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Abstract. In Alpine catchments, snowmelt is often a ma-
jor contribution to runoff. Therefore, modeling snow pro-
cesses is important when concerned with flood or drought
forecasting, reservoir operation and inland waterway man-
agement. In this study, we address the question of how sensi-
tive hydrological models are to the representation of snow
cover dynamics and whether the performance of a hydro-
logical model can be enhanced by integrating data from a
dedicated external snow monitoring system. As a frame-
work for our tests we have used the hydrological model
HBV (Hydrologiska Byråns Vattenbalansavdelning) in the
version HBV-light, which has been applied in many hydro-
logical studies and is also in use for operational purposes.
While HBV originally follows a temperature-index approach
with time-invariant calibrated degree-day factors to repre-
sent snowmelt, in this study the HBV model was modified
to use snowmelt time series from an external and spatially
distributed snow model as model input. The external snow
model integrates three-dimensional sequential assimilation
of snow monitoring data with a snowmelt model, which is
also based on the temperature-index approach but uses a
time-variant degree-day factor. The following three varia-
tions of this external snow model were applied: (a) the full
model with assimilation of observational snow data from a
dense monitoring network, (b) the same snow model but with
data assimilation switched off and (c) a downgraded version
of the same snow model representing snowmelt with a time-
invariant degree-day factor. Model runs were conducted for
20 catchments at different elevations within Switzerland for
15 years. Our results show that at low and mid-elevations the
performance of the runoff simulations did not vary consid-

erably with the snow model version chosen. At higher eleva-
tions, however, best performance in terms of simulated runoff
was obtained when using the snowmelt time series from the
snow model, which utilized data assimilation. This was es-
pecially true for snow-rich years. These findings suggest that
with increasing elevation and the correspondingly increased
contribution of snowmelt to runoff, the accurate estimation of
snow water equivalent (SWE) and snowmelt rates has gained
importance.

1 Introduction

Snowmelt provides a dominant contribution to runoff and
groundwater storages in mountainous regions. In such areas,
modeling snow processes is crucial for resource management
as well as for flood and drought forecasting. Snow accumu-
lates and acts as a temporary storage of water that is released
as soon as snowmelt occurs. Since erroneous simulations of
snow accumulation can bias the amount and timing of sim-
ulated snowmelt, accurately modeling both processes is im-
portant for runoff predictions. Problems for modelers may
occur not only due to the great heterogeneity and variability
of these processes, but also due to the limited availability of
necessary observational data (Adam et al., 2009; Viviroli and
Weingartner, 2004; Viviroli et al., 2011), including erroneous
precipitation input data at higher altitudes (Wiesinger, 1993).
Additionally, computational resources often constrain opera-
tional applications as timely model outputs are required. To
cope with these challenges, many hydrological models make
use of the temperature-index (TI) melt method instead of
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the energy-balance approach, which has higher input data
requirements and is also computationally more demanding
(Vehviläinen, 1992; Kumar et al., 2013). TI models can re-
sult in sufficient model performance if evaluated at a daily
resolution and at the catchment scale (Lang and Braun, 1990;
Hock, 2003), provided they use a reasonable parameteriza-
tion (such as degree-day factor (DDF) and threshold tem-
perature). The basic concept of TI models is to use air tem-
perature as a proxy for the three energy sources that con-
tribute to snowmelt: incoming longwave radiation, absorbed
global radiation and sensible heat flux (Ohmura, 2001). The
methods differ in their number of parameters, such as thresh-
old values, to parameterize snowfall and melt, ranging from
implementations using 2–5, as in the HBV (Hydrologiska
Byråns Vattenbalansavdelning) model (Bergström, 1976), to
11 (Irannezhad et al., 2015) parameters. Inappropriate cal-
ibration of parameters will fail to accurately describe ac-
cumulation and melt rates and lead to a biased duration
of the snow season and incorrect melt-out dates (Seibert,
2003). Identifying catchment characteristics that impact hy-
drological responses (i.e., geology, soil types or land use
types) is also critical (Fontaine et al., 2002). Snow models
of high complexity have been developed for a great variety
of applications and their development is still ongoing. For
avalanche research or snow studies on a small scale, simu-
lating detailed processes within the snowpack is of great in-
terest and importance. Otherwise, for operational purposes,
which require short computation time and therefore cannot
represent snowpack processes in great detail, different ap-
proaches are used to simulate snow accumulation and melt.
Recently, various methods to assimilate observational snow
data for snow cover models have been developed. At the
point scale, model improvements due to assimilation of snow
water equivalent data from observations were already shown
(Magnusson et al., 2014). At the catchment scale and for op-
erational purposes, several studies evaluated the effect of ad-
ditional information from snow observations with different
approaches. Franz et al. (2014) evaluated data assimilation
based on a small number of ground-based observation sites
within a hindcasting framework. In contrast to predictions of
runoff under low-flow conditions, the overall skill of the fore-
casts could not be significantly improved. Jörg-Hess et al.
(2015) improved snow water and runoff volume predictions
by replacing simulated snow water equivalent at model ini-
tialization with data from measurements. Integrating snow
data sets within the calibration procedures is an additional
method to improve hydrological models as shown by Fin-
ger et al. (2015). A multiple objective calibration based on
daily runoff data and snow depth data converted to spatially
snow cover data, as introduced by Parajka et al. (2007), could
improve snow cover simulations, but not runoff simulations
compared to a single objective calibration based on daily
runoff data only. Andreadis and Lettenmaier (2006) showed
that the assimilation of remotely sensed snow cover area data
did not significantly improve the model performance during

