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Abstract. Accurate estimation of evapotranspiration (ET) is
essential for hydrological modeling and efficient crop wa-
ter management in hyper-arid climates. In this study, we ap-
plied the METRIC algorithm on Landsat-8 images, acquired
from June to October 2013, for the mapping of ET of a 50 ha
center-pivot irrigated alfalfa field in the eastern region of
Saudi Arabia. The METRIC-estimated energy balance com-
ponents and ET were evaluated against the data provided by
an eddy covariance (EC) flux tower installed in the field. Re-
sults indicated that the METRIC algorithm provided accurate
ET estimates over the study area, with RMSE values of 0.13
and 4.15 mm d−1. The METRIC algorithm was observed to
perform better in full canopy conditions compared to partial
canopy conditions. On average, the METRIC algorithm over-
estimated the hourly ET by 6.6 % in comparison to the EC
measurements; however, the daily ET was underestimated by
4.2 %.

1 Introduction

In the Kingdom of Saudi Arabia (KSA), the agricultural sec-
tor consumed about 85 % of the total freshwater used in
2008 (Al-Kahtani and Ismaiel, 2010). This share increased
to 90 % by 2012 (Elnesr and Alazba, 2013). Hence, efficient
use of water for crop production is essential to fulfilling the
needs of the increasing population in the KSA (Hussain et
al., 2010; Praveen et al., 2012). Various studies (Kassem and
Al-Moshileh, 2008; Atta et al., 2011; Al-Ghobari et al., 2013;

Mohammad et al., 2013) recommend the development of ad-
vanced irrigation systems for improving agricultural water-
use efficiency in the kingdom. As an example, a reduction
in the irrigation water of 30–40 % could be attained when
sprinkler irrigation is used instead of traditional methods.
An additional saving of 10–25 % can be reached with drip
irrigation systems (Rizaiza and Al-Osaimy, 1996). Further-
more, implementation of recent innovative precision irriga-
tion technologies, in conjunction with the accurate estima-
tion of crop water requirements through remotely sensed
data, could significantly enhance the efficient use of irriga-
tion water in the agricultural sector.

Evapotranspiration (ET) measurements play a crucial role
for water management under hyper-arid conditions, partic-
ularly in irrigation scheduling, hydrologic modeling and
drought monitoring (Bastiaanssen et al., 2000; Allen et al.,
2005; Chavez et al., 2005; Senay et al., 2008; Santos et al.,
2010; Anderson et al., 2012; Mkhwanazi and Chavez, 2012;
Gowda et al., 2013; Lagos et al., 2013; Moorhead et al.,
2013; Yee et al., 2014; Madugundu et al., 2017). In semi-arid
climates, ET is characterized as one of the most significant
components influencing the hydrologic cycle. Hence, accu-
rate determination of ET is considered as one of the crucial
and essential factors influencing the optimal management of
crop water use through different irrigation systems (Hoed-
jes et al., 2008). Also, the accurate determination of the en-
ergy balance (EB) components such as sensible heat (H ), soil
heat (G) and latent heat (LE) fluxes is of great value for wa-
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ter management practices in these arid and semi-arid regions
(Zeweldi et al., 2010).

The ET can be estimated with different direct or indi-
rect methods such as the lysimeter, the water balance, the
Bowen ratio, the eddy covariance (EC) and the scintillometer
(SC) methods (Allen et al., 2011a; Rana and Katerji, 2000).
Lysimeter and EC methods provide direct measurements of
ET, while other methods rely on models to estimate heat
fluxes using measurable parameters (FAO, 1977; Drexler et
al., 2004; Chavez et al., 2009a). The FAO-56 (Allen et al.,
2007) modeling for instance, is widely used in numerous
studies. This method consists of estimating crop evapotran-
spiration (ETc) for a crop canopy using a reference evapo-
transpiration (ETr) and a crop coefficient (Kc). The ETr is
computed based on the Penman–Monteith method. The FAO-
56 computed actual ET can be used to monitor spatially dis-
tributed ET developed with remote sensing (RS) approaches
(Courault et al., 2005).

Recently, EC systems have gained a lot of popularity in the
determination of ET. Several studies have been conducted to
investigate the effectiveness of the EC systems in estimat-
ing accurate values of H , LE and ET. Yet, the method is
often constrained by the lack of surface energy budget clo-
sure. For example, Chavez et al. (2009b) reported that the
EC measured EB components (H and LE) underestimated
about 30 % of these components as inferred from the large
weighing lysimeter on an irrigated cotton field in the USA.
Similarly, Twine et al. (2000) reported that carbon dioxide
fluxes measured over a sorghum crop with four EC systems
(equipped with the same models of instruments), underesti-
mated the reference values with the same factor when EB
closure was not achieved. However, the EB closure can be
improved by adjusting the EC data through the Bowen ra-
tio (Ding et al., 2010; de Teixeira and Bastiaanssen, 2012).
Ding et al. (2010) reported that the EC measured ET (ETEC)

compared to the lysimetric data (ETL) of maize crop showed
an EB closure of up to 84 % for the daytime fluxes. How-
ever, the forced EB closure with Bowen ratio data improved
the EB closure from 79.2 to 95.2 %. Therefore, adjusting ET
values measured by the EC system, using the Bowen ratio
method improves the accuracy.

In situ point measurements provide accurate ET values;
however, these methods are limited to small areas only. Al-
ternative methods, such as RS methods, have been success-
fully used for assessing the spatial distribution of ET on
larger scales, and over different landscapes (Bala et al., 2013;
Farah et al., 2004; Colaizzi et al., 2006) and agricultural
fields (Kalma et al., 2008; Gowda et al., 2008). One of the
most commonly used RS methods for the determination of
ET is the Surface Energy Balance Algorithm for Land (SE-
BAL) method. This method has been demonstrated to as-
sess ET with an accuracy ranging from 67 to 97 % (Bas-
tiaanssen et al., 2005). Recently, several SEBAL versions
have been developed and successfully implemented in dif-
ferent water management practices (Paul et al., 2013). Ex-

amples of such methods include the Mapping Evapotranspi-
ration at high Resolution and with Internalized Calibration
(METRIC), the Modified SEBAL (M-SEBAL) method, the
Simplified Surface Energy Balance (SSEB) method, the Re-
mote Sensing of Evapotranspiration (ReSET) method, the
Surface Energy Balance System (SEBS) method and the Sur-
face Energy Balance with Topography Algorithm (SEBTA)
method. The METRIC method, which was developed to de-
termine the quantity and spatial distribution of ET over large
areas, is considered as one of the most appropriate models
for the continuous estimation of ET over crops during the
growing season (Allen et al., 2007; Patil et al., 2015).

