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Abstract. Scenarios in which authenticated encryption schemes output
decrypted plaintext before successful verification raise many security is-
sues. These situations are sometimes unavoidable in practice, such as
when devices have insufficient memory to store an entire plaintext, or
when a decrypted plaintext needs early processing due to real-time re-
quirements. We introduce the first formalization of the releasing unveri-

fied plaintext (RUP) setting. To achieve privacy, we propose using plain-

text awareness (PA) along with IND-CPA. An authenticated encryption
scheme is PA if it has a plaintext extractor, which tries to fool adversaries
by mimicking the decryption oracle, without the secret key. Releasing un-
verified plaintext to the attacker then becomes harmless as it is infeasible
to distinguish the decryption oracle from the plaintext extractor. We in-
troduce two notions of plaintext awareness in the symmetric-key setting,
PA1 and PA2, and show that they expose a new layer of security be-
tween IND-CPA and IND-CCA. To achieve integrity, INT-CTXT in the
RUP setting is required, which we refer to as INT-RUP. These new se-
curity notions are compared with conventional definitions, and are used
to make a classification of symmetric-key schemes in the RUP setting.
Furthermore, we re-analyze existing authenticated encryption schemes,
and provide solutions to fix insecure schemes.

1 Introduction

The goal of authenticated encryption (AE) is to simultaneously provide data pri-
vacy and integrity. AE decryption conventionally consists of two phases: plain-
text computation and verification. As reflected in classical security models, plain-
text coming from decryption is output only upon successful verification.
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Nevertheless, there are settings where releasing plaintext before verification
is desirable. For example, it is necessary if there is not enough memory to store
the entire plaintext [21] or because real-time requirements would otherwise not
be met [15, 38]. Even beyond these settings, using dedicated schemes secure
against the release of unverified plaintext can increase efficiency. For instance,
to avoid releasing unverified plaintext into a device with insecure memory [37],
the two-pass Encrypt-then-MAC composition can be used: a first pass to verify
the MAC, and a second to decrypt the ciphertext. However, a single pass AE
scheme suffices if it is secure against the release of unverified plaintext.

If the attacker cannot observe the unverified plaintext directly, it may be
possible to determine properties of the plaintext through a side channel. This
occurs, for example, in the padding oracle attacks introduced by Vaudenay [39],
where an error message or the lack of an acknowledgment indicates whether
the unverified plaintext was correctly padded. Canvel et al. [18] showed how
to mount a padding oracle attack on the then-current version of OpenSSL by
exploiting timing differences in the decryption processing of TLS. As shown by
Paterson and AlFardan [1, 30] for TLS and DTLS, it is very difficult to prevent
an attacker from learning the cause of decryption failures.

The issue of releasing unverified plaintext has also been acknowledged and ex-
plicitly discussed in the upcoming CAESAR competition:5 “Beware that security
questions are raised by any authenticated cipher that handles a long ciphertext
in one pass without using a large buffer: releasing unverified plaintext to applica-
tions often means releasing it to attackers and also requires an analysis of how
the applications will react.”

For several AE schemes, including OCB [27], AEGIS [41], ALE [15], and
FIDES [15], the designers explicitly stress that unverified plaintext cannot be
released. Although the issue of releasing unverified plaintext (RUP) in AE is
frequently discussed in the literature, it has largely remained unaddressed even
in recent AE proposals, likely due to a lack of comprehensive study.

We mention explicitly that we do not recommend omitting verification, which
remains essential to preventing incorrect plaintexts from being accepted. To en-
sure maximal security, unverified plaintext must be kept hidden from adversaries.
However, our scenario assumes that the attacker can see the unverified plaintext,
or any information relating to it, before verification is complete. Furthermore, is-
sues related to the behavior of applications which process unverified plaintext are
beyond the scope of this paper; careful analysis is necessary in such situations.

