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Abstract. The availability of data is a major challenge for
hydrological modelling in large parts of the world. Remote
sensing data can be exploited to improve models of ungauged
or poorly gauged catchments. In this study we combine
three datasets for calibration of a rainfall-runoff model of
the poorly gauged Okavango catchment in Southern Africa:
(i) surface soil moisture (SSM) estimates derived from radar
measurements onboard the Envisat satellite; (ii) radar altime-
try measurements by Envisat providing river stages in the
tributaries of the Okavango catchment, down to a minimum
river width of about one hundred meters; and (iii) temporal
changes of the Earth’s gravity field recorded by the Gravity
Recovery and Climate Experiment (GRACE) caused by to-
tal water storage changes in the catchment. The SSM data
are shown to be helpful in identifying periods with over-
respectively underestimation of the precipitation input. The
accuracy of the radar altimetry data is validated on gauged
subbasins of the catchment and altimetry data of an un-
gauged subbasin is used for model calibration. The radar
altimetry data are important to condition model parameters
related to channel morphology such as Manning’s roughness.
GRACE data are used to validate the model and to condition
model parameters related to various storage compartments
in the hydrological model (e.g. soil, groundwater, bank stor-
age etc.). As precipitation input the FEWS-Net RFE, TRMM
3B42 and ECMWF ERA-Interim datasets are considered and
compared.
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(christian.milzow@alumni.ethz.ch)

1 Introduction

Hydrological modelling faces the challenge of decreasing
availability of in-situ monitoring data. Worldwide, the num-
ber of meteorological stations as well as the number of op-
erational discharge monitoring stations has been decreasing
continuously since the 1970s (Fekete and V̈orösmarty, 2007;
Jones and Moberg, 2003; Peterson and Vose, 1997). Whereas
data from such stations are vital for the calibration and val-
idation of hydrological models, many major river basins of
the world are currently poorly monitored.

Satellite based remote sensing provides valuable data for
hydrological model calibration and validation. Over the last
decades the availability of remote sensing data has increased;
many hydrological state variables and water fluxes can now
be assessed remotely through indirect measurements. Outgo-
ing solar radiation is for example related to surface and cloud
temperature and is measured for evapotranspiration and pre-
cipitation calculations. The travel time of a radar signal be-
tween a satellite and a water surface is related to the wa-
ter level elevation. These indirect measurements bring ad-
ditional sources of uncertainty that are often related to the
unknown exact conditions of the atmosphere. Precipitation,
evapotranspiration, surface soil moisture, total terrestrial wa-
ter storage variations, river and lake levels have all been stud-
ied through remote measurements (seeTang et al., 2009, for
a review). In this study we use remotely sensed datasets of
precipitation, surface soil moisture, river stages and total wa-
ter storage for a hydrological model of a poorly gauged basin
– the Okavango basin in Southern Africa.

Soil moisture influences the microwave backscattering
characteristics of the earth surface. This effect can be used to
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estimate the surface soil moisture (SSM) based on satellite
radar measurements. For the Okavango catchment, a good
correlation with a lag of three months between SSM data and
catchment outflow was observed byBartsch et al.(2008).
Studies using SSM data have also been published on the
neighbouring Zambezi catchment. A high correlation was
found in the Zambezi between soil moisture and runoff by
Scipal et al.(2005) and was recently exploited for real-time
hydrological modelling byMeier et al.(2011). The study
by Parajka et al.(2006) revealed no improvement of runoff
simulations by assimilating SSM data into a model for un-
gauged catchments in Austria. However,Crow and Ryu
(2009) showed for basins of the United States that assimi-
lation of SSM data can correct for errors in the precipitation
input and thus improve runoff simulations.

Water levels in rivers and lakes can be monitored by satel-
lite altimeters although these instruments have until now
never been specifically designed for continental hydrological
applications.Calmant et al.(2008) give a review of the pro-
cessing technique and the available databases. The accuracy
of the retrieved water levels strongly depends on site charac-
teristics. The wider the river, the better is the accuracy. For
smaller rivers, radar returns from off-nadir locations can seri-
ously affect the accuracy. Continental applications of altime-
try data have therefore so far been limited to lakes (e.g.Bir-
kett and Beckley, 2010; Sarmiento and Khan, 2010; Becker
et al., 2010) and large river systems as for example the River
Ob (Kouraev et al., 2004), the Amazon (Coe et al., 2008) and
the Mekong (Birkinshaw et al., 2010).

The total water storage change in a catchment locally in-
fluences the time variation of the gravitational field of the
earth. This can be used to derive storage changes trough
time-lapse gravimetric measurements. In-situ gravimetric
measurements are not suited for studies at the catchment
scale because the footprint of ground-based gravimeters is
on the order of several tens of meters (Leiriao et al., 2009).
The Gravity Recovery and Climate Experiment (GRACE)
has been monitoring temporal changes in the earth’s grav-
ity field since 2002 (Tapley et al., 2004). GRACE recovers
global and local gravity fields from the inter-satellite range-
rate measurements in-between its twin-satellites. Tidal and
atmospheric effects are removed by forward models, so that
in the absence of tectonic movements, changes in the gravita-
tional field are dominated by changes in water storage at the
land surface. With a maximal spatial resolution of 400 km,
GRACE data can be used exclusively in large river catch-
ments. GRACE data have been used for numerous studies
of large river basins worldwide. Recent application include
for instance the Amazon (Chen et al., 2010), the Murray-
Darling (Awange et al., 2011) and the Eurasian pan-Arctic
region (Landerer et al., 2010). Grace data have been used
for model calibration byLo et al. (2010) in North Amer-
ica. Moiwo et al. (2009) have identified storage depletion
in the Hai River basin in northern China using GRACE data.
Pfeffer et al.(2011) removed large scale gravity variations

measured by GRACE for a local study in Niger with in-situ
gravity measurements.