Over the past decades, several hydrological studies in the
KSA have been directed towards accurate RS-based ET esti-
mates on various spatial and temporal scales. As an example,
Mahmoud and Alazba (2016) processed a spatial ET dataset
over western and southern regions of Saudi Arabia with SE-
BAL on MODIS. However, the quantification of ET from
satellite data in conjunction with EC data is still limited in
the KSA. As the eastern region of the KSA experiences se-
vere dry conditions, long-term EC data in conjunction with
Landsat-8 data will enhance the accurate estimates and distri-
bution of ET over various landscapes and agricultural fields.
In view of the pressing need to assess the productivity of agri-
cultural fields in the KSA, this study was undertaken in an
attempt of apply the METRIC model on Landsat-8 imagery
for the determination of spatial and temporal variability in ET
aiming at optimizing the quantification of crop water require-
ment and the formulation of efficient irrigation schedules.

2 Materials and methods

2.1 Study area

The study was carried out on a 50 ha alfalfa field, which
was one of the 48 agricultural fields of Todhia Arable Farm
(TAF) located about 250 km southeast of Riyadh, the capi-
tal city of Saudi Arabia, at coordinates of 24◦11′00′′ E and
48◦56′14.6′′ N (Fig. 1). The farm was under an arid climate
with hot summers (40± 2 ◦C) and cold to moderate winters
(15± 3 ◦C) and a mean air temperature of 35 ◦C. The annual
rainfall was about 90 mm, most of which occurred in the pe-
riod from November to February. The soil of the study area is
sandy loam soil with a mean value of soil pH of 7.58 and soil
electrical conductivity (EC) of 2.36 dS m−1. The field is in a
flat terrain with slight undulations in the desert environment
with an elevation ranging between 329 and 453 m. The ma-
jor crops cultivated in the study area were alfalfa (Medicago
sativa L.), Rhodes grass (Chloris gayana Kunth) and corn
(Zea mays. L). Due to the high crop water demand combined
with the highly erratic rainfall, irrigation is a prerequisite for
crop growth. It is entirely provided using groundwater de-
livered by center-pivot irrigation systems. The experimental
field was cultivated with an alfalfa crop (Green Master) sown

Hydrol. Earth Syst. Sci., 21, 6135–6151, 2017 www.hydrol-earth-syst-sci.net/21/6135/2017/



R. Madugundu et al.: Performance of the METRIC model 6137

Figure 1. Location map of the study area.

on 6 December 2012 at a seeding rate of 20 kg ha−1, and was
irrigated through a center-pivot system using a groundwa-
ter of mean values of EC, pH and sodium absorption ratio
of 2.917 dS m−1, 7.82 and 1.42, respectively. In the study re-
gion, the alfalfa crop is usually cultivated for 2 years, with, on
average, a cutting each 30–35 days during summer periods
and every 45–60 days during winter periods. The mean al-
falfa hay yield for each cut is estimated to be 2.0–3.0 kg ha−1

during winter and 4.0–5.0 kg ha−1 during spring or summer
periods (Kayad et al., 2016).

2.2 Eddy covariance (EC) flux data

The EC system was installed on 27 May 2013 over the se-
lected alfalfa field. The EC flux tower was powered by solar
panels with rechargeable batteries. The meteorological and
gas exchange (flux) measurements were made at a height of
3.67 m. The EC was equipped with response sensors: includ-
ing an open-path infrared gas analyzer, IRGA (LI-7500); a
3-axis ultrasonic anemometer (3D Master Pro), Gill Instru-
ments; a net radiometer (CNR-4, Kipp and Zonen); and a
quantum sensor. Soil heat flux plates (HFP01, Hukseflux)
were installed at various depths (5, 10, 15, 20, 25 and 30 cm).
The sonic anemometer and IRGA were set to record flux data
logged at 10 Hz (CR3000) and stored as 30 min files (*.ghg).
Data on crop condition, growth and phenological parameters
were recorded during the frequent field visits.

The recorded EC data for the period from June to Oc-
tober 2013 was used for this study. The collected 30 min
raw datasets (∗.ghg files) were processed with the “advanced
mode” of an automated software program EddyPro (ver. 5.0)
developed by LI-COR Biosciences, USA. With the EddyPro,
wind speed measurement offsets are processed, axis rotation
for tilt is corrected, detrending is made for turbulent fluc-
tuations, the time lag is optimized, spectral corrections are
made and footprint estimations are made following the pro-
cedures described in the EddyPro software instruction man-
ual (LI-COR). As the sonic anemometer was tilted 243◦ to-
wards the north, an angle-of-attack correction for wind com-

ponents was also performed. During the filtering process, EC
data were excluded whenever there was a condensation, a
covariance with missing values (−9999) or periods with in-
correct sonic temperatures (i.e., > 50 ◦C). The missing data
were filled with the standard methods (basic interpolation)
as described in the manual (LI-COR). The missing data were
linearly interpolated when gaps were no longer than 1 hour,
whereas gaps due to a malfunction of the EC system for
longer than 24 h were not removed. Subsequently, the pro-
cessed EC data were used for the computation of the ET (i.e.,
ETEC).

2.3 Footprint analysis (FTP)

As described in Nappo et al. (1982), the footprint (FTP) is
“the extent to which a set of measurements was taken in a
given space-time domain”. In this study, an effort was made
to understand the spatial representation area or FTP of flux
measurements from the EC system. The FTP mainly depends
on the function of surface roughness with respect to the wind
speed, direction and wind shear. Thus, the FTP for a sin-
gle 30 min data record will be unique and may vary for the
next segment as atmospheric conditions change. Moreover,
the shape and length of the FTP may vary with upwind di-
rection, as well as the relative weights (magnitude of flux
contributions); in each area inside the FTP, the weighted FTP
function is used to attribute the measured flux to a weighted
areal estimate (Gockede et al., 2006). The areas very close
to the EC tower may contribute less to the total flux sensed
by the instrument, whereas areas away (upwind) from the EC
tower contribute significantly (up to a point where a peak is
reached). Thereafter, the contribution may decrease rapidly
(Zhao et al., 2014).

