
Proofs of Storage from Homomorphic
Identification Protocols

Giuseppe Ateniese1, Seny Kamara2,?, and Jonathan Katz3,??

1 The Johns Hopkins University
ateniese@cs.jhu.edu
2 Microsoft Research
senyk@microsoft.com

3 University of Maryland
jkatz@cs.umd.edu

Abstract. Proofs of storage (PoS) are interactive protocols allowing
a client to verify that a server faithfully stores a file. Previous work
has shown that proofs of storage can be constructed from any homo-
morphic linear authenticator (HLA). The latter, roughly speaking, are
signature/message authentication schemes where ‘tags’ on multiple mes-
sages can be homomorphically combined to yield a ‘tag’ on any linear
combination of these messages.
We provide a framework for building public-key HLAs from any iden-
tification protocol satisfying certain homomorphic properties. We then
show how to turn any public-key HLA into a publicly-verifiable PoS with
communication complexity independent of the file length and supporting
an unbounded number of verifications. We illustrate the use of our trans-
formations by applying them to a variant of an identification protocol by
Shoup, thus obtaining the first unbounded-use PoS based on factoring
(in the random oracle model).

1 Introduction

Advances in networking technology and the rapid accumulation of information
have fueled a trend toward outsourcing data management to external service
providers (“servers”). By doing so, organizations can concentrate on their core
tasks rather than incurring the substantial hardware, software and personnel
costs involved in maintaining data “in house”.

Outsourcing storage prompts a number of interesting challenges. One prob-
lem is to verify that the server continually and faithfully stores the entire file f
entrusted to it by the client. The server is untrusted in terms of both secu-
rity and reliability: it might maliciously or accidentally erase the data or place
it onto temporarily unavailable storage media. This could occur for numerous
reasons including cost-savings or external pressures (e.g., government censure).
? Portions of this work done while at Johns Hopkins.
?? Portions of this work done while at IBM. Research supported by NSF

grant #0426683.

The server might also accidentally erase some data and choose not to notify the
client. Exacerbating the problem (and precluding näıve approaches) are factors
such as limited bandwidth between the client and server, as well as the client’s
limited resources. See [1, 11] for a more thorough discussion.

If we allow communication complexity linear in f , there is a simple mech-
anism allowing the client to verify that the server stores f at any given time:
When the client uploads f , the client locally stores a hash of f ; to verify, the
server simply sends all of f and the client checks that this hashes to the cor-
rect value. For our purposes, we are interested in solutions with communication
complexity that is much smaller than (and, ideally, independent of) the file size.

Ateniese et al. [1] and Juels and Kaliski [11] independently introduced ap-
proaches to this problem having sub-linear communication complexity. (Earlier
work by Naor and Rothblum [13] is related, but considers a somewhat weaker
adversarial model.) Ateniese et al. also distinguish between the case of private
verifiability, where only the original client (or anyone with whom that client
shares a key) can verify the server’s storage, and public verifiability, where any-
one knowing the client’s public key can perform verification. Extensions and
improvements were given by Shacham and Waters [14], Dodis, Vadhan, and
Wichs [5], and Bowers, Juels, and Oprea [4]. We refer to [5] for a more detailed
comparison among the existing schemes.

Here, we are interested in publicly-verifiable schemes that can be used for
an unbounded number of verifications. A useful tool for this, implicit in [1] and
further studied in [14, 5], is a homomorphic linear authenticator (HLA), which
can be defined in either the private- or public-key setting. Roughly speaking,
this primitive allows a client to ‘tag’ each block fi of a file f = f1| · · · |fn in such
a way that for any vector c the server can homomorphically construct a (short)
tag authenticating the value

∑
ci · fi.

Two recent works have considered the dynamic setting, where the remotely-
stored data can be updated [2, 6]. We do not address this problem here.

1.1 Our Contributions

The main contribution of this paper is to show a general mechanism (in the ran-
dom oracle model) for constructing publicly-key HLAs from any identification
protocol that is suitably homomorphic. The RSA-based HLA used by Ateniese
et al. [1] (see also [14, Appendix E]) can be viewed as an instance of our mecha-
nism applied to the Guillou-Quisquater [10] identification protocol; similarly, the
Shacham-Waters scheme [14] can be seen as being derived from an underlying
identification protocol in bilinear groups. By applying our transformation to a
variant of Shoup’s identification scheme based on factoring [15], we obtain the
first publicly-verifiable HLA based on factoring (in the random oracle model).

We also show a generic transformation from any HLA to a publicly-verifiable
proof of storage with communication complexity independent of the file size. This
transformation is in the standard model, and answers an open question from [14].
An analogous transformation with similar properties was shown (independently)

by Dodis et al. [5] in the setting of simpler private verifiability; our technique is
different from theirs and is of independent interest.