accumulation, whereas for the snowmelt season small im-
provements were found. The authors concluded that assim-
ilating snow water equivalent data from observations might
be a more successful approach. Therefore, as the main objec-
tive of this study, we evaluated the sensitivity of a conceptual
runoff model (conceptual in terms of the linear reservoir con-
cept) to the external input of snowmelt data from three differ-
ent snow models of different complexities. Particularly, we
examined the benefit of snow water equivalent data assimila-
tion for hydrological applications in mountainous regions.

2 Data

To cover a wide range of elevations and different climatic
regions, for this study we chose 20 catchments spread over
Switzerland. All of them were at most minimally affected
by human activities, such as water regulation or abstraction.
A further crucial selection criterion was the availability of
the required data. Since, especially at high elevations, the
runoff regime of many catchments in Switzerland is affected
by man-made installations, the number of possible catch-
ments was highly limited. Catchments analyzed in this study
varied in size from 17 to 473 km2 and the mean elevations
of these catchments ranged between 560 and 2656 m a.s.l.
(Table 1 and Fig. 1). We grouped the catchments for our
analysis based on their mean elevation into three elevation
classes: below 1000 m a.s.l., 1000 to 2000 m a.s.l. and above
2000 m a.s.l. Runoff data measured at the catchment outlets
of these 20 catchments was provided and checked for plau-
sibility by FOEN (Federal Office of the Environment). Ac-
cording to the temporal resolution of the model output, we
aggregated the hourly runoff records into daily sums. For the
data assimilation for the full snow model used in this study
we considered daily snow depth measurements from both
manual and automatic monitoring stations (see red stars in
Fig. 1 for locations). All 320 stations used were part of either
the MeteoSwiss (Federal Office of Meteorology and Clima-
tology) or the SLF (WSL Institute for Snow and Avalanche
Research) snow station networks in Switzerland, covering el-
evations between 210 and 2950 m a.s.l. and located on open,
flat terrain. Out of approximately 600 available stations, only
320 were used after a careful selection process to avoid sites
that were influenced by wind or frequent sensor failures, or
known to systematically deviate from representative mea-
surements. Daily data from the morning measurements be-
tween 1 September 1998 and 31 August 2013 were carefully
checked for missing values or erroneous readings and cor-
rected where necessary. These values were replaced using a
stochastic gap filling model that accounts for data from the
same station before and after the gap, as well as for data from
neighboring stations at similar elevations. Temperature data
were obtained from 220 stations and interpolated using an
inverse distance weighting approach as described in Mag-
nusson et al. (2014), which considers both horizontal and
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Table 1. Characteristics of 20 Swiss catchments in this study.

Number Station name Area Min Max Mean Elevation Begin End
[km2] elevation elevation elevation class snowmelt snowmelt

[m a.s.l.] [m a.s.l.] [m a.s.l.] [month-day] [month-day]