Depending on the complexity, numerous FTP estima-
tion models have been presented in the literature. The
widely used Flux Source Area Model (FSAM), described by
Schmid (1994), was used in this study for the determination
of FTP. The FSAM was computed based on contributions
(up to 90 %) of the sensed fluxes by the EC tower. Subse-

www.hydrol-earth-syst-sci.net/21/6135/2017/ Hydrol. Earth Syst. Sci., 21, 6135–6151, 2017



6138 R. Madugundu et al.: Performance of the METRIC model

Figure 2. Flux Source Area Model (FSAM) footprint, as percentage of the fetch area, of the eddy covariance (EC) system overlaid on a LAI
map of the alfalfa crop (date of Landsat-8 overpass – 21 July 2013).

Table 1. Details of wind parameters at the time of satellite overpass.

Date Wind speed (m s−1) Wind direction Yaw angle
Min. Max. (◦ from north) (◦)

3 June 2013 6.02 12.45 13.54 56.46
19 June 2013 5.61 9.69 6.49 63.51
5 July 2013 2.43 5.28 23.98 46.02
21 July 2013 5.25 10.71 35.13 34.87
22 August 2013 1.61 4.91 27.80 42.20
7 September 2013 1.11 8.17 59.82 10.18
23 September 2013 5.12 8.93 38.13 31.87
9 October 2013 4.60 8.67 25.40 44.60

quently, the obtained FTP was used to compare the EC tower
and Landsat-8 estimates of energy fluxes. As described by
Schmid (1994), the EC contributions starting 1.5 h after sun-
rise and ending 1.5 h before sunset were considered and the
FTP was computed for every 30 min corresponding to the
averaging period used for the EC tower analysis. The FSAM
variables such as observation point height, Obukhov length,
the standard deviation of lateral wind speed fluctuations and
friction velocity were taken from the EC measurements. Sur-
face roughness length was estimated by measuring the crop
(alfalfa) height at regular site visits using linear interpola-
tion between observations. Crop height was transformed into
roughness length as described by Allen et al. (1998).

For the FTP analysis, the utilized wind parameters such
as wind speed, wind direction and yaw angle at the time of
the Landsat-8 overpass are provided in Table 1. The pro-
duced oval-shaped “fetch area” was oriented to the mean
wind direction corresponding to that half hour time-period. A

weighting matrix for the FTP surrounding the EC tower was
developed for each day. Subsequently, a 30 m grid matching
to the Landsat-8 pixels was created for each 30 min interval,
with a binary coding. Grid cell pixels which fell in the “fetch
area” were coded as 1, and the pixels outside the fetch area
were given the value of 0. The daily FTP fetch calculation
was computed by scoring the grid cells coded with 1 divided
by the total number of observations recorded during the day.

2.4 Energy balance (EB)

The EC system allows accurate measurements of the EB
components. Hence, using the measured EB components, the
surface energy budget can be estimated (Eq. 1) along with
the EB closure. The four flux components (Rn, H , G and
LE) measured by the EC system were assessed for the EB
closure (Kustas et al., 2005). The EB closure rate for the EC
system ranged between 71 and 99 %, with a mean value of
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Table 2. Energy balance (EB) analysis of EC measured heat fluxes.

Date Day of the year Stability Condition Bowen Energy balance
(DOY) 2013 parameter (ξ) ratio (BR) (EB) closure %

3 June 154 0.02 Stable −0.17 90.84
19 June 170 −0.15 Unstable 0.7 95.81
5 July 186 0.07 Neutral −0.24 99.14
21 July 195 −0.24 Unstable 0.63 96.80
22 August 234 −0.28 Unstable −0.42 80.82
7 September 250 0.04 Stable −0.42 84.09
23 September 266 −0.03 Unstable 0.14 75.14
9 October 282 0.04 Stable −0.13 71.74
Average −0.06 0.01 86.79

Table 3. Details of Landsat-8 data used in the study.

Path Row Date of overpass

165 43 3 June, 19 June, 5 July, 21 July,
22 August, 7 September, 23 September
and 9 October 2013

87 % (Table 2 and Fig. 2). The EB closure was significantly
influenced by the amount of unaccounted energy lost (i.e.,
lack of closure in the EB equation due to advection and mea-
surement errors in the field) in the partition of the net radi-
ation into latent, sensible heat and soil heat fluxes. It may
be due to the portion of energy that is missing in the bud-
get. It was accounted for between 5 and 20 % of the total Rn.
This was attributed to the inherent errors in measuring the
EB components by the ground systems, which was reported
to be 15–20, 5–10 and 20–30 % according to Weaver (1990),
Field et al. (1994) and Twine et al. (2000), respectively.

2.5 Landsat-8 images and preprocessing

Eight cloud-free Landsat-8 TIRS (Thermal Infrared Sensor)
and OLI (Operational Land Imaginer) datasets for the exper-
imental field (path 165, row 43) were downloaded for the
study period (June to October 2013) from the United States
Geological Survey (USGS, 2016) Earth Explorer site (http:
//earthexplorer.usgs.gov), see Table 3 for dates. The down-
loaded data were georeferenced to the Universal Transverse
Mercator (UTM) map projection using the World Geodetic
System 84 (WGS 84) datum. Subsequently, the Fast Line-of-
sight Atmospheric Analysis of Hypercubes (FLAASH) al-
gorithm in ENVI software was used to convert Landsat-8
digital numbers to Top-Of-Atmosphere (TOA) spectral re-
flectance. Also, land surface temperature (LST) layers were
generated using the split-window algorithm (USGS). The ob-
tained spectral reflectance and the LST values were used
as inputs for the ET estimation employing the METRIC al-
gorithm. Image analysis and the execution of the METRIC
algorithm were performed using ENVI software program

Table 4. Split-window coefficient values (Skokovic et al., 2014).

Split-window coefficients Value

C0 −0.268
C1 1.378
C2 0.183
C3 54.300
C4 −2.238
C5 −129.200
C6 16.400

(ver. 5.1). Subsequently, spatially distributed ET fluxes were
weighted and integrated using an FTP for comparison with
ET measured with the EC system.

