe, in situ measure- m);

ments. Table4 reports information similar to Tabl8 but

it refers to the data sets obtained by perturbed PROMET
and perturbed TOPLATS (based on meteorological data ac-
quired at the Goermin weather station). Furthermore, Fig.
shows the scatterplot between the soil moisture values simgig. 6. Flow chart of the implemented SAR retrieval algorithm.
ulated by all the illustrated modelling approaches, namely

the PROMET and TOPLATS (based on meteorological data

acquired at the Goermin and Greisfwakd weather stations)s Experimental assessment of the algorithm perfor-

the API (based on meteorological data acquired at the Go- mances

ermin and Greisfwald weather stations) and the perturbed

PROMET and TOPLATS (based on meteorological data ac-The performances of the retrieval algorithm described in
quired at the Goermin weather station), and those measurefect.3 have been assessed on the AgriSAR 2006 data set.
in situ. Figure7 shows that in general model predictions tend Figure 6 shows a flow chart of the implemented algorithm.
to cluster around a few discrete values whereas the in sitincillary information concerning land cover and soil texture
measurements are evenly distributed. In addition, it is ob-maps as well as the initial guess values for vertical surface
served that the model underestimation is more important foroughnesss() and soil moisture contentn(,) are required.
medium-high than for lown, values (similar results were Conversely, no a priori information on the correlation length
found inPauwels et a]2009. [ was used. This is because: 1) it is extremely difficult to

N maps of m, (final
error: Afm,)
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Table 5. Volumetric moisture contenin,): SAR retrieved values versus in situ measurements

Models used to derive SAR retrieved (Y) vs. in situ measurementst(>§:A + BX
the a priori information MeaX (%) MeanY (%) A(%) B A (my) (%) R
PROMET (Goermin) 15.5 135 3.89 0.62 4.24 0.83
TOPLATS (Goermin) 15.5 13.39 595 0.48 4.82 0.77
PROMET (Greisfwald) 15.5 14.76 434 0.67 3.98 0.81
TOPLATS (Greisfwald) 15.5 17.6 221  0.99 4.41 0.86
API (Goermin) 155 14.04 792 0.39 5.7 0.57
API (Greisfwald) 155 14.2 8.38 0.38 5.87 0.53
Perturbed PROMET (Goermin) 15.5 13.9 595 0.52 5.56 0.62
Perturbed TOPLATS (Goermin) 155 11.6 505 043 6.36 0.64
provide reliable values df unless accurate in situ measure- as guess values, in these cases the retrieval algorithm

ments had been carried out; 2) in the inversion procedure,  achieves & parameter of approximately 1.4;
the use ofl as a free parameter may allow to better match

the observed SAR data with the IEM model. For each run, — the R coefficientis lower (or equal) than the correspon-
3 L-band, HH polarized, E-SAR images, acquired at sub-  dent values shown in Tab&and4, when then, guess
sequent dates within a time-spah)(of 21 days, were em- values are provided either by TOPLATS or PROMET
ployed. In the preprocessing step, a spatial mean filter over ~ models. The opposite is true when the prior estimates
a window of 51x51 pixels has been applied. In addition, of m, are obtained by means of API estimator;

using the land use map reported in Fig.the areas culti-
vated with winter rape, maize and sugar beet were masked. —
As initial guess values for the parameter a constant value
of 1.0cm was adopted, since all the cereal fields were al-
ready sown in April thus showing a fairly smooth surface
roughness. The adoptedralue is based on previous studies
(Jackson et al1997 Davidson et al.2003, which pointto a . ] ]
range between 1.0 cm and 1.5 cm for thgarameter of sown In summary, the experimental analysis substantially con-
fields. Whereas, the data sets listed in Tabémd in Table firms the characteristics of the retrieval algorithm as illus-
were employed as prior estimatesqf. For each one of the trateql in Sect3.1 Besides, it is worth mentioning that the
simulated data set, Tabreports the comparison between @lgorithm showed a strong robustness versus the presence
SAR-retrieved and in situ measureg values. The rms er- Of biases in the prior estimates af,. Whereas, its perfor-

ror (A (m,)), the correlation R) and the parameters of a Mmances were significantly lowered _vvhgn the prior estimates
linear fit between observed (i.&) and SAR-retrieved (i.e. ©Of v were poorly correlated to the in situ measurements.