2202 Ergolz – Liestal 276 305 1087 577 1 01-01 03-01
2126 Murg – Wängi 77 501 911 640 1 01-14 03-14
2034 Broye – Payerne, Caserne d’aviation 416 450 1402 721 1 01-14 03-14
2343 Langeten – Huttwil, Häberenbad 61 592 1032 757 1 01-14 03-14
2374 Necker – Mogelsberg, Aachsäge 89 649 1359 948 1 02-14 04-14
2321 Cassarate – Pregassona 74 286 1809 954 1 02-14 04-14
2603 Ilfis – Langnau 188 699 1695 1040 2 02-21 04-21
2634 Kleine Emme – Emmen 473 440 2261 1044 2 02-21 04-21
2179 Sense – Thörishaus, Sensematt 355 609 2028 1072 2 03-01 05-01
2609 Alp – Einsiedeln 82 845 1577 1096 2 02-21 04-21
2409 Emme – Eggiwil, Heidbüel 127 770 2007 1296 2 02-21 04-21
2300 Minster – Euthal, Rüti 59 918 1994 1345 2 03-07 05-07
2203 Grande Eau – Aigle 130 579 2830 1546 2 03-14 05-14
2605 Verzasca – Lavertezzo, Campioi 188 546 2590 1656 2 03-14 05-14
2276 Grosstalbach – Isenthal 43 931 2682 1794 2 03-14 05-14
2232 Allenbach – Adelboden 31 1360 2587 1907 2 03-14 05-14
2366 Poschiavino – La Rösa 17 1920 3005 2316 3 04-14 06-14
2304 Ova dal Fuorn – Zernez, Punt la Drossa 56 1797 2903 2337 3 04-14 06-14
2327 Dischmabach – Davos, Kriegsmatte 42 1772 2869 2349 3 04-14 06-14
2256 Rosegbach – Pontresina 67 1833 3721 2686 3 05-01 07-01

Figure 1. Locations of snow observation stations (red stars) and 20 studied catchments (white border lines) in Switzerland.

vertical distances between measurement stations and inter-
polated grid cells. A variable weighting factor was used to
determine the influence of horizontally near but vertically
distant stations. The resolution of the resulting temperature
grid data set was 1 km×1 km. Precipitation data were also
required as a gridded input data set. We used a daily product
(RhiresD) with a spatial resolution of 2 km×2 km available
from MeteoSwiss. The product is based on a dense precipita-
tion gauge network with approximately 500 stations within

Switzerland. Methodological details are described in Frei
and Schär (1998), Frei et al. (2006) and Isotta et al. (2014).
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3 Methods

3.1 Hydrological model

The hydrological model HBV (Bergström, 1976, 1992, 1995;
Lindström et al., 1997) in the version HBV-light (Seibert and
Vis, 2012) was used to simulate runoff at the 20 selected
catchments. HBV requires a time series of precipitation, air
temperature and potential evaporation to simulate runoff for a
specific catchment. Potential evaporation was calculated fol-
lowing the methods of Priestley and Taylor (1972). In the
HBV snow routine, precipitation is expected to be solid be-
low a certain temperature threshold and multiplied by a cor-
rection factor to account for possible undercatch and to com-
pensate for the missing snow interception. Snowmelt is usu-
ally calculated using the same threshold temperature and a
DDF. Up to a certain fraction, liquid water can be stored in
the snowpack and refreezes if temperatures are below the
threshold temperature. In our study, however, we disabled
this snow routine of the HBV model and replaced snowmelt
as well as rain input with data coming both from the exter-
nal snow model. Groundwater recharge and actual evapora-
tion were simulated in a soil routine depending on the actual
water storage. A response routine consisting of three linear
reservoirs and a routing routine using a triangular weight-
ing function follow. Runoff data observed at the outlet of all
catchments considered in this study were used for calibra-
tion and validation of the model. More details are available
in Seibert and Vis (2012). To evaluate the performance of
the hydrological model in response to the input from differ-
ent variants of the external snowmelt model, we focused our
analysis on the main melt period, denoted below as snowmelt
season. Although the onset and duration of the snowmelt
season vary from year to year, we have determined a fixed
snowmelt season for each individual catchment (Table 1),
based on the average timing of the first snowmelt runoff in
spring and the average duration until 75 % of the snow has
melted. Two approaches were chosen to split the available
runoff data into separate data sets for calibration and valida-
tion. The first approach was to use all years for calibration
except one, which was used for validation. This so-called
leave-one-out procedure was repeated so that each year was
used for validation once. The second approach was differ-
ential split sampling (Klemeš, 1986), where the snow-poor
and normal years were used for calibration and the snow-rich
years were used for validation. This separation into different
snow year groups was done individually for each catchment.
To optimize the parameter set of the hydrological model for
each catchment and each of the input data sets within the
calibration period, we ran a genetic calibration algorithm as
described in Seibert (2000) with 5000 model runs and 1000
runs for local optimization. This was done individually for
each of the above model configurations, as well as for the
benchmark model. As the objective function, we used the

Nash–Sutcliffe model efficiency (Nash and Sutcliffe, 1970)
computed for the catchment-specific snowmelt season.