2.6 Land surface temperature (LST) – split-window
algorithm

Landsat-8 TIRS bands (10 and 11) and OLI bands (2 to 5)
were utilized in the estimation of LST through the split-
window algorithm executed in ENVI (ver. 5.1). During the
process of LST estimation, the algorithm used brightness
temperatures (TB) of two TIRS bands, and mean and the
difference in land surface emissivity (LSE) of an area under
observation. The split-window algorithm for LST determina-
tion is given in Eq. (1) as described by Skokovic et al. (2014).

LST= TB10+C1 (TB10− TB11)+ C2(TB10− TB11)
2

+C0+ (C3+C4W) (1− ε)+ (C5+C6W) 1ε, (1)

where LST is the land surface temperature (K), C0 to C6 are
the values of the split-window coefficients (Table 4), TB10
and TB11 are brightness temperatures of Landsat-8 bands 10
and 11 (K), ε is the mean LSE of TIRS bands, W is the at-
mospheric water vapor content, and 1ε is the difference in
LSE.

The brightness temperature (TB), a microwave radiation
radiance traveling upward from the top of Earth’s atmo-
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Table 5. Thermal conversion constants and rescaling factors of Landsat-8 TIRS bands.

Landsat-8 TIRS Thermal constantsa Rescaling factora Emissivity valuesb

K1 K2 ML AL εs εv

Band 10 1321.08 777.89 0.000342 0.1 0.971 0.987
Band 11 1201.14 480.89 0.000342 0.1 0.977 0.989

a USGS, 2016; b Skokovic et al., 2014

sphere, was calculated using Eq. (2).

TB=
K2

Ln
(
K1
Lλ
+ 1

) , (2)

where K1 and K2 are thermal conversion constants of the
TIRS bands (Table 5) and Lλ is the Top-of-Atmospheric
spectral radiance. This Top-of-Atmosphere spectral radiance
was determined by multiplying multiplicative rescaling fac-
tors (Table 5) from Eq. (3).

Lλ = ML× Qcal+ AL, (3)

where ML is the band-specific multiplicative rescaling fac-
tor (radiance_mult_band_10/11), Qcal is the band 10 or 11
image, AL is the band-specific additive rescaling factor (ra-
diance_add_band_10/11).

Subsequently, LSE was calculated using Eq. (4). The εs
and εv are soil and vegetation emissivity values of the cor-
responding bands (Table 5). The fractional vegetation cover
(FVC) was estimated based on the Normalized Difference
Vegetation Index (NDVI) obtained over the experimental
area (Eq. 5).

LSE= εs (1−FVC)+ εv ·FVC, (4)

FVC=
NDVI−NDVIs

NDVIv−NDVIs
, (5)

where NDVIs and NDVIv are the reclassified NDVI for soil
and vegetation areas, respectively. OLI bands 2, 3, 4 and 5
were layer stacked and NDVI was calculated using ENVI
(ver. 5.1) software. The output value of NDVI ranged be-
tween −1 and 0.59. To get NDVIs and NDVIv, the NDVI
image was reclassified into soil and vegetation. After gener-
ating LSE for both bands of the TIRS, the mean and differ-
ence LSE were obtained according to Eqs. (6) and (7).

ε =
ε10− ε11

2
, (6)

1ε = ε10− ε11. (7)

2.7 METRIC algorithm and ET estimation

The METRIC algorithm has been developed exclusively for
the estimation of ET from Landsat data (Allen et al., 2005). A

total of eight Landsat-8 images were processed and used for
the estimation of ET (ETMETRIC) over the experimental al-
falfa field. During the ETMETRIC computation, surface char-
acteristics such as surface albedo, vegetation indices, sur-
face emissivity and surface temperature were estimated as
intermediate products. Anchor pixels (hot and cold) were se-
lected, and the energy components such as the net radiation
(Rn), the soil heat flux (G) and the sensible heat flux (H )
were estimated as well. Finally, the latent heat flux (LE) was
predicted as a residual of the land surface balance (Allen et
al., 2005, 2007), see Eq. (8). Consequently, the instantaneous
ET (ETinst) for each pixel was calculated. Moreover, the ob-
tained leaf area index (LAIG) and the reference ET (ETr)
over the alfalfa field were used as inputs to the METRIC-
based Landsat-8 ET prediction (Table 6). The ground-based
LAI (LAIG) of alfalfa was recorded on the day of satellite
overpass using a plant canopy analyzer (LAI-2200).

LE= Rn−G−H (8)

The first step in the METRIC model was to compute the net
radiation (Rn) using the surface radiation balance (Eq. 9).
The Rn estimation was accomplished in a series of steps by
summing up the net shortwave radiation and net longwave
radiation (Hipps, 1989; Brunsell and Gillies, 2002; Allen et
al., 2007).

Rn = Rs↓−∝ Rs↓− RL↓−RL↑− (1− εo)RL↓, (9)

where RS↓ is the incoming shortwave radiation (W m−2), α
is the broadband surface albedo (dimensionless), and RL↓
and RL↑ are the incoming and outgoing longwave radiation
(W m−2), respectively. εo is the broadband surface thermal
emissivity (dimensionless). The (1-εo) RL↓ term represents
the fraction of incoming longwave radiation reflected from
the surface.

The incoming broadband and shortwave radiation (RS↓ ),
which represents the principal energy source for ET, is calcu-
lated for the Landsat-8 image with time as a constant for the
whole image assuming clear sky conditions as per Eq. (10).

RS↓ =
GSC cos θrefτsw

d2 , (10)

whereGSC is the solar constant (1367 W m−2), θref is the so-
lar incidence angle, τsw is the broadband atmospheric trans-
missivity and d2 is the square of relative Earth–Sun distance.
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Table 6. Input parameters used for the METRIC model for the alfalfa crop.

DOY TEC (◦C) TLST (◦C) LAIG ETr u (m s−1) hc (m) Zm (m)

154 36.42 34.67 1.22 1.21 0.55 0.39 3.2
170 39.59 33.01 3.28 0.61 0.43 0.48 3.2
186 34.7 32.32 4.29 0.83 0.46 0.59 2.2
195 40.96 32.6 5.92 0.96 0.68 0.51 3.0
234 42.98 40.99 1.11 0.31 0.62 0.24 3.0
250 35.48 32.09 3.19 0.52 0.65 0.52 3.0
266 34.52 34.18 1.13 0.27 0.39 0.29 2.3
282 26.78 24.36 2.28 0.41 0.40 0.52 3.2

DOY – day of the year; TEC – temperature from flux tower; TLST – estimated temperature from Landsat-8
images; LAIG – ground measured leaf area index; ETr – reference ET; u – average horizontal wind velocity;
hc – alfalfa canopy height; Zm – height of wind speed measurement.