The challenge is to integrate these diverse datasets to im-
prove the parametrization of hydrological models. Auto-
matic multi-objective model calibration that minimizes the
deviations between the different observed and simulated time
series can be used for this purpose. Such a procedure will
ensure that all available observations are accounted for and
given a defined weight when identifying the optimal set of
parameter values. In contrast to data assimilation techniques,
we do not use the remotely sensed data to modify the states
or parameters of our model at discrete time steps. We apply
the remotely sensed data to identify an optimal set of param-
eters that is constant in time and gives a simulation of model
states without discontinuities.

The model development presented in this article is part
of a larger project in which the model will serve as a tool
to assess the impact of agricultural development in the Oka-
vango basin. The model will be applied conjunctively with
an existing model of the downstream Okavango Delta wet-
lands (Milzow et al., 2009b, 2010) to study the impact of
agricultural development in the catchment on the hydrology
and ecology of the Okavango Delta. This final application to
be presented in a future publication justifies the choice of a
complex precipitation-runoff model that includes a detailed
simulation of vegetation processes.

2 Materials and methods

2.1 Study area

The Okavango River (Fig.1) – which includes portions of
Angola, Namibia and Botswana – is representative for many
large rivers throughout the developing world in that it is
poorly gauged and studied. The two main tributaries of
the Okavango River arise in the southern highlands of An-
gola. They join on the border to Namibia before the river
crosses the 30 km wide Caprivi-Strip. The lowest part of
the basin consists of the large Okavango Delta wetlands
on Botswana territory. The wetlands constitute a biodiver-
sity hotspot of global importance (Junk et al., 2006; Ram-
berg et al., 2006) and, through tourism, an important source
of economic income for Botswana (Mmopelwa and Blig-
naut, 2006). The catchment area upstream of the wetlands
is of approximately 170 000 km2. Non-runoff-generating
parts of the basin extend over an additional 220 000 km2 into
Namibia and Botswana.

At present, the Okavango catchment is largely ungauged.
No current in-situ precipitation measurements are available
for the Angolan part of the catchment where most runoff
is generated. An operational precipitation gauge is located
at Rundu in the most southern and driest part of the catch-
ment. Historic precipitation data for the period from 1954
to 1984 are available from 12 stations distributed over the
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Fig. 1. The Okavango River Basin. The inset shows Southern Africa with the active (filled area) and non-active (outline) parts of the
Okavango Basin.

catchment (Nicholson and Entekhabi, 1986). These records
have monthly time resolution and differ in length for the indi-
vidual stations. River discharge and stage are presently mon-
itored only at the outlet of one of the two main subbasins
and in the main Okavango River before it flows into the Oka-
vango Delta wetlands (Rundu, Andara and Mohembo, see
Fig.1). Monthly discharge data has been recorded at 14 addi-
tional stations within the catchment for time spans of variable
length in the period from 1957 to 1974 (seeHughes et al.,
2006, for details).

Very few studies have been published on the Okavango
catchment. This lack of attention contrasts with the large
number of studies on the downstream part of the basin, the
Okavango Delta (seeMilzow et al., 2009a, for a review).
However, scientific interest in the catchment is slowly grow-
ing. Kgathi et al.(2006); Mendelson and el Obeid(2004)
give overviews of geographical and social aspects of the
catchment.Andersson(2006) studied the land cover change
during the Angolan civil war using satellite imagery. He
identified decreases of NDVI (normalized difference vege-
tation index) in the northwest and increases in the northeast.
He was unable to rule out that these changes were related
to precipitation differences between the years. He finds that
from 1973 to 2001 the area used for large scale agriculture
increased from 44 to 70 km2.

Two hydrological models of the catchment have been re-
ported in literature, both having the objective to study the im-
pact of climate change and development on hydrology. The
model byFolwell and Farqhuarson(2006) is based on the
Global Water AVailability Assessment model (GWAVA) and
can be applied to study the impact of changes in climate and
water demand. It can however not predict changes in wa-
ter demand based on land use changes. A second concep-
tual rainfall-runoff model with monthly time step was devel-
oped for the Okavango catchment byHughes et al.(2006,
2011) based on the Pitman model. Both models achieve a
satisfactory fit of the observed discharges but are insufficient
in terms of simulated processes to be applied in the present
project. Because our final goal is to simulate impacts of land
use changes, we opted for a model with daily time step and
a more physically-based representation of especially the soil
layer.

Both reported models cover the period from 1961 to 1990
whereas our model uses input data available since 1998. A
direct comparison with our model for the early period is
therefore not possible. However, the input data used in the
model byHughes et al.(2006, 2011) is now available un-
til 2008 such that a comparison for the period 1998 to 2008
would be possible.Hughes et al.(2006, 2011) find that dif-
ferent precipitation datasets result in very variable model
performance. This is confirmed in our study. A model

www.hydrol-earth-syst-sci.net/15/1729/2011/ Hydrol. Earth Syst. Sci., 15, 1729–1743, 2011



1732 C. Milzow et al.: Altimetry, SAR and GRACE applied for modelling of a poorly gauged catchment

comparison might therefore indicate differences in the input
data rather than in model performance.