3.2 Snow model

The external snow model framework, which we used in this
study instead of the snow routine built in the HBV model,
also simulates snowmelt by a TI approach but in addition
allows for integration of observational snow data using a
data assimilation scheme. While some details on the external
snow model framework are given below, a full description of
model and data assimilation methods is available in Magnus-
son et al. (2014). We applied three versions of this model,
denoted M1 to M3. Version M1 includes the full model and
data assimilation scheme (an approach unavailable in the in-
ternal snow routine of HBV), whereas M2 an M3 are down-
graded versions of M1 as described below. Several charac-
teristics are common to all model versions described below.
First, a threshold temperature differentiates whether precipi-
tation falls as snowfall or rain. However, the models allow for
mixed precipitation in a range close to the threshold tempera-
ture (see Eq. (10) and the corresponding description in Mag-
nusson et al., 2014). Second, fractional snow-covered area
(SCF) is parameterized using modeled snow depth and ter-
rain parameters that were derived from a 25 m digital eleva-
tion model according to Helbig et al. (2015). Third, all three
model versions allow for the snow cover to hold a fraction
of liquid water. Fourth, all model versions consider the influ-
ence of topography on snow distribution and redistribution in
mountainous terrain. Slope- and aspect-dependent correction
functions were trained using a set of high-resolution snow
depth maps from airborne lidar acquisitions in the European
Alps as presented in Grünewald and Lehning (2015), and
applied at a subgrid 25 m spatial resolution. This procedure
ensured accurate inference of areal mean snow depths from
snow and precipitation measurements on flat field sites. In
the following section, we describe the three versions of the
snow model used in this study:

– TI snowmelt model with data assimilation and time-
varying DDF (M1): this model is the same as that de-
scribed in detail in Magnusson et al. (2014). Using an
elaborated TI approach, daily snowmelt at each grid
cell was calculated if a certain threshold temperature
is exceeded. The DDF defines the possible melt rate
per day and per degree temperature above the thresh-
old. For M1, the DDF varied as a function of season
between a minimal [1.0 mm ◦C−1 day−1] and maximal
[4.5 mm ◦C−1 day−1] value using a sinusoidal function
(see Eq. (12) in Magnusson et al., 2014). The DDF
is independent of elevation. For the data assimilation,
the daily measured snow depth data at all stations were
first converted to snow water equivalents (SWE) using
a snow density model, which is based on the meth-
ods of Jonas et al. (2009) and Martinec and Rango
(1991). Second, by applying an optimal interpolation
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Figure 2. Cumulative snowmelt during the snowmelt season 2007
as calculated by the snow model method M1 (full model with data
assimilation, left), M2 (full model without data assimilation, mid-
dle) and M3 (simplified model, right). The sums between the three
model methods differ depending on the use of observational snow
data assimilation and the use of different DDFs.

approach, the SWE data were used to correct the com-
puted snowfall amounts. Finally, the simulated melt
rates and model state variables (SWE and liquid water
content) were updated using the ensemble Kalman filter
with the same SWE data. Both the optimal interpola-
tion scheme and the ensemble Kalman filter were set
up using spatially correlated error statistics. With such
an approach, often called three-dimensional data assim-
ilation, the point snow observations influence the grid-
ded simulation results even at locations lacking obser-
vations. For more details about the model, and the data
assimilation method in particular, see Magnusson et al.
(2014).

– TI snowmelt model with time-varying DDF without
data assimilation (M2): in this version, the same elab-
orated TI approach as in M1 was applied to simulate
snow accumulation and melt at each grid cell based on
the same input data grids as in M1. The DDF seasonal
variations are equal to those in M1. The only difference
concerns the data assimilation procedures, which were
switched off in M2, such that observed SWE data were
not used to update the initial estimates on snow accu-
mulation and melt rates.

– TI snowmelt model using a constant DDF without data
assimilation (M3): this version differs from M2 with re-
spect to the DDF. Here the DDF does not show sea-
sonal variations but is assumed to be constant over the
season. The average DDF of 2.5 mm ◦C−1 day−1 was
chosen, which is a good compromise if used for the
full winter season. For comparison only, complemen-
tary analyses were performed with the constant DDF of
4.0 mm ◦C−1 day−1, which is more appropriate if used
for a late snowmelt season only. Note that M3 repre-
sents the type of snow routine used in HBV except for
that DDF is a model parameter determined by calibra-
tion in HBV, whereas it is a pre-defined value in M3.