The τsw is calculated using Eq. (11) drafted in the ASCE-
EWRI (2005).

τsw = 0.35+ 0.627

exp

[
−0.00146P
Kt cos Z

− 0.075
(

W

cos Z

)0.4
]
, (11)

where P is the atmospheric pressure (kPa), W is the amount
of water present in the atmosphere (mm), Z is the solar
zenith angle (extracted from the image metadata) and Kt
is the air turbidity coefficient (Kt = 1.0 for clean air and
0.5 for extremely turbid or polluted air. Kt = 1.0 was used
in this study). P and W are calculated using the measured
or estimated near-surface vapor pressure, as per Eqs. (12)
and (13) according to ASCE-EWRI (2005) and Garrison and
Adler (1990), respectively.

P = 101.3
(

293− 0.0065z
293

)5.26

, (12)

W = 0.14ea Pair+ 2.1, (13)

where the constant 293 is the standard air temperature (K), z
is the elevation above the sea level (m) and the ea is the near-
surface vapor pressure (kPa). The parameter d2 was com-
puted, from Eq. (14), as a function of the day of the year
(DOY) as described in Duffie and Beckman (2013).

d2
=

1
1+ 0.033 cos (DOY2π/365)

(14)

The broadband surface albedo (α), however, is calculated us-
ing Eq. (15) as described in Zhong and Li (1988) and Basti-
aanssen et al. (1998).

α =
(αtoa− αatm)

τ 2
sw

, (15)

where αtoa is the planetary albedo of each pixel; αatm atmo-
spheric albedo and τsw is obtained from the Eq. (11) follow-
ing da Silva et al. (2016).

Outgoing longwave radiation (RL↑) emitted from the sur-
face is driven by surface temperature and surface emissivity.
The RL↑ is computed using the Stefan–Boltzmann Eq. (16).

RL↓ = εoσT
4

s , (16)

where εo is the broadband surface emissivity (di-
mensionless), σ is the Stefan–Boltzmann constant
(5.67× 10−8 W m−2 K−4) and Ts is the surface tem-
perature (K). In this study, Ts was accounted for as LST and
obtained from Eq. (1). The surface emissivity was computed
using an empirical Eq. (17) after Tasumi et al. (2008) based
on soil and vegetative thermal emissivities. The LAI is
computed as per Eq. (18) proposed by Bastiaanssen et
al. (1998). During the correction, the typical bare soil and
the fully vegetated surface values were set as 0.93 and 0.98,
respectively. The soil-adjusted vegetation index (SAVI)
was calculated based on TOA reflectance of bands 4 and 5
(Huete, 1988).

εo = 0.95+ 0.01LAI for LAI≤ 3, (17)

LAI=
− ln

[
(0.69−SAVI)/0.59

]
0.91

. (18)

The incoming longwave radiation (RL↓), a downward ther-
mal radiation flux from the atmosphere (W m−2), was es-
timated using the Stefan–Boltzmann Eq. (19) described in
Allen et al. (2007).

RL↓ = εaσT
4

s , (19)

where εa is the broadband surface emissivity (di-
mensionless), σ is the Stefan–Boltzmann constant
(5.67× 10−8 W m−2 K−4) and Ts is the surface tem-
perature (K). The εa was computed using Eq. (20) as
described in Bastiaanssen (1995) and Allen et al. (2000).

εa = 0.85 (− ln τsw)
0.09, (20)

where τsw is the broadband atmospheric transmissivity cal-
culated from Eq. (11).
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For the estimation of soil heat flux (G), various empiri-
cal equations can be found in the literature (Bastiaanssen et
al., 1998; Singh et al., 2008; Gowda et al., 2011). However,
this study adopted the empirical model described by Basti-
aanssen et al. (2000) representing values near midday for the
prediction of Landsat-8 G (i.e., GMETRIC), as a ratio G/Rn
based on the NDVI, Eq. (21).

G

Rn
= (Ts− 273.15)(0.0038+ 0.0074α)

(1− 0.98NDVI4), (21)

where Ts is the surface temperature (K) and α is the surface
albedo. Subsequently, the GMETRIC was obtained by multi-
plying G/Rn with Rn.

The sensible heat (HMETRIC) was estimated from an aero-
dynamic function as expressed in Eq. (22). In the calculation
of rah, wind speed measurements were used.

H = ρairCp
1T

rah
, (22)

where ρ is the air density (kg m−3), Cp is the specific heat
capacity of the air (J kg−1 K);1T is the near-surface air tem-
perature gradient and rah is the aerodynamic resistance for
heat transfer (S m−1) between two near-surface heights (i.e.,
at alfalfa canopy height and the EC measurement height). For
further details of the HMETRIC algorithm, we refer to Allen
et al. (2007).

2.8 Calculation of ET

Following the establishment of Rn, G and H from the
Landsat-8 processing, LE was calculated as a residual of the
EB equation. The obtained LE is equivalent to the ETinst at
the time of Landsat-8 overpass (Eq. 23).

ETinst = 3600
LE
λρω

, (23)

where ETinst is the instantaneous ET (mm h−1), 3600 con-
verts from seconds to hours, ρω is the density of water
(∼ 1000 kg m−3) and λ is the latent heat of vaporization
(J kg−1) representing the heat absorbed when a kilogram of
water evaporates. The λ component was computed as per
Eq. (1).

λ= [2.501− 0.00236 (Ts− 273.15)] × 106. (24)

Finally, as presented in Eq. (25), the reference ET fraction
(ETrF) was calculated as the ratio of the computed ETinst
from each pixel to the reference ET (ETr) computed from
the weather data.