2.2 Remotely sensed input and calibration data

Three operational precipitation products covering the Oka-
vango catchment are available. The Tropical Rainfall Mea-
suring Mission (TRMM) provides data from 1998 onwards.
We use the 3B42 product, which has a temporal resolution of
three hours and a spatial resolution of 0.25◦. The principal
components of the mission are a precipitation radar, a passive
microwave imager and a visible and infrared scanner (Adler
et al., 2007). A time series of similar length, higher spatial
but lower temporal resolution is the rainfall estimates product
(RFE) available through the Famine Early Warning Systems
Network (FEWS-Net) which was launched in 1995. RFE is
based on Meteosat infrared images and microwave satellite
observations (Herman et al., 1997). The temporal resolution
of this dataset is 1 day (10 days before 1998) and the spatial
resolution is 8 km. TRMM and FEWS-Net data both incor-
porate ground station precipitation data, where available.

An alternative source for precipitation data, and a source
for temperature data, is the ERA-Interim reanalysis of
the European Centre for Medium-Range Weather Forecasts
(Berrisford et al., 2009). It is produced by near real time
modelling of the global circulation with assimilation of large
amounts of observations. ERA-Interim data is publicly avail-
able with a spatial resolution of 1.5◦ and a temporal resolu-
tion of 6 h. The ERA-Interim product is available since 1989
but an earlier version, ERA-40, with a spatial resolution of
2.5◦ is available since 1957.

The SHARE project, Technical University of Vienna, pro-
vides SSM estimates at 1 km resolution for Africa south of
12◦ N and Australia (Bartsch, 2008; Wagner et al., 2007).
The acquiring instrument is the advanced synthetic aperture
radar (ASAR) onboard Envisat. The SSM estimates repre-
sent the top 5 cm of the soil, approximately, and provide soil
moisture relative to the driest and wettest conditions ever ob-
served for each ground point.

The remotely sensed river stages employed are from the
River and Lake Altimetry (RLA) product, which is processed
at the de Montfort University with altimetry data from the
ERS2, Envisat, Jason1 and Jason2 satellites (Berry et al.,
2005). For the Okavango River only data from the ERS2
and ENVISAT satellites provide usable water level time se-
ries. The temporal resolution is equal to the return period of
the satellite, which is 35 days for Envisat.

The time series of total water storage for the Okavango
catchment is derived from the GRACE gravity data by us-
ing the method of mass concentrations (mascons), which is
also used at the NASA/Goddard Space Flight Center (e.g.,
Luthcke et al., 2008; Rowlands et al., 2010). For more infor-
mation on the mascon recovery from range-rates (seeKrogh,
2011). Range-rate data for recovery of mascons are available

from April 2003 to present. Gravity fields were recovered
with 10 day intervals.

2.3 Hydrological modelling concept

We conduct water balance modelling and stream flow routing
using the Soil and Water Assessment Tool, SWAT (Arnold
et al., 1998; Neitsch et al., 2005). SWAT is a daily time
step, physically based rainfall-runoff model for large river
basins. It has been developed for studies of land manage-
ment impact on stream flow quantity and quality. SWAT in-
cludes a vegetation growth component which allows simulat-
ing irrigation and fertilizer requirements for cultivated crops.
Simulated vegetation growth is driven by water availability,
radiation and nutrient availability. SWAT is therefore ade-
quate to study the impact of agricultural intensification in
the Okavango catchment. SWAT includes several process
parametrization options for hydrological processes such as
e.g. surface runoff, flow routing etc. In the following we only
discuss the parametrizations used in our model.

The modelled basin is divided into subbasins, which are in
turn divided into hydrological response units (HRUs). Indi-
vidual HRUs of a subbasin have different soil, land use and
slope characteristics but are not assigned a specific position
within the subbasin. The water balance component of the
model takes place at the HRU level. The uppermost sim-
ulated component is an interception reservoir, followed by
percolation through the soil column or surface runoff. The
amount of surface runoff is calculated with the Soil Con-
servation Service (SCS) curve number procedure (Rallison
and Miller, 1981), which accounts for soil type, land use and
antecedent moisture conditions. Surface runoff can infiltrate
into lower soil layers as bypass flow through cracks if the soil
water content of upper layers is below one tenth of the field
capacity. Cracks close with rising water content (Neitsch
et al., 2005). Lateral flow in each soil layer is calculated
based on a kinematic storage model (Neitsch et al., 2005).
Potential evapotranspiration is computed using Hargreave’s
formula, which requires inputs of incoming extraterrestrial
solar radiation, minimum and maximum daily temperature.
Data required for more elaborate calculations of the poten-
tial evapotranspiration (e.g. wind speed, relative humidity)
are unavailable for the catchment. HRUs contribute fluxes
to a ground water reservoir for each subbasin (percolation
through the soil column and the vadose zone) and directly to
the stream reach associated with the subbasin (surface flow,
lateral flow). Groundwater reservoirs contribute baseflow to
the stream depending on a baseflow recession constant that
links changes in groundwater recharge to changes in outflow.

Flows are routed through the stream network using the
variable storage routing method. Manning’s equation is used
to calculate flow rates and velocities. Seepage from the river
to the groundwater reservoir is simulated depending on flow
width and hydraulic conductivities of river beds. A first-order
interaction between the river and a bank storage reservoir is
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Fig. 2. (a) Annual precipitation sums averaged over the Okavango catchment for three precipitation products.(b) Scatter plot of annual
(August to July) precipitation against annual (November to October) discharge for the three used products and earlier in-situ data of the
Nicholson database.

further considered for each reach. For this purpose changes
to the original SWAT code were implemented. The infiltrat-
ing or exfiltrating fluxQfilter is calculated based on the dif-
ference in water levels between river and bank storage com-
partment,1h, the leakage factor of the river bedλbed (equal
to the hydraulic conductivity of the river bed divided by its
thickness), the wetted perimeterPwet of the channel cross
section, and the lengthL of the reach.