Y) soil moisture values are shown. In addition, RBghows

the scatterplot between the retrieved and measurggal- ,

ues when using as initial soil moisture guess values all the® Conclusions

modelling approaches listed in Se¢i4. The results indicate
that:

non-optimal behaviour of the algorithm is observed in
the two cases of APl Goermin and API Greisfwald,
where the prior estimates were not only biased but also
poorly correlated (i.eR<0.55) with the in situ mea-
surements.

The investigated retrieval algorithm uses prior information

on soil moisture content at coarse spatial scale (e.g. 25 km

— for the case of non-perturbed initial, guess values, in order to transform a temporal series of 3 SAR images, ac-
the difference between the mean of observed and reduired at L-band and HH polarization, into multi-temporal
trieved soil moisture values ranges between 0.8 andfCil moisture maps at high spatial resolution (e.g. 0.0Hkm
2.2%, significantly smaller than the bias reported in Ta- " the present form, the retrieval algorithm applies to bare
ble 3. Whereas, in the case of perturbed PROMET angand cereal fields only and it has been tested for time series

TOPLATS predictions, the bias reduces from approxi- of SAR images acquired over a time-span of three weeks.
mately 7% to 1.6% and 4%, respectively: The results of the experimental analysis, conducted over the

data set acquired during the AgriSAR 2006 campaign and

— the rms error reported in Tabk (i.e. A/ (m,)) is al- based on prior estimates of soil moisture content obtained by
ways smaller than the correspondent rms error reportegneans of TOPLATS and PROMET hydrologic models and
in Table3 and4 (i.e. Al (m,)). The best performances, by means of the API estimator, showed that the algorithm has
in terms of algorithm gain, are observed when the per-always a gain@) greater than 1 thus implying that it always
turbed PROMET and TOPLATS estimates are usedimproves the prior information. The best performances, in
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(based on Greisfwald weather statio() TOPLATS predictions (based on Greisfwald weather stati¢@)AP| predictions (based on
Goermin weather station{f) API predictions (based on Greisfwald weather stati@g))perturbed PROMET predictions (based on Goermin
weather station)h) perturbed TOPLATS predictions (based on Goermin weather station).
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terms of theG parameter, were observed in the case of per-Baldocchi, D. D., Hicks, B. B., and Camara P.: A canopy stomatal
turbed PROMET and TOPLATS predictions, for which the resistance model for gaseous depositions to vegetated surfaces,
prior information was considerably biased but highly corre- Atmos. Environ., 21(1), 91-101, 1987.

lated (R>0.8) with the in situ measurements. In these casesBastiaanssen, W. G. M., Noordman, E. J. M., Pelgrum, J., Davids,
the aigorithm was able to reduce the bias of PROMET and 0 JUER0c: 0. o i Lo B agement un
TOPLATS predlctlon§ from appr(.)).(lmately 7% 10 less than der actual field conditions, J. Irr. Drain. Eng., 131(1), 85-93,
2% and 4%, respectively. In addition, the rms error was re- 2005.

duced from approximately 8.20/_0 tq 5.6% a.nd from 8.8% to Betts, A. K., Ball, J. H., Beljaars, A. C. M., Miller, M. J., and
6.4%. Conversely, when the prior information was not only  vjierho, P, A.: The land surface—atmosphere interaction, a re-
biased but also poorly correlated with the in situ measure- view based on observational and global modelling perspectives,
ments (as it is the case of prior information provided by the J. Geophys. Res., 101(D3), 7209-7225, 1996.