Replacing a TI model with another TI model, and not with
an energy-balance or snowpack-physics model, may appear
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Figure 3. Graphical explanation of how to calculate EPF. The yel-
low background shows a catchment-specific snowmelt season win-
dow within which the efficiency criteria were computed. The hori-
zontal line indicates the threshold of 1.5 times the mean observed
runoff (blue line) above which measured peak flow events (blue cir-
cles) are detected. Red stars present corresponding events of the
simulated runoff (dashed red line). See Sect. 3.3 for details.

unusual at first glance. However, if concerned with concep-
tual hydrological modeling at a daily timescale, the TI model
framework used here constituted an ideal testing environ-
ment. To provide daily snowmelt rates, the dynamic data as-
similation framework within M1 represents current state-of-
the art methodology in operational snow hydrological mon-
itoring. Since it accounts for measured snow depletion rates
at hundreds of monitoring sites, it provides the best possi-
ble input to the hydrological model. Even with data assimi-
lation switched off (M2), if validated against snow lysimeter
data at daily time steps, the performance is almost on par
with the output of top-notch energy-balance models (Mag-
nusson et al., 2015). Only the concept of using a constant
DDF (M3) could result in a severely downgraded perfor-
mance, as already seen by Lang and Braun (1990). Hence,
the triplet, M1, M2, M3, provides a ranked set of input op-
tions, which allows for an evaluation of the sensitivity of
conceptual hydrological modeling on the input from different
types of snow models. This ultimately was the purpose of the
study, rather than testing the performance of a specific runoff
model (i.e., HBV). As mentioned above, HBV originally uses
a TI snowmelt routine, which is similar to our external model
version M3. However, as part of HBV, the constant DDF is
a free parameter to be optimized during calibration of the
snowmelt season. Hence, to provide a benchmark for our per-
formance tests, we also ran the HBV model with the original
snow routine switched on. We used these runs as an upper
benchmark, since the HBV snow routine was tuned by cal-
ibration to allow for the maximum possible performance of
the runoff model for each individual catchment. In contrast,
we created a lower benchmark by assuming all precipitation
to be rain, i.e., a no-snow-model scenario. These two bench-
marks allowed for scaling of the performances, which were
achieved when using M1 to M3 to provide input to HBV. All
model variants were run for the whole study period on a daily
time step at 1 km spatial resolution. During the snowmelt sea-
son, the three snow model methods created individual spatial
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pattern of simulated snowmelt. As an illustrative example,
the cumulative sums of snowmelt between 1 February 2007
and 30 April 2007 are shown in Fig. 2. As expected for the
snowmelt season, M2 yielded higher amounts of snowmelt
compared to M3 due to differences in the DDF. In this par-
ticular year, the observations used for the assimilation did not
support the high melt rates as predicted by M2, resulting in
M1 to calculate lesser amounts of snowmelt.

3.3 Validation methods

Timing of snowmelt onset and of runoff events due to
snowmelt affects the availability of water resources and influ-
ences flooding and droughts (Semmens and Ramage, 2013).
Therefore, it is crucial to simulate and to evaluate the timing
of streamflow accurately when comparing snowmelt mod-
els. Several efficiency criteria are used in the literature for
evaluating hydrological models and should be selected care-
fully depending on the aim of the validation (Krause et al.,
2005). To assess the performance of the hydrological model
in combination with the input options from our set of snow
models, we chose the following two criteria. First, since we
were interested in how precise single peak flow events due
to snowmelt could be simulated when integrating data from
the different snow model approaches, we used the “peak
flow efficiency for snowmelt season” EPF. Figure 3 illus-
trates the procedure to calculate this measure. Observed peak
flow events during the snowmelt season (yellow period in
Fig. 3) that exceed a certain threshold (defined as 1.5 times
of the mean runoff during snowmelt season; horizontal line
in Fig. 3) were picked and denoted as Qpeak obs i (blue circles
in Fig. 3). The maximum simulated runoff in a time window
of 1 day before and after each of the n observed peak flow
events was taken as simulated reference value Qpeak sim i (red
stars in Fig. 3). The reference values did not necessarily have
to be local peaks or greater than a certain threshold (Eq. (1);
Seibert, 2003).

EPF = 1−

∑n
i=1

∣∣Qpeak obs i −Qpeak sim i

∣∣∑n
i=1Qpeak obs i

(1)

Additionally, the frequently used Nash–Sutcliffe efficiency
of runoff EQ (Eq. 2) according to Nash and Sutcliffe (1970),
which is also supposed to be sensitive to peak flow events
(Krause et al., 2005), was chosen and applied to the defined
snowmelt season.

EQ = 1−
∑m

i=1(Qobs i −Qsim i)
2∑m

i=1(Qobs i −mean(Qobs))2 , (2)

where i represents all (1 to m) days within the snowmelt
season, and Qobs i and Qsim i are observed and simulated
runoff at day i, respectively. This was also used as the ob-
jective function for the genetic calibration algorithm (GAP-
optimization) within the hydrological model framework.
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Figure 4. Observed and modeled runoff for the Dischma catchment
for 1999, as well as water input from snowmelt and rain modeled
with method M1. The upper benchmark model BM in red.