Qfilter = −1h · λbed · Pwet · L (1)

Evapotranspiration from the bank storage is simulated as in
the standard SWAT version.

2.4 Model setup

The Okavango catchment is divided into 7 subbasins and a
total of 86 HRUs. The scarcity of data available for the catch-
ment area does not support a finer resolution. The stream net-
work is delineated using the ArcSWAT interface (Winchell
et al., 2007). ArcSWAT requires solely a digital elevation
model for this processing step. We have used the shuttle
radar topographic mission data (SRTM,Farr et al., 2007) as
input. The general structure of the stream network generated
in ArcSWAT corresponds to the observed stream network
and is used for the model. The length of all reaches is how-
ever corrected because the SRTM topography with its 90 m
resolution is too coarse to reflect the accurate position of me-
andering streams. A digital stream map is available through
the online database of the Sharing Water Project (RAISON,
2004) and was used to calculate accurate reach lengths. The
width for every reach is picked from GoogleEarth imagery.

Schuol et al.(2008) have set up a SWAT model for the
entire African continent and generated SWAT compatible
databases for soil type and land use. These are used in
this study. The original data used bySchuol et al.(2008)

have global coverage. Land cover characteristics were de-
rived from the 1 km resolution Global Land Cover Charac-
terization Database of the US Geological Survey (USGS,
2008). Soil parameters were extracted from the 2 layer and
10 km horizontal resolution digital soil map of the world
published by the World Food and Agricultural Organization
(FAO, 1995). For the Okavango model the thickness of the
upper soil layer is reduced by 5 cm and a new, 5 cm thick top
layer, is introduced for consistency with the SSM data.

2.5 Intercomparison of precipitation data

The three precipitation products described in the introduction
(ECMWF ERA-Interim, TRMM 3B42, FEWS-Net RFE) are
considered as model inputs. The differences between these
datasets are very large for the Okavango catchment (Fig.2a).
Annual sums over the catchment are on average 26 % higher
in the FEWS-Net product than in the TRMM product but
the latter still gives a higher annual sum for 2008. ERA-
interim data provide an average annual sum as much as 53 %
higher than TRMM data. Based on earlier in-situ precipi-
tation measurements available as monthly data through the
Nicholson database (Nicholson and Entekhabi, 1986) for the
period 1954–1984 we selected the FEWS-Net data for the
final model setup. A scatter plot of the annual precipita-
tion sums against annual discharges reveals that the FEWS-
Net data lie in the same range with the Nicholson data and
that the TRMM and ECMWF data are respectively too low
and too high (Fig.2b). The calibration of the model was
carried out using FEWS-Net data but for comparison, addi-
tional model runs were completed with scaled ECMWF and
TRMM data. The two datasets were multiplied with a con-
stant so that the long term (2000–2009) precipitation sums
over the Okavango catchment were the same as for FEWS-
Net data. This resulted in multipliers of 0.82 for ECMWF
and 1.26 for TRMM data.
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Cuito tributary

In−situ observations

Andara (Okavango River)

Rundu (Cubango tributary)

Estimated uncertainty of satellite altimetry
(+-0.4m = 1 standard deviation of satellite
altimetry at gauged stations)

Fig. 3. Water levels at Rundu, Andara, and for the Cuito tributary. Simulations, remote sensed levels and in-situ observations (where
available). For Rundu and Andara the satellite altimetry data is a combination from 2 virtual stations each (columns 2 and 4 in Table1).

2.6 Pre-processing of temperature data

Because of the 6 h temporal resolution of the temperature
data, the minimum and maximum daily temperatures are not
necessarily recorded. We therefore compared ERA-Interim
data with in-situ data of stations in the proximity of the Oka-
vango catchment. We found that the daily minimum of the
6 hourly ERA-Interim data must on average be decreased by
2.7◦C and the daily maximum value increased by 0.1◦C to
best reflect the in-situ station data. These corrections are ap-
plied to the ERA-Interim data of the Okavango catchment
before they are used for evapotranspiration calculations in
SWAT.

2.7 Pre-processing of altimetry data

Satellite altimetry has to our best knowledge never been ap-
plied to detect water level changes in streams as narrow as the
Okavango and its tributaries. With approximately 150 m in
width, the cross sections we analyse are at the detection limit
for today’s satellite based altimeters. Two of the virtual sta-
tions in the Okavango catchment coincide with in-situ river
gauging stations. For each, a supplementary virtual station is
located less than 20 km away from the gauging station. The
accuracy of the remotely sensed levels can thus be assessed.
The original RLA data contain all altimeter measurements

in a corridor of 2 km width centred on the river. All mea-
surements taken during one crossing of the corridor are then
averaged to one value. We consider a subset of this data by
selecting and averaging only those measurements in a corri-
dor of 1 km width. Further, we applied an automatic correc-
tion for the slope of the river. This correction is necessary
because measurements at one virtual station are not always
taken at exactly the same location along the stream centreline
because of variations in the satellite orbit. The orbit changes
result in changes in retrieved water levels caused by different
measurement positions. We correct for this by fitting a linear
relationship between all measured elevations of a virtual sta-
tion and their position along the river. The slope of the linear
relationship is then removed from the data.