Combining our results, we obtain a publicly-verifiable proof of storage based
on the factoring assumption in the random oracle model. In our PoS, the com-
munication complexity and the size of the client’s state are independent1 of the
file size, and the server’s storage is a constant multiple of the file size. In the PoS
we describe, the computation of both the client and the server is linear in the
file size, but notice that public-key HLAs can be layered on top of erasure codes
(as in [14, 4]) or used in conjunction with a probabilistic approach for multiple
audits (as in [1]) to obtain better performance while retaining public verifiability.

2 Definitions

We write x← X to represent an element x being sampled uniformly at random
from a set X. The output y of a randomized algorithm A running on input x is
denoted by x ← A(x). We sometimes write y := A(x; r) to denote the (deter-
ministic) result of running A on input x and random coins r. We use boldface
to denote vectors. Given a vector v we let vi denote its ith component.

Throughout, k ∈ N denotes the security parameter. A function ν : N→ R is
negligible if for every polynomial p(·) and large enough k, we have ν(k) < 1/p(k).

2.1 Homomorphic Linear Authenticators

Homomorphic linear authenticators (HLAs) were introduced by Ateniese et al. [1]
as a building block for constructing communication-efficient proofs of storage;
they were further studied in [14, 5]. At a high level, HLAs are used as follows:
viewing the file f as an n-dimensional vector, the client begins by tagging each
element of f and then sending both f and the vector of tags t to the server. To
verify that the server is storing the entire file, the client sends a random challenge
vector c and the server returns µ =

∑
i ci ·fi along with a tag τ , computed using

f , t, and c, which is supposed to authenticate this value.
HLAs can be defined both in the private and public-key settings. We give a

definition for public-key HLAs and refer the reader to [5] for a formalization of
private-key HLAs.

Definition 1 (Homomorphic linear authenticator). A public-key homo-
morphic linear authenticator is a tuple of four ppt algorithms (Gen,Tag,Auth,Vrfy)
such that:

(pk, sk) ← Gen(1k) is a probabilistic algorithm used to set up the scheme. It
takes as input the security parameter and outputs a public and private key
pair (pk, sk). We assume pk defines a k-bit prime p and a positive integer B.

1 The communication complexity for a file of size n is O(logn + k), and as in [5] we
assume k � logn.

(t, st)← Tagsk(f) is a probabilistic algorithm that is run by the client in order
to tag a file. It takes as input a secret key sk and a file f ∈ [B]n, and outputs
a vector of tags t and state information st.

τ := Authpk(f , t, c) is a deterministic algorithm that is run by the server to
generate a tag. It takes as input a public key pk, a file f ∈ [B]n, a tag
vector t, and a challenge vector c ∈ Znp ; it outputs a tag τ .

b := Vrfypk(st, µ, c, τ): is a deterministic algorithm that is used to verify a tag.
It takes as input a public key pk, state information st, an element µ ∈ N,
a challenge vector c ∈ Znp , and a tag τ . It outputs a bit, where ‘1’ indicates
acceptance and ‘0’ indicates rejection.

For correctness, we require that for all k ∈ N, all (pk, sk) output by Gen(1k), all
f ∈ [B]n, all (t, st) output by Tagsk(f), and all c ∈ Znp , it holds that

Vrfypk

(
st,
∑
i

cifi, c, Authpk(f , t, c)

)
= 1.

We remark that in certain schemes correctness (and security) may hold even
when Vrfy is given only

∑
i cifi mod p (assuming B < p). In such cases the

communication from the server to the client can be further reduced.
Informally an HLA is secure if, for a given file f and challenge vector c, no

adversary can output a valid authenticator for an element µ′ 6=
∑
i cifi.

Definition 2 (Unforgeability for public-key HLAs). Let Λ = (Gen, Tag,
Auth, Vrfy) be a public-key HLA and A be an adversary, and consider the fol-
lowing experiment:

1. The challenger computes (pk, sk)← Gen(1k), where pk defines p and B.
2. Given pk and oracle access to Tagsk(·), adversary A outputs a file f ∈ [B]n.
3. The challenger tags the file by computing (t, st)← Tagsk(f).
4. Given t and st, the adversary A outputs a challenge vector c ∈ Znp , an

element µ′ ∈ Z, and a tag τ ′.
5. The adversary succeeds if µ′ 6=

∑
i cifi and Vrfypk(st, µ′, c, τ ′) = 1.

Λ is unforgeable if the success probability of every ppt adversary A in the above
experiment is negligible.

The distinctions between the case of public verifiability (as defined above)
and private verifiability (as defined in [5]) are that, in the former setting (1) ver-
ification does not require the original secret key sk but only the state st and
the original public key; (2) unforgeability holds even against an adversary who
knows the public information pk and st. Our definition is also stronger than the
one given in [5] in that we initially give the adversary access to a tagging oracle.