ETrF =
ETinst

ETr
, (25)

where ETinst is from Eq. (23) and ETr is for the standardized
0.5 m tall alfalfa at the time of the image. The EC system-
recorded weather parameters were used to calculate ETr as

described in ASCE-EWRI (2005). The obtained ETrF was
subsequently extrapolated to daily values. In the processes,
ET24 was computed by assuming that the instantaneous ETrF
computed at satellite overpass is the same as the average
ETrF over the 24 h average (Allen et al., 2007; see Eq. 26).

ET24 = Crad (EF)(ETr24) , (26)

where Crad is a correction term used to correct for variation
in 24 h versus instantaneous energy availability.

2.9 Data analysis

The spatially-estimated energy flux components, derived
from the METRIC algorithm and the EC flux tower, were
subjected to heat flux correction, energy balance and FTP
analyses, as described in Schmid (1994). Different statisti-
cal performance indicators (RMSE, mean bias error (MBE)
and Nash–Sutcliff coefficient). As the samples were limited,
the Mann–Whitney U test and/or the Kruskal–Wallis H test
(Gisondi et al., 2004; McCune and Grace, 2002) were per-
formed for the assessment of the METRIC performance in
estimating ET against the EC system. These statistical indi-
cators are often used when small sample sizes are considered.

3 Results and discussion

3.1 Footprint analysis (FTP)

The simple arithmetic averages of weighted and integrated
heat fluxes over the fetch areas are the FTPs (Chavez et al.,
2005). FTPs are widely used in validating the spatially dis-
tributed fluxes obtained from remote sensing (RS) with EC
measured fluxes. The fetch area of the FTP was classified into
six classes, based on the cumulative contribution of the ed-
dies, as provided in Fig. 3. Based on the FTP analysis, about
90 % of the EC system observes eddies originating from the
122 to 144 m in the upwind direction. The peak (vertical)
fetch is within 42 to 51 m. It is also observed that 10 % of
the fluxes are registered between 6 and 17.5 m from the flux
tower. About 30, 50 and 70 % of the fluxes are recorded be-
tween 35 to 63 m, 52 to 97 m and 81 to 136 m, respectively.
Energy fluxes are analyzed as shown by Chavez et al. (2005)
by integrating Landsat-8 image acquisition (i.e., overpass).
This allows the EC footprint to overlap the METRIC foot-
print by 90 % (Kustas et al., 2005).

3.2 Surface temperature (T )

The linear regression analysis of Landsat-8-derived surface
temperature (TLST) against the EC flux tower measured tem-
perature (TEC), obtained from the upwind longwave com-
ponent measured by the CNR-4, shows a good correlation
with an R2 value of 0.71 (p = 0.0084; Fig. 4). However,
the TLST is underestimated compared to the TEC as evi-
denced by the RMSE and MBE performance indicators of
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Figure 3. Energy balance (EB) closure of corrected eddy covariance (EC) data for the studied Landsat-8 date of overpass.

4.23 ◦C (−12.82 %) and −3.40 ◦C (−9.34 %), respectively.
The recorded errors (4.2 to 19.6 %) in the TLST are slightly
higher than the values reported in previous studies. For ex-
ample, compared to the ground-level infrared thermome-
ter, Chavez et al. (2009a) reported METRIC errors of 11.1
and 1.9 % in estimating surface temperatures for corn and
sorghum fields, respectively. The LAI significantly affects
the accuracy of TLST. Vegetation with higher LAI records

lower temperatures because the amount of heat stored is re-
duced through transpiration (Omran, 2012). In this study, the
Landsat-8-derived TLST is underestimated by about 20 % at
full foliage cover of alfalfa crop (i.e., LAI ∼ 6) compared to
TEC. High LAI surfaces can trigger large coherent eddies that
are efficient in heat convection, whereas low LAI surfaces are
less efficient in generating energetic eddies (Voogt and Grim-
mond, 2000). Thus, the temporal variation in LAI would re-
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Figure 4. Comparison of EC measured (TEC) and remote sensing derived (TLST) surface temperature.

Figure 5. The relationship between EB components (W m−2) measured by the METRIC algorithm and the EC system.

sult in oscillations of the land surface temperature. As an ex-
ample, in the case of low LAI (< 1.23) conditions, the TLST
was about 40.99 ◦C, whereas at higher LAI (5.92) the TLST
was 32.6 ◦C. However, there is a discrepancy at higher tem-
peratures when the crop density of alfalfa was low (i.e., bare
soil was visible to the radiometer) as evidenced by the low
LAI values over the footprint and the recorded TEC and TLST
(Chavez et al., 2005). Hence, the cooling effect of vegetation
on the TLST accelerated the error by 1 to 20 % on both the
low LAI and high LAI conditions.

3.3 Energy balance (EB) components

The mean values of EB components obtained from both
the EC system and the METRIC algorithm are provided in
Table 7. The performance indicators (RMSE, MBE, Nash–
Sutcliff coefficient, Mann–Whitney U test and Kruskal–
Wallis H test) are given in Table 8. An illustration (Fig. 5)
of the comparison of EC and METRIC estimates of EB com-
ponents are provided.
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Table 7. EC measured and METRIC-estimated Energy Balance (EB) components over an alfalfa field.

EB component Method Date of Landsat-8 overpass (Day of the year 2013)

3 Jun 19 Jun 5 Jul 21 Jul 22 Aug 7 Sep 23 Sep 9 Oct
(154) (170) (186) (195) (234) (250) (266) (282)

Soil heat flux (G), W m−2 RS 28.6 92.5 143.73 80.65 97.92 48.16 19.98 98.31
ECB 21.6 44.1 155.18 70.33 37.54 54.98 16.50 110.30

Net radiation (Rn), W m−2 RS 488.7 491.5 491.07 490.64 502.95 489.37 491.76 477.75
ECB 468.0 500.6 506.22 463.27 513.17 476.86 469.6 456.49

G/Rn RS 0.06 0.19 0.29 0.16 0.19 0.10 0.04 0.21
ECB 0.05 0.09 0.31 0.15 0.07 0.12 0.04 0.24

Sensible heat flux (H ), W m−2 RS −57.2 184.2 286.10 160.45 1.77 95.75 39.98 195.62
EC −65.8 112.3 274.59 127.34 14.26 230.79 19.03 68.39

Latent heat flux (LE), W m−2 RS 574.5 214.8 61.25 249.55 500.20 345.46 551.72 183.82
EC 335.7 160.2 72.12 260.79 637.84 505.40 560.80 148.80

Evapotranspiration (ET), mm h−1 RS 0.86 0.32 0.09 0.42 0.76 0.52 0.83 0.27
EC 0.64 0.24 0.11 0.38 0.96 0.71 0.89 0.22

RS – remote sensing (METRIC algorithm), EC – eddy covariance and ECB – Biomet sensors of the EC system.