For all pre-processing methods we compute the root mean
squared error (RMSE) relative to the in-situ measurements.
Our results (Table1) show that the width of the corridor has
a considerable effect on the accuracy. While resulting in
better accuracy, a narrower corridor reduces the number of
available samplings only slightly. Combining measurements
from two nearby virtual stations approximately doubles the
number of observations but reduces the accuracy (see also
Fig. 3). The effect of the channel slope correction differs be-
tween virtual stations. The virtual station at Rundu is located
at a very regular and straight river section with low slope so
that the correction brings little improvement. At the second
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Fig. 4. Simulated top soil moisture (5 cm layer) using FEWS-Net rainfall estimates (RFE) and remotely sensed SSM. In this representation
both moisture time series are averaged over the entire Okavango catchment and filtered with a moving average over 14 days.

Table 1. Root mean squared errors (m) of satellite based water lev-
els relative to in-situ measurements at the stations Rundu and An-
dara using satellite altimetry data from one or two virtual stations,
and, in brackets, number of samplings in the period 2003–2009. The
benefit of taking a subset of the data from within a narrower corri-
dor around the river and applying a slope correction is evaluated.
(VS: virtual station, SC: slope correction.)

Rundu Rundu, 2 VS Andara Andara, 2 VS

2 km corridor 0.46 (67) 0.56 (129) 0.28 (72) 0.51 (141)
2 km corridor + SC 0.46 (67) 0.55 (129) 0.25 (72) 0.30 (141)
1 km corridor 0.36 (63) 0.46 (123) 0.23 (70) 0.30 (131)
1 km corridor + SC 0.34 (63) 0.40 (123) 0.21 (70) 0.24 (131)

virtual station of the Andara location the river splits up in
several nearby branches to flow down a series of minor to-
pographic steps. The channel slope is higher there and the
correction very beneficial, reducing the RMSE from 0.51 to
0.30 m for the combined stations with a 2 km corridor.

A virtual station is also located along the lowest part of
the ungauged Cuito tributary (Fig.1). Based on the findings
for the two virtual stations with in-situ gauging we applied a
1 km corridor and the slope correction to the Cuito altimetry
data. We assume that the Cuito data have a standard error
similar to data at the gauged virtual stations, i.e. a RMSE of
approximately 0.4 m.

The simulated levels are scaled before being compared
with the remotely sensed water levels. The 1-D stream
flow routing component of SWAT accounts for one uniform
stream cross section geometry per subbasin and in our large
scale model setup these geometries must be representative
for reaches of several tens of kilometres. In reality, however,
stream geometries change within shorter distances and the
stream width at gauging stations or virtual stations is thus
not necessarily equal to the width assigned as representative
for the corresponding subbasin.

2.8 Pre-processing of SSM data

Because the SSM data give moisture conditions relative to
the wettest and driest conditions observed for each pixel,
assumptions are necessary to transform the data into water
content. We assume that the driest conditions observed cor-
respond to the residual water content of the soil. Quantifying
the residual water content accurately is difficult with the lack
of knowledge for the catchments soils. We use the value of
6 %, which is given byChesworth(2008) as a maximal value
for sandy soils. The wettest conditions are equally difficult
to quantify. We evaluate the SSM data using water content
either at field capacity or at saturation as wettest conditions
observed. In SWAT the water content at field capacity2fc is
calculated based on other soil properties as

2fc = 2aw + 0.4 · ρb · mc (2)

where2aw is the plant available water content,ρb is the bulk
density, andmc is the fraction of clay material of the soil. The
average field capacity for the Okavango catchment is 0.22,
the average porosity is 0.49. The differences in soil water
content resulting from the two possible assumptions for the
wettest conditions are obviously large (Fig.4).

Two important differences between the observed SSM
data and the conceptional setup of the SWAT model make
a direct comparison of simulated topsoil moisture with SSM
data difficult:

– SWAT does not simulate the residual water content of
soils. An exponential decay of soil evaporation is sim-
ulated when the soil water content falls below field ca-
pacity, allowing a complete drying of the soil because
the evaporative flux approaches a non-zero value for in-
finitesimal small soil water contents.

– Precipitation events can occur shortly before or after the
acquisitions of the SSM data, so that the measured data
would respectively reflect wet or dry conditions rela-
tive to the average of the day. The simulation in SWAT
operates with a constant daily sequence of precipita-
tion – percolation – evapotranspiration. We therefore
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use daily simulation outputs of soil moisture immedi-
ately after precipitation and at the end of the sequence
to get estimates of daily maximum and minimum soil
moisture conditions. A simulation with sub-daily time
steps would be necessary for a sound comparison of the
SSM data with the simulation. But this is impossible for
the Okavango catchment given the current precipitation
data situation.

A direct comparison of simulated and observed surface soil
moisture is thus presently not feasible in the case of the Oka-
vango. A relative comparison is possible if we assume that
the conceptual differences introduce biases that are constant
over time. This is the case for the residual water content
of the soil and for the water content at driest and wettest
observed conditions. Also, the relative timing of measure-
ments and precipitation events is expected to be on average
the same at least when comparing e.g. wet seasons with each
other. For the relative comparison we apply the linear trans-
formationf (x) =a · x +b to the observed SSM data, werea

andb are parameters constant in time andx are the observed
SSM data. The parameters are chosen so that the resulting
time seriesf (x) best fits the simulated values.

2.9 Parameter sensitivity and calibration

SWAT requires calibration of a number of parameters that
must be estimated. To objectively combine the informa-
tion contained in all in-situ and remotely sensed observa-
tional datasets we applied an automatic multi-objective cali-
bration. Because of the non-linearities contained in complex
hydrological models such as SWAT we further opted for a
global search optimization algorithm. We applied the Shuf-
fled Complex Evolution Metropolis algorithm (SCEM-UA)
developed byVrugt et al.(2003).