2.2 Homomorphic Identification Protocols

An identification protocol allows a prover P in possession of a secret key sk to
prove its identity to a verifier V that possesses the corresponding public key pk.

We consider 3-move identification protocols where the prover generates the first
message α using the public key pk and randomness r; the verifier sends a random
challenge β; and the prover then computes a response γ using (pk, sk), the
randomness r, and the verifier’s challenge β. Given the transcript of the protocol,
the verifier decides whether to accept or not.

Definition 3 (Identification protocol). An identification protocol is a three-
move protocol between a ppt prover P and a ppt verifier V. The protocol consists
of four polynomial-time algorithms (Setup,Comm,Resp,Vrfy) such that:

(pk, sk)← Setup(1k) is a probabilistic algorithm that takes as input the security
parameter and outputs a public and private key pair (pk, sk).

α ← Comm(pk; r) is a probabilistic algorithm run by the prover P to generate
the first message. It takes as input the public key and random coins r, and
outputs an initial message α. We stress that there is no need for sk.

γ ← Resp(pk, sk, r, β) is a probabilistic algorithm that is run by the prover P
to generate the third message. It takes as input the public key pk, the secret
key sk, a random string r, and a challenge β (from some associated challenge
space), and outputs a response γ.

b := Vrfy(pk, α, β, γ) is a deterministic algorithm run by the verifier V to decide
whether to accept the interaction. It takes as input the public key pk, an
initial message α, a challenge β, and a response γ. It outputs a bit b, where
‘1’ indicates acceptance and ‘0’ indicates rejection.

For correctness, we require that for all k ∈ N, all (pk, sk) output by Setup(1k),
all random coins r, and all β in the appropriate challenge space, it holds that

Vrfy
(
pk,Comm(pk; r), β,Resp(pk, sk, r, β)

)
= 1.

An identification protocol is homomorphic if the verification of several tran-
scripts of the protocol can be “batched”:

Definition 4 (Homomorphic identification protocol). An identification
protocol Σ = (Setup,Comm,Resp,Vrfy) is homomorphic if there exist efficient
functions Combine1,Combine3 such that:

Completeness: For all (pk, sk) output by Setup(1k) and all c ∈ Zn2k , if tran-
scripts {(αi, βi, γi)}1≤i≤n are such that Vrfy(pk, αi, βi, γi) = 1 for all i, then:

Vrfy

(
pk, Combine1(c,α),

∑
i

ciβi, Combine3(c,γ)

)
= 1.

Unforgeability: Consider the following experiment involving an adversary A:
1. The challenger computes (pk, sk)← Setup(1k) and gives pk to A.
2. The following is repeated a polynomial number of times:

– A outputs β′ in the challenge space. The challenger chooses ran-
dom r, computes γ := Resp(pk, sk, r, β′), and gives (r, γ) to A.

3. The adversary outputs a n-vector of challenges β. Then for each i the
challenger chooses ri at random, sets αi := Comm(pk; ri) and γi :=
Resp(pk, sk, ri, βi), and gives (r,γ) to A.

4. A outputs a triple (c, µ′, γ′), where c ∈ Zn2k . The adversary succeeds if
(1) µ′ 6=

∑
i ciβi and (2) Vrfy(pk,Combine1(c,α), µ′, γ′) = 1.

2.3 Proofs of Storage

Definition 5 (Proof of storage). A (publicly-verifiable) proof of storage is a
tuple of five ppt algorithms (Gen,Encode,Prove,Vrfy) such that:

(pk, sk) ← Gen(1k) is a probabilistic algorithm that is run by the client to set
up the scheme. It takes as input a security parameter, and outputs a public
and private key pair (pk, sk). We assume pk defines a k-bit prime p and a
positive integer B.

(f ′, st) ← Encodesk(f) is a probabilistic algorithm that is run by the client
in order to encode the file. It takes as input the secret key sk, and a file
f ∈ [B]n. It outputs an encoded file f ′ and state information st.

π := Prove(pk,f ′, c) is a deterministic algorithm that takes as input the public
key pk, an encoded file f ′, and a challenge c ∈ Znp . It outputs a proof π.

b := Vrfy(pk, st, c, π): is a deterministic algorithm that takes as input the public
key pk, the state st, a challenge c ∈ Znp , and a proof π. It outputs a bit,
where ‘1’ indicates acceptance and ‘0’ indicates rejection.

We require that for all k ∈ N, all (pk, sk) output by Gen(1k), all f ∈ [B]n, all
(f ′, st) output by Encodesk(f), and all c ∈ Znp , it holds that

Vrfy
(
pk, st, c,Prove(pk,f ′, c)

)
= 1.

Note that the above defines a publicly-verifiable PoS since the original secret key
sk is not needed in order to perform verification.