Table 8. Performance indicators results for the METRIC algorithm estimated EB components.

Error Rn G H LE ET ET

W m−2 W m−2 W m−2 W m−2 mm h−1 mm d−1

RMSE amount 18.32 28.46 72.01 115.04 0.13 4.15
% 3.74 37.33 63.54 34.33 25.91 34.33

MBE amount 8.66 12.42 15.72 2.45 0.04 0.38
% 1.76 16.29 13.87 0.73 6.6 4.2

Nash–Sutcliffe coefficient 1 0.59 0.59 0.88 0.99 0.99
R2 0.54 0.67 0.61 0.66 0.81 0.66
P>F 0.038 0.0131 0.0216 0.0137 0.002 0.013
Mann–Whitney U test# 23 (−0.89)∗ 26 (−0.58)∗ 29 (−0.26)∗ 31 (−0.05)∗∗ 32 (0.05)∗∗ 31 (0.05)∗∗

Kruskal–Wallis H test (χ2) 0.893∗ 0.397∗ 0.099∗ 0.011∗∗ 0.021∗∗ 0.001∗∗

# Z values are reported in the parenthesis; ∗ not-significant; ∗∗ significant; χ2 – is the Chi-square

3.3.1 Net radiation (Rn)

The temporal trend of EC (CNR-4) measured Rn (RnEC)

was analyzed for discrepancies. About 9 to 16 % of the col-
lected data exhibit infrequent errors. Hence, the abnormal
data have been discarded, and a gap-filling process was per-
formed using the EddyPro software program (version 5.0).
The scatter plot (Fig. 5) represents the relationship between
RnEC and METRIC-estimated Rn (RnRS). The moderate lin-
ear correlation (R2

= 0.54 and p >F = 0.0381), low RMSE
(18.32 W m−2; 3.8 %) and very low MBE (8.66 W m−2;
1.76 %) indicate that the METRIC model accurately (96 %)
estimate the Rn. The obtained RMSE and MBE values
are in agreement with those reported by earlier studies of
Mkhwanazi and Chavez (2012), where the RMSE value was
4.1 % and MBE value was 3.3 %, and Chavez et al. (2007),
where the RMSE value was 9.8 %. In addition, the perfor-
mance of METRIC was significant with a Kruskal–Wallis

H tests (χ2
= 0.893). However, the null hypothesis cannot

be rejected with the Mann–Whitney U test (U and Z value
are 23 and −0.892, respectively). These variations in Rn be-
tween METRIC and CNR-4 estimates are likely due to vari-
ations in the computation of LAI along with LST and soil
moisture conditions (Zhang et al., 2013).

3.3.2 Soil heat flux (G)

Figure 5 illustrates a scatter plot between the EC measured
(GEC) and the METRIC-estimated (GRS) soil heat flux val-
ues. The relationship was relatively fair with an R2 value of
0.67 and a Nash–Sutcliffe coefficient of 0.59. The RMSE and
MBE, however, were determined at 28.46 W m−2 (37.33 %)
and 12.42 W m−2 (16.29 %), respectively. These recorded er-
rors were relatively higher than the values reported in simi-
lar previous studies. Mkhwanazi and Chavez (2012) reported
an RMSE value of 14.2 W m−2 (27.6 %) and an MBE value
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Figure 6. LAI and G/Rn relationship of the study crop for remote
sensing (RS) and eddy covariance (EC).

of −3.0 W m−2 (−5.8 %) in estimating G with the MET-
RIC algorithm for irrigated alfalfa. The average observed
values of G were similar to the majority of values recorded
by Ham et al. (1991). The performance of the METRIC
model in estimating G was not significant with the Mann–
Whitney U test (U and Z values are 23 and −0.892, respec-
tively) but it was significant with the Kruskal–Wallis H tests
(χ2
= 0.397) and the null hypothesis was not rejected.

Furthermore, the ratio of Rn to the G (G/Rn) derived
from the METRIC model against the LAI inferred from the
Canopy analyzer (PCA 2200, LI-COR, USA) is presented in
Fig. 6. The G/Rn is one of the essential components in the
analysis of the accuracy of Bowen ratio (Allen et al., 2011b).
Correlating the LAI with the G/Rn produced a moderate
polynomial (3rd order) relationship for both the METRIC
(R2
= 0.288 and p >F = 0.23) and the EC (R2

= 0.313 and
p >F = 0.15) methods. However, the results suggested that
beyond a certain value of LAI (up to 4.2), the relationship
between G/Rn and LAI was decreased. The scatter in the
G/Rn, where the LAI increased to 4, showed an increasing
trend as the values ofG/Rn for full canopy cover are ranging
between 0.05 and 0.15 as shown in Waters et al. (2002).

3.3.3 Sensible heat flux (H )

After the adjustments of EB closure, the error in recorded
HEC flux ranged from 10.89 W m−2 (low LAI conditions)
to 38.91 W m−2 (full canopy condition). It may be due to
advection, which varies very strongly in the hyper-arid en-
vironment. The HMETRIC estimated with an MBE value of
15.72 W m−2 (13.87 %) compared to HEC. The high RMSE
value of 72.01 W m−2 (63.54 %) for the HMETRIC might be
due to the selection of anchor pixels especially during 22 Au-
gust, where the Landsat-8 image was viewed at the time of
irrigation. Hence, the advection and variability in the wet-
ness across the fetch or FTP area and canopy reflectance af-
fected the calculations in RS estimation of HMETRIC (Brut-
saert and Stricker, 1979; Yang et al., 2014). During the ear-
lier (June) and late summer (August) periods, the observed

Figure 7. METRIC-derived hourly evapotranspiration (ETRS) ver-
sus eddy covariance measurements (ETEC).