4 Results and discussion

Both efficiency metrics were calculated for (a) each catch-
ment and (b) each of the two calibration experiments. The
performance statistics are discussed separately for each of
the three groups of catchments depending on mean elevation.

4.1 Example of runoff simulation for a representative
catchment

To look for differences between the three snow model meth-
ods, individual catchments and years were selected. Repre-
senting a catchment at high elevations, results for the Dis-
chma catchment (EZG 2327, gauge Davos Kriegsmatte) with
a mean elevation of 2349 m a.s.l. are shown in Fig. 4. The yel-
low background displays the catchment-specific snowmelt
season during which the bulk of the snowmelt typically oc-
curs. The blue and gray lines at top of the graph indicate the
snowmelt input to the hydrological model from M1 exclud-
ing and including rain, respectively, in this example for the
record-high snow year 1999. The observed runoff is shown
by the black curve, while the different colored curves indicate
the simulations with M1, M2 and M3. The curves as well as
the performance metrics achieved by the differential split-
sample experiment demonstrate that for this catchment, the
M1 model as input to the hydrological framework provided
the best runoff simulations, even though the differences are
small. Note however, that in this example M1 particularly
outperforms the other models in the month of July, which is
outside the standard evaluation period.

4.2 Model performance across elevation classes:
leave-one-out sample

First, we used the leave-one-out approach to calibrate the hy-
drological model. The leave-one-out approach represents a
typical scenario in operational conceptual runoff modeling,

Hydrol. Earth Syst. Sci., 20, 3895–3905, 2016 www.hydrol-earth-syst-sci.net/20/3895/2016/



N. Griessinger et al.: Assessing the benefit of snow data assimilation for runoff modeling 3901
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0
E P

F

<1000 m 1000‒2000 m >2000 m

M1
M2
M3 0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
E Q

<1000 m 1000‒2000 m >2000 m

M1
M2
M3

Figure 5. Results of the leave-one-out approach. EPF (left panel)
and EQ (right panel) for each elevation class and snowmelt model.
For the individual elevation classes and melt models, the left box
plots (darker colors) show the results for the calibration period, and
the right box plots (lighter colors) show the results for the valida-
tion period. The whisker boxes represent the median (center line),
the interquartile range (25th–75th percentile; box outline) and high-
est/lowest performance within the interquartile range (±1.5 times
of the interquartile range; whiskers). The benchmark performance
is denoted by a solid red line (upper benchmark) and a dashed red
line (lower benchmark), and the latter only displayed if within the
range of the axis limits.

i.e., to use as much data as possible for calibration and to ap-
ply the resulting parameter values to the current season. Re-
sults grouped according to mean catchment height are pre-
sented below (Fig. 5). Using this calibration procedure for
catchments with mean elevation below 1000 m a.s.l., the hy-
drological model showed good results independent of which
snow model was used as input to the hydrological model
framework. Even without using a snow model at all (i.e.,
the lower benchmark), the runoff model resulted in lower but
still positive performance values, indicating that the choice
of snow model within a conceptual runoff modeling frame-
work is of less importance when dealing with catchments
at lower elevations. Similarly for catchments with mean el-
evation between 1000 and 2000 m a.s.l. the differences be-
tween the three model runs were small. While EPF levels
were maintained relative to our assessment for catchments
below 1000 m a.s.l., they were separated more clearly from
the benchmark model runs, which dropped in performance.
EQ values, on the other hand, decreased for all the M1, M2,
M3 and the benchmark model runs. Only for the highest el-
evation class did the results based on M1 significantly out-
perform the other model runs, and even reached better EPF
values than most simulations at lower elevation classes. Even
the model runs based on M2 performed better than those
based on M3. This shows that the benefit of better snowmelt
input data for conceptual runoff modeling only seems to pay
off if considering catchments above a certain elevation. At
lower elevation, differences between the model input options
could be mitigated by way of the calibration procedure. Fur-