The parameters to be adjusted by the automatic calibration
are defined through a sensitivity analysis of the manually cal-
ibrated model. The sensitivity of the model outputs for dis-
charge, water levels, total storage variability and surface soil
moisture are evaluated using composite scaled sensitivities
(CSS,Hill and Tiedeman, 2007). The CSS of a simulated
time seriesf with n elements to a parameterp is defined as

CSS=
1

n
·

n∑
i=1

(∣∣∣∣1fi/fi

1p/p

∣∣∣∣) (3)

where 1p is the change in parameter value and1fi the
change in the time series at time stepi. SWAT parameters
selected for the automatic calibration are: the groundwa-
ter baseflow recession constant (ALPHABF), the effective
hydraulic conductivity of the channel alluvium (CHK(2)),
the soil evaporation compensation factor (ESCO), the plant
available water content of the soil (SOLAWC), the clay
percentage of the soil (CLAY), the bulk density of the soil
(SOL BD), the correction factor for infiltration from rivers to

Table 2. Parameter values found by manual and automatic calibra-
tion.

Parameter Manually Range allowed Automatically
calibrated for at automatic calibrated
value calibration value

ALPHA BFa 0.75 [7.5E-3 75] 0.45
ALPHA BFb 0.01 [1E-4 1] 7.3E-3
ALPHA BFc 1E-4 [1E-6 0.01] 3.9E-5
CH K(2)a 10 [0.1 1000] 49.2
CH K(2)b 60 [0.6 6000] 141.7
ESCOa 0.25 [2.5E-3 25] 0.46
ESCOb 0.8 [8E-3 80] 0.73
ESCOc 0.1 [1E-3 10] 5.0E-3
MultSOL AWC 1 [0.1 10] 3.38
MultCLAY 1 [0.1 10] 1.056
MultSOL BD 1 [0.1 10] 1.02
INFLFCT 0.2 [0.02 2] 0.24
CH N(2) 0.03 [3E-4 3] 1.13
MultSoilFactor 1 [0.1 10] 0.60

the shallow aquifer (INFLFCT), Manning’s roughness coeffi-
cient for channels (CHN(2)), and the multiplier to the thick-
ness of soil layers 2 and 3 (SoilFactor; the thickness of the
top soil layer is kept constant for consistency with the SSM
data). The first three parameters can vary independently for
different regions of the catchment. The parameters describ-
ing soil characteristics are calibrated using multipliers so that
the initial spatial variability resulting from soil type maps is
maintained. Bounds of the intervals allowed in parameter
calibration are reported in Table2.

The objective function to be minimized by the calibration
minimizes the differences between simulated and observed
time series of:

– Discharge at Andara and Rundu (MARE).

– Stages at Andara, Rundu and for the Cuito tributary
(MARE).

– Flow regime of the Cuito tributary, where the observed
regime is derived by subtracting discharge at Rundu
from discharge at Andara (WMRSE).

– Flow regime at Mucundi, where the observed regime
is based on historical data of the period from 1961 to
1974 (WMRSE). The comparison is justified because
flow regimes at the downstream station of Rundu are
very similar for the historical and the simulation period.

– Catchment total water storage (MARE).

– Surface soil moisture, where the goodness-of-fit is com-
puted after a linear transformation that best relates ob-
served and simulated data (WMAE).
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Fig. 5. Composite scaled sensitivities (CSS) of the main model outputs with respect to different model parameters. The parameters are sorted
in order of decreasing sensitivity with respect to discharge at Andara.

The acronyms in brackets stand for the goodness-of-fit
measures used. MARE is the mean absolute relative error.
WRMSE is the weighted root mean squared error. WMAE is
the weighted mean absolute error. The weighting for the lat-
ter two is achieved through division by the standard deviation
of the observed data. The final objective function consists of
the sum of the 9 goodness-of-fit measures. The combina-
tion of 9 objectives involves that a better fit for one objective
(e.g. discharge at Andara) could be achieved when not con-
sidering the other objectives. However, the model calibrated
for the sum of multiple objectives represents the best com-
promise for fitting all observed data. It is therefore expected
to achieve a better physical description of the catchment than
a model calibrated only for one objective.

We do not split the period with available input and valida-
tion data (2000–2009) into distinct calibration and validation
periods. Given that our model is developed to evaluate the
impact of future land use change, a proper validation would
require a “differential split-sample test” (Klemes, 1986), in
which calibration and validation periods differ in their land
use. Such periods are however not available. A simple “split
sample” test (Klemes, 1986) would be of limited relevance
for our study and decrease the calibration potential.

3 Results

Through the sensitivity analysis we find that discharge and
water levels are more sensitive than the water storage and that
the topsoil water content has little sensitivity (Fig.5). The
higher sensitivity of discharge can be explained by the non-
linearity relating percolation and river runoff in a catchment.
River runoff represents only a small fraction of the precipita-
tion inputs (approx. 6 % for the Okavango at Andara) so that
a small relative change in evapotranspiration can result in a

large relative change in runoff. By contrast, a small change
in evapotranspiration induces only a small change of total
storage. The only two parameters to which the total storage
variation is more sensitive than the other model outputs are
SURLAG and CHN1. Both are related to the delay of sur-
face runoff.

The reduced sensitivity of the topsoil water content is due
to the small volume of water that can be stored in this thin
layer and the sequential order of computation in SWAT. Only
few parameters have an influence on the topsoil water con-
tent, these are the parameters related to canopy interception
and to the topsoil layer itself. Soil moisture is extremely sen-
sitive to some of these parameters: these are AAW control-
ling the water retention capacity, SoilFactor a multiplier to
the soil thickness, and ESCO controlling the amount of soil
evaporative demand that can be taken from lower soil layers.