Figure 8. The relationship between daily estimates of ETRS and
ETEC.

sharp humidity variations are linked to changes in wind di-
rection. However, during the alfalfa post-harvest practices,
the fields are under fallow condition. Hence, the LE flux was
always less as most of the available energy partitioned as H
rather than LE flux. This was evident in the linear regres-
sion analysis (Fig. 5), where a good correlation between the
HRS andHEC (R2

= 0.61) was observed; however, it was not
significant (p >F = 0.021), and it was also confirmed with
the MBE of 13.87 %. The obtained results resemble the re-
ported values on HMETRIC performance (MBE of 10 %) by
Carrasco-Benavides et al. (2013).

3.3.4 Latent heat flux (LE)

A scatter plot was established between the METRIC-
estimated LERS and the EC-determined LEEC values (Fig. 5).
The correlation was relatively good (R2

= 0.66); however,
it was not statistically significant (p >F = 0.14). This is at-
tributed to the fact that the LERS is calculated as a resid-
ual component of the EB equation that mainly depends on
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Figure 9. Comparative assessment of eddy covariance (EC) flux tower measured against the METRIC-estimated latent heat flux (LE, W m−2)
over the study period. (The values on the x axis are hour of the day in local time.) data for the studied Landsat-8 date of overpass.

the calibration accuracy of the HRS. The value of the latter
is purely based on the quality of the selected anchor pixels
(Weaver, 1990; Field et al., 1994).

Although the regression analysis showed a non-significant
correlation, the performance indicators such as the MBE
(2.45 W m−2; 0.73 %) and the RMSE (115.04 W m−2;
34.33 %) are in accordance with the earlier reported val-
ues indicating that the METRIC algorithm is rather accurate
for determining LE over large areas. Carrasco-Benavides et
al. (2013) stated that the METRIC algorithm overestimated
the LE by 14 % (RMSE). The obtained average absolute er-
ror of the LERS for the eight images is 35 % in our study.
The obtained inaccuracy may be due to the energy partition
at peak growth stages, where the LE accounted for 80–85 %
of the net radiation. In addition, the H component accounted
only for 5 to 8 % of the Rn during the growing season on the
daily scale. For the fallow periods, the recorded partitions of
LE and H were in the range of 6.9 to 8.2 % and 77 to 84 %,
respectively. On the monthly time scale, H and LE fluxes
varied throughout the cropping periods. The METRIC algo-
rithm is therefore observed to perform relatively better in full
canopy conditions compared to that in partial canopy condi-
tions. Due to the cooling effect of vegetation, the selection of
anchor pixels for H calculation is challenging in continuous
irrigation regimes.

The LE was high during the full coverage of LAI and ir-
respective of alfalfa growth stages. Three environmental fac-
tors including atmospheric water demand, humidity and wind
speed during the growing season have a high impact on the
LE measurements, which in-turn triggered the computation
of anchor pixels especially at the time of irrigation. More-
over, in the fallow period, H can be accurately determined

with METRIC by selecting the targeted pixels after the har-
vest of alfalfa. Advection in dry months is common in hyper-
arid regions, which affect the H computation, which in-turn
affects the LE and ET estimates on a regional and long-term
basis.

3.3.5 Evapotranspiration (ET)

The correlation between the ET values obtained from both
the METRIC algorithm and the EC system is found to be
highly significant (R2

= 0.93 and p >F = 0.0001) as illus-
trated in Fig. 7. Further assessment of the accuracy of the
METRIC algorithm in estimating the ET is performed us-
ing the RMSE and MBE indicators. The performance of the
METRIC model in estimating ET on hourly and daily inter-
vals was significant with the Mann–Whitney U test (U and
Z values are 32 and 0.052, respectively). Similarly, the null
hypothesis is not be rejected with the Kruskal–Wallis H test
(χ2
= 0.916). Comparing the hourly ET calculated using the

METRIC algorithm to that using the EC system results in an
RMSE value of 0.13 mm h−1 (25.91 %) and an MBE value of
0.04 mm h−1 (6.6 %). For the daily mean ET, the RMSE and
MBE values were 4.15 mm d−1 (34.33 %) and 0.38 mm d−1

(4.2 %), respectively. These results are in agreement with the
results reported by Mkhwanazi and Chavez (2012), where
the performance errors in estimating the ET using the MET-
RIC model were determined at 0.14 mm h−1 (17.6 %) and
−0.08 mm h−1 (−10.3 %) for RMSE and MBE, respectively.
Similarly, Chavez et al. (2007) reported a METRIC error of
0.7 mm d−1 (7.4 %) in predicting the ET compared to lysime-
ter data. On average, the present study found that the MET-
RIC algorithm overestimated the hourly ET by 6.6 % in com-

www.hydrol-earth-syst-sci.net/21/6135/2017/ Hydrol. Earth Syst. Sci., 21, 6135–6151, 2017



6148 R. Madugundu et al.: Performance of the METRIC model

parison to the EC measurements. The daily ET is underes-
timated by 4.2 % (Fig. 8). There are fluctuations in EC and
Landsat-estimated latent heat flux (Fig. 9). This might be due
to the advection process in case of hourly ET assessment and
the variability in the canopy density with respect to the stud-
ied footprint. Advection may vary strongly in hyper-arid en-
vironments.

4 Conclusions

The METRIC algorithm was applied on Landsat-8 images
for mapping ET. Its performance was evaluated against the
EC flux tower measured EB components and ET at hourly
and daily intervals over an irrigated alfalfa field in the east-
ern region of Saudi Arabia. The following are the specific
conclusions of this study:

– The METRIC algorithm was successful for estimating
the ET with an average error of 6.6 % (hourly ET) and
4.2 % (daily ET). The performance of the METRIC al-
gorithm was found to be more accurate in estimating the
hourly ET (R2

= 0.81) than the daily ET (R2
= 0.66)

compared to the ETEC.

– Compared with the EC data, the estimated Rn compo-
nent from remote sensing was found to be highly ac-
curate (an accuracy of more than 95 %) was obtained.
In addition, the H obtained from satellite data was as-
sociated with errors ranging between 10.89 W m−2 and
38.91 W m−2 at low (< 1.2) and high (> 5.0) LAI val-
ues, respectively. The corresponding LE estimates have
a low mean value of MBE of 2.45 W m−2 (0.74 %).

– The METRIC algorithm was observed to perform rela-
tively better in full canopy conditions compared to par-
tial canopy conditions. Due to the cooling effect of veg-
etation, the selection of anchor pixels for H calculation
is challenging in continuous irrigation regimes.
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