1.1 Security Under Release of Unverified Plaintext

AE security is typically examined using indistinguishability under chosen plain-
text attack (IND-CPA) for privacy and integrity of ciphertexts (INT-CTXT) for
integrity, and a scheme which achieves both is indistinguishable under chosen
ciphertext attack (IND-CCA), as shown by Bellare and Namprempre [9] and
Katz and Yung [26]. However, in the RUP situation adversaries can also observe

5 http://competitions.cr.yp.to/features.html
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Fig. 1. The two plaintext aware settings (PA1 and PA2) used in the paper, where
D is an adversary. Not shown in the figure is the type of IV used by the EK oracle
(cf. Sect. 3.2). Left: Real world, with encryption oracle EK and decryption oracle DK .
Right: Simulated world, with encryption oracle EK and plaintext extractor E. The
plaintext extractor E is a stateful algorithm without knowledge of the secret key K,
nor access to the encryption oracle EK . The dotted line indicates that E has access to
the encryption queries made by adversary D, which only holds in the PA1 setting.

unverified plaintext, which the conventional definitions do not take into account.
To address this gap we introduce two definitions: integrity under releasing un-
verified plaintext (INT-RUP) and plaintext awareness (PA). For integrity we
propose using INT-RUP and for privacy both IND-CPA and PA. In the full ver-
sion of this paper [3], we discuss how the combination of INT-RUP, IND-CPA,
and PA measures the impact of releasing unverified plaintext on security.

INT-RUP. The goal of an adversary under INT-CTXT is to produce new ci-
phertexts which pass verification, with only access to the encryption oracle.
We translate INT-CTXT into the RUP setting, called INT-RUP, by allowing
the adversary to observe unverified plaintexts. We formalize this by separating
plaintext computation from verification, and giving the adversary access to a
plaintext-computing oracle.

Plaintext Awareness (PA). We introduce PA as a new symmetric-key notion
to achieve security in the RUP setting. Informally, we define a scheme to be PA
if the adversary cannot gain any additional knowledge about the plaintext from
decryption queries besides what it can derive from encryption queries.

Our PA notion only involves encryption and decryption, and can thus be
defined both for encryption schemes as well as for AE schemes that release
unverified plaintext.

At the heart of our new PA notion is the plaintext extractor, shown in Fig. 1.
We say that an encryption scheme is PA if it has an efficient plaintext extractor,
which is a stateful algorithm that mimicks the decryption oracle in order to fool
the adversary. It cannot make encryption nor decryption queries, and does not
know the secret key. We define two notions of plaintext awareness: PA1 and PA2.
The extractor is given access to the history of queries made to the encryption
oracle in PA1, but not in PA2. Hence PA1 is used to model RUP scenarios in
which the goal of the adversary is to gain knowledge beyond what it knows from
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Fig. 2. Implications and separations between the IND-CPA, IND-CPA+PA1,
IND-CPA+PA2, IND-CCA, IND-CCA′, PA2, and DI security notions (left) and
INT-CTXT and INT-RUP (right). Dashed lines refer to relations that hold if the
IV is random and thin solid lines in case of nonce or arbitrary IV. We use a thick solid
line if the relation holds under all IV cases.

the query history. For situations in which the goal of the adversary is to decrypt
one of the ciphertexts in the query history, we require PA2.

Relations Among Notions. PA for public-key encryption was introduced by
Bellare and Rogaway [11], and later defined without random oracles by Bellare
and Palacio [10]. In the symmetric-key setting, our definition of PA is somewhat
similar, however there are important technical differences which make the public-
key results inapplicable to the symmetric-key setting.

Relations among the PA and conventional security definitions for encryption
(see Sect. 3.3) are summarized in Fig. 2. We consider three IV assumptions:
random IV, nonce IV (non-repeating value), and arbitrary IV (value that can
be reused), as explained in Sect. 3.2. The statements of the theorems and proofs
can be found in the full version of this paper [3].