Security of a PoS, roughly speaking, guarantees that if the verifier accepts
then the prover indeed has (sufficient information to recover) the entire original
file f . As noted in [1, 11, 14, 5], soundness can be formalized using the notion of a
knowledge extractor [7, 3]. As in [5], we phrase our definition using the paradigm
of “witness-extended emulation” [12].

Definition 6 (Security for a publicly-verifiable PoS). Let Π = (Gen,
Encode, Prove, Vrfy) be a publicly-verifiable PoS. Π is secure if there is an
expected polynomial-time knowledge extractor K such that, for any ppt adver-
sary A we have:

1. The distributions{
(pk, sk)← Gen(1k); (f , stA)← AEncodesk(·)(pk);

(f ′, st)← Encodesk(f); c← Znp
: (c, A(stA,f ′, st, c))

}

and{
(pk, sk)← Gen(1k); (f , stA)← AEncodesk(·)(pk);

(f ′, st)← Encodesk(f)
: KA(stA,f

′,st,·)
1 (pk, st)

}
are identical. (Above, K1 denotes the first output of K.)

2. The following is negligible:

Pr

(pk, sk)← Gen(1k);

(f , stA)← AEncodesk(·)(pk);
(f ′, st)← Encodesk(f);

((c, π),f∗)← KA(stA,f
′,st,·)(pk, st)

: Vrfy(pk, st, c, π) = 1
∧
f∗ 6= f

 .

3 From Homomorphic Identification Protocols to HLAs

We now show how to transform any homomorphic identification protocol Σ =
(Setup,Comm,Resp,Vrfy) into a public-key HLA. The basic idea is to use the file
blocks f1, . . . , fn as the “challenges” in n parallel invocations of the identification
protocol. Thus, a very basic PoS would be as follows:

– The client computes (pk, sk)← Gen(1k).
– For each block fi of the file, the client computes αi, γi such that (αi, fi, γi)

is an accepting transcript in the underlying identification scheme.
– The client sends to the server the file f = f1| · · · |fn and the tags γ1, . . . , γn;

the client stores α1, . . . , αn as its own local state.

To verify that the server stores the ith block of the file, the client requests the
server to send (fi, γi); the client can authenticate this response by checking that
(αi, fi, γi) is an accepting transcript.

There are several drawbacks to the above approach. First, the client’s state is
linear in the file size.2 This is easy to remedy by having the client generate each
αi using a pseudorandom function (if private verifiability suffices) or a random
oracle (if public verifiability is desired, as here). A more serious problem is that
a server can easily “cheat” without being caught “too often” by throwing away
blocks of the file. If the server deletes, say, 1 block from the file then it is only
caught with probability 1/n. This can be addressed, to some extent, by having
the client request many blocks but then the communication complexity increases.

Instead, we rely on the homomorphic property of the identification scheme
to “batch” the authentication of multiple blocks. Specifically, the client will send
a random integer vector c and the server will respond with µ′ :=

∑
i cifi and

γ′ := Combine3(c,γ); This response can be verified by checking whether

Vrfy(pk,Combine1(c,α), µ′, γ′) ?= 1.

2 In some cases linear state may be acceptable, as long as the state is a constant
fraction shorter than the file itself. When using certain homomorphic identification
schemes, including the one discussed in Section 5, this indeed can be achieved.

(See Figure 1.) Although the client-to-server communication is large, the server-
to-client communication is essentially independent of the file size (cf. footnote 1).
We reduce the client-to-server communication when we construct a PoS in the
next section.

Let Σ = (Setup,Comm,Resp,Vrfy) be a homomorphic identification pro-
tocol and let H be a function. Construct a public-key HLA Λ =
(Gen,Tag,Auth,Vrfy) as follows:

– Gen(1k): Compute (pk, sk) ← Σ.Setup(1k). Let B be such that [B] is
in the challenge space of Σ, and choose a k-bit prime p. Output the
public key (pk, p,B) and secret key sk.

– Tagsk(f), where f = f1| · · · |fn, and fi ∈ [B] for all i:
1. Choose st← {0, 1}k.
2. For 1 ≤ i ≤ n:

a. Set ri := H(st; i) and αi := Σ.Comm(pk; ri).
b. Compute γi := Σ.Resp(pk, sk, ri, fi).

3. Output t := (γ1, . . . , γn) and st.
– Authpk(f , t, c): Compute and output τ ← Σ.Combine3(c, t).
– Vrfypk(st, µ, c, τ):

1. for 1 ≤ i ≤ n, set ri := H(st; i) and αi := Σ.Comm(pk; ri).
2. Output Σ.Vrfy(pk,Combine1(c,α), µ, τ).

Fig. 1. Transforming a homomorphic identification protocol into a HLA.

Theorem 1. If Σ is an unforgeable homomorphic identification protocol, then
Λ as in Figure 1 is an unforgeable public-key HLA if H is modeled as a random
oracle.