ther, while results based on M1 showed a relatively con-
stant performance across all elevation classes in both EPF
and EQ, this was not the case for results based on M2 and
M3, which deteriorated with increasing elevation. Looking
at all elevation classes, the median performance of the M1
runs was always higher than the upper benchmark. This was
also mostly the case for M2 and M3. This result shows that all
versions of the external snow model performed unexpectedly
well in combination with the hydrological framework even
though they were not included in the calibration procedure.
Finding instances where even M3 (which uses a prescribed
DDF) outperforms the upper benchmark model (which relies
on a calibrated DDF) may appear counter-intuitive. How-
ever, note that M1, M2, M3 have been particularly trained
for an optimal performance in the Swiss Alps, e.g., regard-
ing the representation of processes like liquid water con-
tent, refreezing, cold content dynamics, the partitioning of
rain and snow, and redistribution of snow in steep terrain.
Further, calibrating HBV for the melt season only could re-
sult in a DDF that is too high during the snow accumula-
tion period, which would inhibit an accurate timing of the
meltwater release (c.f. Fig. 4). On the contrary, M3 features
a more moderate DDF of 2.5 mm ◦C−1 day−1, allowing for
a more balanced performance over the entire snow season.
The above results demonstrate a benefit of using an advanced
snowmelt modeling system in the context of conceptual hy-
drological modeling, even if the benefit seems comparably
small and restricted to catchments above a certain elevation.
Other studies that evaluated the influence of integrating snow
water equivalent data into hydrological models showed sim-
ilar results (Finger et al., 2015; Jörg-Hess et al., 2015). Only
a few studies have used direct assimilation of ground-based
snow data. Due to limited availability of ground observa-
tions, assimilating remotely sensed snow data is a more com-
mon practice but requires further inversion methods, which
is quite challenging to implement and induces additional un-
certainties (Andreadis and Lettenmaier, 2006). Several stud-
ies used satellite observations of snow cover extent in differ-
ent assimilation schemes to update snow models. Clark et al.
(2006) as well as Thirel et al. (2013) could slightly improve
runoff predictions by assimilation of snow-covered area us-
ing the ensemble Kalman filter and the particle assimilation
filter, respectively. As in the above studies, we focused on
a catchment-specific snowmelt season and used two perfor-
mance measures that evaluated the ability of the models to
capture peak flow events, among other characteristics of the
hydrograph. Simulating such events is of great importance,
especially for operational flood forecasting purposes. While
the performance of well-calibrated models may be adequate
independent of model complexity (Hock, 2003; Magnusson
et al., 2015), we are particularly interested in the model per-
formance in extreme years, when the snowmelt contribution
greatly increases flood risks. This is why in the second set
of modeling experiments we singled out snow-rich years as
a validation data set to generate both a more challenging and

www.hydrol-earth-syst-sci.net/20/3895/2016/ Hydrol. Earth Syst. Sci., 20, 3895–3905, 2016



3902 N. Griessinger et al.: Assessing the benefit of snow data assimilation for runoff modeling
0.

5
0.

6
0.

7
0.

8
0.

9
E P

F

<1000 m 1000‒2000 m >2000 m

M1
M2
M3 0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
E Q

<1000 m 1000‒2000 m >2000 m

M1
M2
M3

Figure 6. Results of the differential split-sample approach. EPF
(left panel) and EQ (right panel) for each elevation class and
snowmelt model. For the individual elevation classes and melt mod-
els, the left box plots (darker colors) show the results for the calibra-
tion period, and the right box plots (lighter colors) show the results
for the validation period. The whisker boxes represent the median
(center line), the interquartile range (25th–75th percentile; box out-
line) and highest/lowest performance within the interquartile range
(±1.5 times of the interquartile range; whiskers). The benchmark
performance is denoted by a solid red line (upper benchmark) and a
dashed red line (lower benchmark), and the latter only displayed if
within the range of the axis limits.

more relevant test scenario. For the snow-rich years, we se-
lected the 6 years with the highest cumulative snowmelt in-
dividually for each catchment.

4.3 Model performance across elevation classes:
differential split sample

For the differential split-sample approach, snow-rich years
were used to validate the runoff models. As expected, the
analysis using the differential split-sample approach revealed
similar performance patterns compared to the leave-one-out
approach, but with increased differences between model runs
(Fig. 6). As seen before, at low and mid-elevation classes the
differences between the three model versions as well as be-
tween calibration and validation were comparably small. The
median values of efficiencies for each model version ranged
between 0.7 and 0.8 (EPF) respectively 0.75 and 0.85 (EQ).
As seen before, at high elevations, model results based on
M1 were superior (significantly for EQ) to those based on
M2, which in turn outperformed the model runs based on
M3. However, the differences between the three runs were
considerably larger than those seen with the leave-one-out
approach. Another notable difference between both calibra-
tion methods was that the differential split-sample approach
led to significantly higher EQ for validation years compared
to calibration years, while the opposite was the case when us-
ing the leave-one-out approach. Both findings strongly sug-
gest that the benefit of advanced snowmelt input data for
conceptual runoff modeling is particularly valuable in situ-
ations that feature a strong snowmelt component (high el-

evation, snow-rich years). Both EPF and EQ for M1-based
model runs show an exceptional performance at high eleva-
tion for validation years, which highlights the value of snow
data assimilation when concerned with forecasting snowmelt
related floods. An additional analysis was performed with
M3 using a DDF of 4.0 mm ◦C−1 day−1 (results not included
in figures). This is a typical value found in the literature
for high elevations with melting conditions later in the sea-
son (Martinec et al., 1983). As expected, compared to the
standard DDF of 2.5 mm ◦C−1 day−1 in M3, the additional
model runs resulted in slightly better performance metrics at
high elevations with a later onset of snowmelt (catchments
above 2000 m a.s.l.), but considerably worse performance in
all other model runs.