The ranking order of the parameters in terms of sensitivity
shows similar trends for simulated runoff, stages and storage
but has some noteworthy exceptions. ALPHABF, the base
flow recession constant controlling changes in groundwater
flow to the streams in response to changes in recharge, ranks
higher for discharge than for storage variations. CHN2, the
channel Manning’s roughness coefficient ranks much lower
for water levels than for discharge. These differences in sen-
sitivity show that the observational data of discharge, water
levels and total storage can be used to calibrate and validate
different parts of the hydrological model.

Values of the most sensitive parameters defined through
the manual and automatic calibrations are listed in Table2.
The two headwater regions have very different flow regimes
that result from different geologies. Thicker layers of Kala-
hari Sands in the eastern headwaters lead to a more baseflow-
dominated regime. An earlier and much higher flood peak is
observed for the western headwaters. In terms of model pa-
rameters, this resulted in a much lower baseflow recession
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Fig. 6. Observed and simulated discharge at Rundu and Andara. Simulations were forced with the three different precipitation products
(FEWS-Net, TRMM, ECMWF).

constant value for the eastern headwaters (ALPHABFb)
than for the western headwaters (ALPHABFa) during both
the manual an automatic calibration.

An interesting finding is that the three precipitation prod-
ucts used result in very different runoff simulations even after
scaling the precipitation products to the same long term mean
(Fig. 6, Table3). The FEWS-Net and ECMWF data result
in a far better fit of the observed discharge than the TRMM
dataset as shown by evaluations of the Nash-Sutcliffe model
efficiency coefficient (NSC,Nash and Sutcliffe, 1970). The
NSC of these two best performing precipitation datasets is
very simillar when computed over the entire 10-year simu-
lation period but the products result in very different qual-
ities of fit for inividual years. If the high flow period of
2008 is excluded for the NSC computation of the simulation
with FEWS-Net data, the NSC value improves from 0.37 to
0.63. Whereas the same year of 2008 is well simulated with
ECMWF data. The absolute value of the NSC should be as-
sessed with care because of this high sensitivity to strong de-
viations in individual years. The model’s capability of simu-
lating accurate discharge rates at the catchment outlet is lim-
ited using any of the three precipitation products. The typical
multiple flow peaks per year are captured but their amplitude
is often wrong.

The simulated water levels at Rundu and Andara, when
corrected for the differences between subbasin representative
and gauging station channel width (Sect.2.7), fit the in-situ
observations well in terms of timing of flood peaks (Fig.3).
The amplitudes are often less well reproduced, which is also
true for the simulated discharges. The comparison of sim-
ulated and remotely sensed water levels at Cuito, where the
latter is the only observational data source, is satisfactory.

Table 3. Nash-Sutcliffe model efficiency on simulated discharge at
Andara for the period 2000–2009. The precipitation products are
scaled to have identical average catchment precipitation over the
period.

Precipitation Including 2008 Excluding 2008
product high flow period high flow period

FEWS-Net, RFE 0.37 0.63
TRMM, 3B42 -3.0 −0.64
ECMWF, ERA-Interim 0.38 0.37

Simulated levels fall mostly within one standard deviation
(RMSE at the stations with in-situ gauging) of the remote ob-
servations. Over- or underestimations of the maximal flood
levels occur in the same years as for the Cubango tributary.

Despite the model’s limitations in simulating daily dis-
charges, the flow regimes of the Okavango River and its two
very different tributaries are satisfactorily simulated (Fig.7).
We note that the rising limbs of the simulated hydrographs
are a little too steep and that the annual maximal flows are
therefore too early. This feature could not be corrected dur-
ing the calibration of the model.

The comparison of simulated and observed surface soil
moisture shows notable disagreements. This is due to the
compatibility limitations between SWAT and the SSM prod-
uct detailed in Sect.2.8. Soil moisture during the dry season
is simulated as close to zero by the model but is of approx-
imately 20 to 30 % of saturation in the SSM data (Fig.4).
The relative comparison, using scaled SSM data, reveals that
there is good agreement of the onset of wet and dry seasons
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Fig. 7. Simulated and observed flow regimes of the Okavango River and its two main tributaries. Station locations are indicated in Fig.1.

and that within the wet period the timing of individual rises
and falls of the soil water content is often consistent. Two
important differences are identified. The SSM dataset shows
a slow increase at the end of the dry season before the more
pronounced increase at the beginning of the wet season. The
simulation misses this first increase. For the year 2008 the
simulated soil moisture of the first half of the wet season
is largely higher than the observed one. Both of these dif-
ferences have their analogy in the simulated catchment out-
flow. The simulated discharges tend to increase too late af-
ter the onset of the wet season and the high flows of 2008
are strongly over-predicted by the simulation. The over-
prediction of discharge in 2008 is most likely due to an over-
estimation of the FEWS-Net rainfall estimate for that year.

On the interannual time scale an agreement of the EN-
VISAT surface soil moisture with the total water storage
from GRACE is observed. The driest dry season is the one of
2005 in both datasets. In the following years the minimal val-
ues of each dry season are higher again in both observational
datasets.

Simulated water storage variations are derived from the
10 reservoirs considered in SWAT:

– Snow storage (irrelevant in our case)

– Canopy interception

– Surface runoff lag

– Lateral flow runoff lag

– Soil storage

– Vadose zone percolation lag

– Shallow aquifer storage

– Deep aquifer storage (inactivated in our case)

– River storage

– River bank storage.