Proof. Correctness is easy to verify, and so we consider security. Let A be a ppt
adversary attacking Λ. We construct an adversary A′ attacking Σ as follows:

1. A′ is given a public key pk, generates B and p in the obvious way, and runs
A(pk, p,B).

2. When A requests Tagsk(f) for f = f1| · · · |fn, then (for i = 1 to n) A′
queries fi to its own oracle and receives in return (ri, γi). Then A′ chooses
random st ∈ {0, 1}k, sets answers to the random oracle appropriately, and
gives (γ1, . . . , γn) and st to A.

3. Eventually, A outputs a file f . Following this, A′ outputs the vector of n
challenges f = f1| · · · |fn, and receives in return (r,γ). Then A′ chooses
random st ∈ {0, 1}k, sets3 answers to the random oracle appropriately, and
gives (γ, st) to A.

4. When A finally outputs c, µ′, τ ′, then A′ outputs these same values.

3 We assume for simplicity that no st ∈ {0, 1}k is chosen twice throughout the exper-
iment, since this occurs with only negligible probability.

It is easy to see that A succeeds in attacking Λ exactly when A′ succeeds in
attacking Σ.

4 From HLAs to Efficient Proofs of Storage

In this section we show how to use any HLA to construct a PoS having com-
munication complexity independent of the file size. Our transformation is in the
standard model.

It is immediate how an HLA can be used to construct a PoS with communica-
tion complexity linear in the file size: When storing a file f , the client computes
tags on all the file blocks and gives to the server the vector of tags t (along with
f itself). To verify, the client chooses a random c ∈ Znp and sends it to the server;
the server responds with

∑
i cifi and Authpk(f , t, c) (which is authenticated by

the client in the obvious way). If authentication tags output by Auth have length
O(k), then the server-to-client communication for an n-block file is bounded by

O(k) + log

(∑
i

cifi

)
≤ O(k) + log n · p ·B = O(k) + log n.

For typical values of k, n, this means that the server-to-client communication is
(essentially) independent of the file size.

To reduce the client-to-server communication, we use a pseudorandom func-
tion F : the client sends a key K ∈ {0, 1}k, and the server then derives the
challenge vector c by setting ci := FK(i) for all i. (See Figure 2.) This approach
is, perhaps, quite “natural” 4 , but it turns out to be highly non-trivial to prove
that it is sound. (This difficulty was mentioned in [14, 5].) The issue is that
since the key K is public, we cannot reduce to the security of the pseudorandom
function in the usual way. Instead we must use a more careful analysis.

Theorem 2. Let Λ be an unforgeable public-key HLA, and let F be a pseudo-
random function secure against non-uniform polynomial-time adversaries. Then
Π as in Figure 2 is a secure publicly-verifiable PoS.

Proof. Correctness of the construction is easily verified, and so we turn to proving
security. We describe a knowledge extractor K that runs in expected polynomial-
time and satisfies Definition 6. Recall that K is given pk, st as input and has
oracle access to A(stA,f ′, st, ·), which we abbreviate as A(·). Define c(K) =
(FK(1), . . . , FK(n)). The high-level structure of K is as follows:

1. K chooses random K ← {0, 1}k and runs A(K) to obtain a proof π. If
Vrfy(pk, st,K, π) = 0 then K outputs ((K,π),⊥) and stops. Otherwise, its
first output will still be (K,π) but it attempts to recover the original file as
described next.

4 A similar approach, based on pseudorandom generators, was proposed in [9] in the
context of verifiable shuffles.

Let Λ = (Gen,Tag,Auth,Vrfy) be a public-key HLA, and let F be a pseu-
dorandom function. Construct a publicly-verifiable PoS Π = (Gen, Encode,
Prove,Vrfy) as follows:

– Gen(1k): Compute and output (pk, sk)← Λ.Gen(1k). Let p be the prime
implicit in pk.

– Encodesk(f): Compute (t, st) ← Λ.Tagsk(f), and output f ′ = (f , t)
and st.

– Prove(pk,f ′,K), where K ∈ {0, 1}k:
1. Parse f ′ as (f , t).
2. For 1 ≤ i ≤ n let ci := FK(i), where ci is viewed as an element

of Zp.
3. Compute τ ← Λ.Authpk(f , t, c) and µ :=

P
i cifi.

4. Output π := (µ, τ).
– Vrfy(pk, st,K, π):

1. Parse π as (µ, τ).
2. For 1 ≤ i ≤ n, let ci := FK(i).
3. Output b := Λ.Vrfypk(st, µ, c, τ).

Fig. 2. Transforming an HLA into a PoS.

2. K repeatedly rewinds A and sends it different challenges until A responds
correctly to a total of n challenges K1, . . . ,Kn such that c(K1), . . . , c(Kn)
are linearly independent (over Q). Given n successful responses to these n
challenges, K reconstructs a candidate file f , and outputs it.