4.4 Model performance for high elevation catchments:
leave-one-out sample

The validation of the differential split-sample experiment
showed that the three external snow models provided the
best runoff simulations for snow-rich years, specifically for
catchments with a mean elevation of above 2000 m a.s.l. In
a further analysis, we ordered the single validation years
individually by catchment for the leave-one-out approach
from snow poor to snow rich based on peak SWE. This
procedure allowed testing of whether there was a trend in
the runoff performance metrics associated with the snow
amount of single years. Such a trend was indeed evident,
as seen in Fig. 7. Independent of the snow model used, the
best results were achieved when validating the model perfor-
mance during snow-rich years regarding both EPF and EQ.
The performance measures discussed above were computed
for a catchment-specific pre-defined fixed snowmelt season,
which was based on the typical timing of observed snowmelt
runoff. Extending the snowmelt season to 120 days gave sim-
ilar results (data not shown) with the same relative differ-
ences between M1, M2, M3, but with a lower overall per-
formance due to the decreasing relevance of snowmelt as the
snow-covered area declines. While our approach allowed us
to focus on the sensitivity of runoff modeling to different ap-
proaches for estimating snowmelt, it has four main impli-
cations to the interpretation of the results. First, EQ values
tend to be lower if calculated over a short period, and values
may not be comparable to EQ data from assessment of multi-
year or multi-season data sets, in particular if analyzing daily
runoff data that do not encompass diurnal variations. Second,
within a pre-defined season, the variation of a time-varying
DDF as used in M2 is small. Especially at low elevations and
early in the year, the DDF of M2 and M3 do not differ much
and therefore produces similar runoff simulations with com-
parable performance. According to Lang and Braun (1990)
and Magnusson et al. (2015), a clearer benefit of using a
flexible instead of a fixed DDF would have been expected
if used within a longer time window. Third, at low eleva-
tions snowmelt may occur sporadically and not necessarily
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Figure 7. Results of the leave-one-out approach for catchments with mean elevation above 2000 m a.s.l. Median (solid lines) and interquartile
(25th–75th percentile; shading) range of EPF (left panel) and EQ (right panel) for validation years ordered from snow-poor (index= 1) to
snow-rich (index= 15) years.

within a pre-defined season. At high elevations, it is also pos-
sible that the main melt does not occur within the catchment-
specific snowmelt season due to longer melt-out duration of
extremely snow-rich years. Consequently, if snowmelt oc-
curred outside of the validation period, it would not affect
the performance statistics. This may have partly suppressed
differences between the three different snow models. Finally,
note that seasonal EPF and EQ statistics are two metrics out
of several possible evaluation criteria. While we also tested
other metrics, these were not further integrated to the dis-
cussion, given that the results were similar compared to the
performance data presented above.

5 Conclusions

Based on daily runoff data measured over a period of
15 years at 20 catchments in Switzerland, we evaluated the
sensitivity of a conceptual hydrological modeling frame-
work to snowmelt input from snow models of different com-
plexity. The most complex snow model integrated three-
dimensional sequential assimilation of snow monitoring data
with a snowmelt model based on the temperature-index ap-
proach. In contrast, the simplest snow model represented
snowmelt with a constant degree-day factor, and did not in-
clude any data assimilation. The snow models were com-
bined with the HBV model in the version HBV-light (Seibert
and Vis, 2012) to produce a runoff record. The performance
of the HBV runs based on snowmelt data from the snow
models was assessed by way of performance metrics eval-
uated during the snowmelt season only. Our results showed
that advanced methods to calculate snowmelt as input to con-
ceptual runoff models only improved model performance if
considering snow-dominated catchments. At low elevations,
differences between the model input options were found to be
minor. For higher elevation catchments, however, snowmelt
input from the data assimilation framework consistently pro-
vided the best results. Further analysis demonstrated con-

siderably higher performance metrics for snow-rich years as
compared to years with little snow. In contrast to earlier stud-
ies, which have shown that assimilation of snow-covered area
only has limited impact on runoff simulations, our results
indicate that the assimilation of snow water equivalent data
can have a larger benefit for accurate streamflow predictions.
This finding highlights the value of choosing the appropriate
snow data assimilation methods, and perhaps even more im-
portant, selecting the correct variable for assimilation when
concerned with operational forecasting of snowmelt related
floods.
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