We find that the lion’s share (98.7 %) of the simulated total
storage variations result from the soil-, vadose zone-, shallow
aquifer-, and surface runoff lag storages (Fig.8). The total
water storage variations derived from GRACE data have sim-
ilar dynamics but generally higher annual amplitudes. The
under-estimation of water storage amplitudes in the simula-
tion is often an indication for an under-estimation of the pre-
cipitation input. In the 2004 and 2007 flood seasons for ex-
ample, both discharge and total water storage are consistently
under-predicted by the model. Overall, there is a deficit of
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water in the simulation in these years, which is not caused by
too high river outflows. The deficit could be due to either too
high evapotranspiration rates or too low precipitation inputs.
Because of the under-estimation of the storage amplitude, the
likely reason for the insufficient fit in 2004 and 2007 is under-
estimation of the precipitation input. The simulation of the
2005 flood season therefore starts with too low total water
storage, but the simulated increase is of the same amplitude
as the increase in the GRACE data. Simulated and observed
discharges are also consistent in 2005. For 2006 we observe
a slight over-prediction of discharge whereas the total storage
amplitude is strongly under-estimated. Similar to 2005, the
simulation of the 2008 flood season starts with too low to-
tal water storage, because of under-estimated storage in the
previous year. Despite a strong over-estimation of runoff in
2008, the storage amplitude is not over-estimated. This in-
dicates that the excess runoff may be due to overland flow
processes.

An increasing trend might be visually identified in the rel-
ative water storage derived from GRACE data. This impres-
sion is however caused only by the wetter year 2008. A linear
fit of the GRACE data from 20 October 2003 to 20 Octo-
ber 2008 (20 October being the driest time for both years)
has indeed a slope of +13.5 mm yr−1 but a linear fit until
20 October 2007 has a slope of−9.1 mm yr−1. The sim-
ulation shows similar behaviour with slopes of respectively
+12.3 and−3.1 mm yr−1 for linear fits over the same peri-
ods. Our data do therefore not show any trends in the relative
water storage of the catchment.

4 Discussion

Given the poor performance of the model to simulate daily
discharges, an application for flow forecasting is not possi-
ble yet. We expect the main reason for this to be erroneous
precipitation amounts caused by lack of in-situ precipitation

measurements. The very large differences between the three
applied precipitation products indicate that accurate remote
measurements of precipitation over the Okavango catchment
are currently infeasible. The runoff-generating part of the
catchment does not include any operational precipitation
gauge and it is questionable if remote sensing products can
at all provide accurate quantitative precipitation amounts for
ungauged basins. The performance of the precipitation prod-
ucts is difficult to assess because over ungauged catchments
per se no in-situ measurements are available and in gauged
basins the data are already used for the generation of the pre-
cipitation product.

The relatively good fit of the flow regimes suggests that
the model is able to simulate the proper rainfall-runoff char-
acteristics of the catchment. The model can thus be used for
long term scenario analyses. It will be applied to study the
impact of land use changes through intensified agriculture on
catchment outflow.

The misfit of the total water storage amplitude simulated
with SWAT relative to the GRACE mascon observations may
be to a certain degree attributable to errors in the mason pro-
cessing. Because of the lack of alternative observational data
on total water storage variations the accuracy of the mascon
solutions cannot be verified.

The combination of multiple independent observational
datasets improves the parametrization of the hydrological
model. Equifinality still cannot be excluded in our model
because of the large number of parameters resulting from the
semi-distributed modelling approach. When applying the hy-
drological model for scenario investigations, this source of
uncertainty must be kept in mind.

It is remarkable that consistent time series of water lev-
els could be extracted for the tributaries of the Okavango
River approximately 150 m in width. Previously altimetry
data had been used only for lakes and major river systems
such as the Amazon. For relatively narrow rivers the al-
timetry data might not result in good results when processed
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automatically but with manual selections of the individual
target points based on knowledge of the water body position
good results can be achieved. These results are very promis-
ing, also because future satellite missions (Sentinel3, SWOT)
will operate at higher spatial resolutions thereby definitely
expanding the number of river basins for which satellite al-
timetry is a valuable data source.

5 Conclusions

We have set up a hydrological model for the poorly gauged
Okavango catchment using remotely sensed data with near-
global coverage and data from few in-situ stream gauges.
Simulated discharges, stages, surface soil moisture and stor-
age are found to have different model parameters to which
they are most sensitive. The remotely sensed datasets avail-
able for model calibration can thus be used to condition dif-
ferent parameters and equifinality of the parameter set can be
reduced.

The model is calibrated against all available remotely
sensed and in-situ observations following an automatic
multi-objective procedure and deploying a global search over
the parameter space. An objective combination of the diverse
available data is thus achieved.

The three employed precipitation products exhibit very
large differences in annual sums of precipitation estimates
for the catchment. Consequently they result in very dif-
ferent runoff simulations. We found that for our period
of investigation (2000–2009) and the Okavango catchment,
FEWS-Net RFE data perform better than TRMM 3B42 and
ECMWF ERA-Interim data. Discrepancy in specific peri-
ods between simulated and observed surface soil moisture
as well as total storage allowed identifying likely errors in
the precipitation data. The model’s accuracy in simulating
catchment outflow is largely diminished by the errors in the
precipitation data.

Satellite altimetry was used to retrieve water level fluctua-
tions at three locations in the catchment for channels approx-
imately 150 m in width. Comparisons with in-situ observa-
tions at two of these locations revealed a root mean squared
error of the remotely sensed levels of 0.4 m or below.
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