The above neglects some technical details that we now formalize. IfA(K) outputs
a proof π = (µ, τ) for which Vrfypk(st, µ, c(K), τ) = 1, then we say that K is a
good challenge. K implements step 2, above, as follows:

1. Initialize sets GoodK := Goodc := ∅. Keep track of the total number of calls
to A, and halt execution with output fail if 2k calls are made.

2. Estimate the probability p̃∗ with which a random key K is good by running
A with a random challenge until some fixed polynomial number q = q(k)
successful verifications occur. By appropriate choice of q, it is possible to
ensure that the estimate p̃∗ is within a factor of 2 of the true probability
with all but negligible probability 2−k

2
.

3. For j = 1 to n do:
– Repeatedly sample Kj uniformly, querying A on each one, until a good
Kj with c(Kj) 6∈ span(Goodc) is found. If found, then add Kj to GoodK
and add cj = c(Kj) to Goodc, and go to the next value of j. If no such
Kj is found in at most k2/p̃∗ tries, then output fail and halt.

4. Let GoodK = {K1, . . . ,Kn} and Goodc = {c1, . . . , cn}, where cj = c(Kj),
and let πj = (µj , τj) be the output of A(Kj). Set up the system of linear
equations {

∑
i cj,i · fi = µj}1≤j≤n in the unknowns f = (f1, . . . , fn). Solve

for f (over the integers) and output it.

We refer to the above as the extraction subroutine.

To complete the proof, we need to show three things. First, that K runs in
expected polynomial time for any A. Second, that if A successfully convinces a
verifier in the PoS protocol with sufficiently high probability, then the extraction
procedure will successfully complete (specifically, step 3 will be successful) with
overwhelming probability. Third, that with overwhelming probability the file f
output by the extraction procedure is indeed equal to the true file f . The first
and third of these items are essentially standard. The second step would be
relatively straightforward if the challenge in the PoS protocol were a random
vector c; what makes it more complicated is that the challenge is a PRF key K
that is expanded to a vector c = c(K).

Fixing stA, f ′, and st, we let p∗ denote the probability that a random chal-
lenge K is good; i.e., this is the probability with which A(stA,f ′, st, ·) responds
correctly to the verifier’s challenge (we assume stA includes A’s coins).

Claim. K runs in expected polynomial time.

Proof. If p∗ = 0 then it is clear that K runs in expected polynomial time.
So assume p∗ > 0. We must then analyze the expected running time of the
extraction procedure, following [8, 12]. Steps 1 and 4 take strict polynomial time.
The expected running time of step 2 is exactly (some polynomial times) q(k)/p∗.
As for step 3, there are two cases: If p̃∗ ≤ p∗/2, then the only thing we can claim
is that the running time is bounded by (some polynomial times) 2k, due to the
counter being maintained in step 1. But the probability that p̃∗ ≤ p∗/2 is at
most 2−k

2
. On the other hand, if p̃∗ > p∗/2 then the expected running time of

step 4 is at most (some polynomial times) n · k2/p̃∗ < 2nk2/p∗.
K only runs the extraction procedure with probability p∗. Thus, the overall

expected running time of K is upper-bounded by

p∗ ·
(

poly(k) + poly(k) · q(k)/p∗ + poly(k) · 2k · 2−k
2

+ poly(k) · 2nk2/p∗
)
,

which is polynomial.

Claim. There exists a negligible function ε(·) such that if p∗ > ε(k) then the
probability (conditioned on the extraction procedure being run) that the extrac-
tion procedure outputs fail is negligible.

Observe this implies that

Pr

(pk, sk)← Gen(1k);

(f , stA)← AEncodesk(·)(pk);
(f ′, st)← Encodesk(f);

((c, π),f∗)← KA(stA,f
′,st,·)(pk, st)

: Vrfy(pk, st, c, π) = 1
∧
f∗ = fail

is negligible.

Proof. We view the cj = c(Kj) as vectors over Zp, and use the fact that integer
vectors c1, . . . , c`, with entries in the range {0, . . . , p−1}, are linearly dependent

over Q only if they are linearly dependent over Zp; thus, an upper bound on the
probability of the latter implies an upper bound on the probability of the former.

Define
ε′(k) = maxL

{
Pr[K ← {0, 1}k : c(K) ∈ L]

}
,

where the maximum is taken over all (n− 1)-dimensional subspaces L ⊂ Znp . It
is not hard to see that if F is a non-uniformly secure PRF then ε′(k) − 1/p is
negligible. Since 1/p is negligible, we see that ε′ is negligible too. Take ε = 2ε′.
We show that if p∗ > ε then, conditioned on the extraction procedure being run,
the probability that it outputs fail is negligible.