API estimator) the algorithm marginally improved the initial Brooks, R. H., and Corey, A. T.: Hydraulic properties of porous me-
error. In the intermediate cases, when the prior information dia, Hydrology paper 3, Colorado State University, Fort Collins,
was highly correlated with in situ measurements and showed Colorado, USA, 1964.

a relatively small bias, the algorithm reduced the bias (e.gChen. K. S. Wu, T. D., Tsay, M. K., and Fung A. K.: A note on
from approximately 4% to 2%) and marginally the rms error the multiple scattering in IEM model, IEEE T. Geosci. Remote
(e.g. from approximately 5% to 4%). Nevertheless, also in_ S€ns: 38(1), 249-256, 2000.

. . . Chen, K. S. Wu, T. D., Tsang, L., Li, Q., Shi, J. C., and Fung
these cases it was argued that the algorithm can be quite US€- A K.: Emission of Rough Surfaces Calculated by the Integral

ful in identifying areas characterized by significantly differ- Equation Method with Comparison to three—dimensional Mo-

ent soil moisture content within the swath area (e.g. 25km ment Method simulations, IEEE T. Geosci. Remote Sens., 41(1),
In conclusion, it is worth emphasizing that while the pro-  90-101, 2003.

posed algorithm can retrieve quite accurate multi-temporalChodhury, B. J., Venkatratnam, L., Rao, P. V. K., and Ramana, K.:

maps of soil moisture content over agricultural sites from Relation between soil moisture and normalized difference vege-

L-band SAR data at single polarization, its main drawback tation Index of vegetated fields, Int. J. Remote Sens., 14(4), 444~

is that it requires not only prior guess values of soil mois- 449, 1993.

ture content at coarse scale but also updated informatiofookmartin, G., Saich, P., Quegan, S., Cordey, R., Burgess-Allen,

about crop maps (at least in terms of principal crops, e.g. R.,and Sow_ter, A.,_: Modeling mlcrowavelnteractlons with crops_

broad leaves vs small stems). Therefore, it can be feasible to 2" comparison with ERS-2 SAR observations, IEEE T. Geosci.

. . . . . Remote Sens., 38, 658-670, 2000.
systematically retrieve soil moisture maps over agricultural

: domi v d d | cultivati it diff Crow, W. T.: A novel method for quantifying value in spaceborne
sites, predominantly devoted to cereal cultivation, if differ- .y moisture, J. Hydrol., 8, 56-57, 2007a.

ent sources of remote sensing data are employed. For incrow, W, and Zhan X.: Continental scale evaluation of remotely
stance, a possible scenario to further validate the proposed sensed soil moisture products, IEEE Geosci. Remote Sens. Lett.,
approach could encompass PalSAR acquisitions in ScanSAR 4(3), 451-455, 2007.
WB1 mode for soil moisture retrieval, C-band ASAR data for Della Vecchia, A., Ferrazzoli, P., Guerriero, L., Blaes, X., De-
crop mapping and data acquired by active/passive microwave fourny, P., Dente, L., Mattia, F., Satalino, G., Strozzi, T., Weg-
spaceborne systems (e.g. ASCAT, AMSR-E, or the MIRAS muller, U.:Influence of geometrical factors on crop backscatter-
system on board the satellite platform of the forthcoming Soil  INg at Cband, IEEE T. Geosci. Remote Sens., 44(4), 778790,
Moisture and Ocean Salinity Mission) or forecasts provided 2006. _ _
by the European Centre for Medium-Range Weather Forepawdson, M. W. J., Mattia, F., $atallno, G., Verhoest, N. E. C., .Le
casts (ECMWF) as sources of prior guess values of soil mois- Toan, T., Borgeal_Jd, M., Louis, J. M. B, and Attema, E.: Joint
statistical properties of RMS height and correlation length de-

ture content, at coarse resolution. rived from multisite 1-m roughness measurements, |IEEE Trans-
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