First, observe that the probability that K times out by virtue of running
for 2k steps is negligible (this follows from the fact that the expected running
time of K is polynomial). Next, fix any j and consider step 3. The number of
challenges that are good is exactly p∗ · 2k, and the number of challenges Kj for
which c(Kj) lies in span(Goodc) (which has dimension at most n− 1) is at most
ε′ ·2k < p∗ ·2k/2. Thus, the probability that a random Kj is both good and does
not lie in span(Goodc) is at least p∗/2. If p̃∗ is within a factor of 2 of p∗, which
occurs with all but negligible probability, then K finds such a Kj within k2/p̃∗

steps with all but negligible probability; a union bound over all values of j ∈ [n]
then shows that it fails in some iteration with only negligible probability. This
completes the proof.

Finally, we show that the probability that the extraction procedure outputs
an incorrect file is negligible. In conjunction with the previous claims, this com-
pletes the proof that K satisfies Definition 6.

Claim. For any ppt adversary A, the following is negligible:

Pr

(pk, sk)← Gen(1k);

(f , stA)← AEncodesk(·)(pk);
(f ′, st)← Encodesk(f);

((c, π),f∗)← KA(stA,f
′,st,·)(pk, st)

:
Vrfy(pk, st, c, π) = 1∧

f∗ 6∈ {fail,f}

 .
Proof. The event in question can only occur if, at the end of the extraction
procedure, there exists c ∈ Goodc, with c = c(K), for which A(K) outputs (µ, τ)
such that Vrfy(pk, st,K, (µ, τ)) = 1 yet µ 6=

∑
i cifi. But this exactly means

that A has violated the assumed unforgeability of Λ. Since K runs in expected
polynomial-time, it follows by a standard argument that this occurs with only
negligible probability.

This concludes the proof of Theorem 2.

5 A Concrete Instantiation Based on Factoring

In this section we describe a homomorphic variant of the identification protocol
of Shoup [15], whose security is based on the hardness of factoring. Together with

Define homomorphic identification protocol ΣShoup as follows:

– Setup(1k): Generate (N, p, q) ← GenBlum(1k). Choose y ← QRN , and
output pk := (N, y) and sk := (p, q).

– Comm(pk; r): View r as an element of J+1
N and output α := r.

– Resp(pk, sk, r, β): Let β ∈ Z2k (which defines the challenge space). Out-
put γ, a random 23kth root of ±r · yβ mod N (where the sign is chosen
to ensure that a square root exists).

– Vrfy(pk, α, β, γ): Output 1 iff γ23k ?
= ±α · yβ mod N and β < 23k.

Combine1 and Combine3 are defined as follows:

– Let c ∈ Zn2k and α ∈ ZnN . Then Combine1(c,α) =
Qn
i=1 α

ci
i mod N .

– Let c ∈ Zn2k and γ ∈ ZnN . Then Combine3(c,γ) =
Qn
i=1 γ

ci
i mod N .

Fig. 3. A homomorphic identification protocol based on factoring.

the transformations described in the previous sections, this yields a factoring-
based PoS in the random oracle model.

Protocol ΣShoup, described in Figure 3, relies on a Blum modulus generator
GenBlum that takes as input a security parameter 1k and outputs a tuple (N, p, q)
such that N = p · q where p and q are k-bit primes with p = q = 3 mod 4. We
denote byQRN the set of quadratic residues moduloN , and by J +1

N the elements
of Z∗N with Jacobi symbol +1. We use the following standard facts regarding
Blum integers: (1) given x ∈ Z∗N it can be efficiently decided whether x ∈ J +1

N ;
(2) if x ∈ J +1

N , then exactly one of x or −x is in QRN ; (3) every x ∈ QRN has
four square roots, exactly one of which is itself in QRN .

Correctness of ΣShoup as a stand-alone identification protocol is immediate.
Let us verify that it is homomorphic. Fix public key (N, y), challenge vector
c ∈ Zn2k , and {(αi, βi, γi)}1≤i≤n such that γ23k

i = ±αi ·yβi mod N for all i. Then

Combine3(c,γ)2
3k

=

(
n∏
i=1

γci
i

)23k

mod N

=
n∏
i=1

(
γ23k

i

)ci

mod N

=
n∏
i=1

(
±αi · yβi

)ci mod N

= ±
n∏
i=1

αci
i · y

βici mod N

= ±Combine1(c,α) · y
P

i ciβi mod N,

and furthermore
∑
i ciβi < n · 2k · 2k < 23k.

Theorem 3. ΣShoup is an unforgeable homomorphic identification protocol if the
factoring assumption holds with respect to GenBlum.

Proof. The high-level ideas are similar to those in [15], though the proof here
is a bit simpler. Given a ppt adversary A attacking ΣShoup, we construct a ppt
algorithm B computing square roots modulo N output by GenBlum. This implies
factorization of N in the standard way. Algorithm B works as follows:

– B is given a Blum modulus N and a random y ∈ QRN . It runs A on the
public key pk = (N, y).

– When A outputs β′ ∈ Z2k , then B chooses random γ ∈ ZN and b ∈ {0, 1},
and sets r := α := (−1)b · γ23k

/yβ mod N . It then gives (r, γ) to A.
– When A outputs an n-vector of challenges β, then for each i algorithm B

computes (ri, γi) as in the previous step. It gives (r,γ) to A.
– If A outputs (c, µ′, γ′) with Vrfy(pk,Combine1(c,α), µ′, γ′) = 1 but µ′ 6=∑

i ciβi, then B computes a square root of y as described below.

Note that the simulation provided for A by B is perfect, and so A succeeds in
the above with the same probability with which it succeeds in attacking the
real-world protocol ΣShoup.

To complete the proof, we describe the final step in more detail. Define

α∗ = Combine1(c,α), γ∗ = Combine3(c,γ), µ =
∑
i

ciβi.

If Vrfy(pk, α∗, µ′, γ′) = 1 but µ′ 6= µ, then (γ′)2
3k

= ±α∗ · yµ′ mod N ; further-
more, B also knows that (γ∗)2

3k

= ±α∗ · yµ mod N . Assume without loss of
generality that µ > µ′. Since y ∈ QRN this implies

(γ′/γ∗)2
3k

= yµ−µ
′

mod N (1)

with µ, µ′ < 23k (and so µ − µ′ < 23k). Write µ − µ′ = f · 2t for t < 3k and f
odd. Since squaring is a permutation of QRN , Equation (1) implies

(γ′/γ∗)2
3k−t

= yf mod N.

Using the extended Euclidean algorithm, B computes integers A,B such that
Af +B23k−t = 1. Then((

(γ′/γ∗)A yB
)23k−t−1)2

=
(

(γ′/γ∗)A yB
)23k−t

= yAfyB23k−t

= y,

and so B can compute a square root of y. Since B computes a square root
whenever A succeeds, the success probability of A must be negligible.

Acknowledgments. We are grateful to Gene Tsudik for his insightful com-
ments and contributions during the early stages of this work.

References

1. G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and
D. Song. Provable data possession at untrusted stores. In ACM Conference on
Computer and Communications Security. ACM, 2007.

2. G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik. Scalable and efficient
provable data possession. In Proc. 4th Intl. Conf. on Security and Privacy in
Communication Netowrks (SecureComm ’08), pages 1–10. ACM, 2008.

3. M. Bellare and O. Goldreich. On defining proofs of knowledge. In Advances in
Cryptology — Crypto ’92, volume 740 of Lecture Notes in Computer Science, pages
390–420. Springer-Verlag, 1992.

4. K. Bowers, A. Juels, and A. Oprea. Proofs of retrievability: Theory and imple-
mentation. Technical Report 2008/175, Cryptology ePrint Archive, 2008.

5. Y. Dodis, S. Vadhan, and D. Wichs. Proofs of retrievability via hardness ampli-
fication. In Theory of Cryptography Conference, volume 5444 of Lecture Notes in
Computer Science, pages 109–127. Springer, 2009.

6. C. Erway, C. Papamanthou, A. Kupcu, and R. Tamassia. Dynamic provable data
possession. In ACM Conf. on Computer and Communications Security 2009 (to
appear). Available as Cryptology ePrint Archive, Report 2008/432.

7. U. Feige, A. Fiat, and A. Shamir. Zero knowledge proofs of identity. J. Cryptology,
1(2):77–94, 1988.

8. O. Goldreich and A. Kahan. How to construct constant-round zero-knowledge
proof systems for NP. J. Cryptology, 9(3):167–190, 1996.

9. J. Groth. A verifiable secret shuffle of homomorphic encryptions. Technical Report
2005/246, IACR ePrint Cryptography Archive, 2005.

10. L. Guillou and J.-J. Quisquater. A practical zero-knowledge protocol fitted to
security microprocessor minimizing both transmission and memory. In Advances
in Cryptology — Eurocrypt ’88, volume 330 of Lecture Notes in Computer Science,
pages 123–128. Springer, 1988.

11. A. Juels and B. Kaliski. PORs: Proofs of retrievability for large files. In ACM
Conference on Computer and Communications Security. ACM, 2007.

12. Y. Lindell. Parallel coin-tossing and constant-round secure two-party computation.
J. Cryptology, 16(3):143–184, 2003.

13. M. Naor and G. Rothblum. The complexity of online memory checking. In IEEE
Symposium on Foundations of Computer Science, pages 573–584. IEEE Computer
Society, 2005.

14. H. Shacham and B. Waters. Compact proofs of retrievability. In Advances in
Cryptology — Asiacrypt ’08, volume 5350 of Lecture Notes in Computer Science,
pages 90–107. Springer, 2008. Full version available at http://eprint.iacr.org.

15. V. Shoup. On the security of a practical identification scheme. J. Cryptology,
12(4):247–260, 1999.