The motivation for having two separate notions, PA1 and PA2, is as fol-
lows. As we prove in this work, if the plaintext extractor has access to the
query history (PA1), then there are no implications between IND-CPA+PA1
and IND-CCA. However, if we modify plaintext awareness so that the plaintext
extractor no longer has access to the query history (PA2), then we can prove
that IND-CPA+PA2 implies IND-CCA′. IND-CCA′ is a strengthened version of
IND-CCA, where we allow the adversary to re-encrypt the outputs of the decryp-
tion oracle. Note that such a re-encryption is always allowed in the public-key
setting, but not in the symmetric-key setting where the key required for encryp-
tion is secret. Furthermore, we also prove that PA2 is equivalent to the notion of
decryption independence (DI). DI captures the fact that encryption and decryp-
tion under the same key are only related to each other as much as encryption
and decryption under different keys.

Finally, although INT-RUP clearly implies INT-CTXT, the opposite is not
necessarily true.

Motivating Examples. To get an intuition for PA1 (shown in Fig. 1) and
how it relates to the RUP setting, we provide two motivating examples with
CTR mode. For simplicity, we define the encryption function of CTR mode as



EK(IV,M) = EK(IV) ⊕M , where the message M and the initialization value
IV consist of one block each, and EK is a block cipher with a secret key K.
The corresponding decryption function is DK(IV, C) = EK(IV)⊕ C. As shown
in [13], CTR mode is IND-CPA but not IND-CCA, a result that holds for nonce
IVs (unique non-repeating values) as well as for random IVs.

1. Nonce IV CTR mode is not PA1. Following Rogaway [31], we assume that
an adversary is free to specify the IV for encryption and decryption queries,
as long as it does not make two encryption queries with the same nonce IV,
N . In the attack, an adversary first makes a decryption query (N,C) with
nonce N and one-block ciphertext C to obtain a message M . The correct
decryption of M is EK(N) ⊕ C as output by the decryption oracle. The
adversary then computes the keystream κ := M ⊕C. Now in a second query
(N,M ′), this time to the encryption oracle, the adversary obtains C′ where
C′ = M ′ ⊕ κ.
The scheme fails to be plaintext aware as it is infeasible for any plaintext
extractor to be consistent with subsequent encryption queries. Specifically,
the plaintext extractor cannot compute κ at the time of the first decryption
query for the following reasons: it does not know the secret key K, it is not
allowed to do encryption queries, and an encryption query with N has not
yet been recorded in the query history.

2. Random IV CTR mode is PA1. In this setting, the IV used in encryption is
chosen randomly by the environment, and therefore out of the attacker’s con-
trol. However, the adversary can still freely choose the IV for its decryption
queries. In this random IV setting, the attack in the nonce IV example does
not apply. To see this, consider an adversary which queries the decryption
of (IV1, C) with a one-block ciphertext C. It can compute the keystream as-
sociated to IV1, but does not control when IV1 is used in encryption. Thus,
a plaintext extractor can be defined as outputting a random plaintext M in
response to the (IV1, C) query.
But what if an adversary makes additional decryption queries with the same
IV? Suppose the adversary makes decryption query (IV1, C ⊕∆). Since the
plaintext extractor is a stateful algorithm, it can simply output M ⊕ ∆ to
provide consistency. Furthermore, if an adversary makes encryption queries,
these will be seen by the PA1 plaintext extractor. Therefore, the plaintext
extractor can calculate the keystream from these queries, and respond to
any decryption queries in a consistent way. A proof that random IV CTR
mode is PA1 is provided in Prop. 2.

AE schemes such as GCM [28] and CCM [40] reduce to CTR mode in the RUP
setting. This is because the adversary does not need to forge a ciphertext in
order to obtain information about the corresponding (unverified) plaintext. By
requiring that the underlying encryption scheme of an AE scheme is PA1, we
ensure that the adversary does not gain any information from decryption queries,
meaning no decryption query can be used to find an inconsistency with any past
or future queries to the encryption or decryption oracles.



1.2 Analysis of Authenticated Encryption Schemes

Given the formalization of AE in the RUP setting, we categorize existing AE
schemes based on the type of IV used by the encryption function: random IV,
nonce IV, and arbitrary IV. Then, we re-analyze the security of several recently
proposed AE schemes as well as more established AE schemes. In order to do
so, we split the decryption algorithms into two parts, plaintext computation and
verification, as described in Sect. 3.1.

For integrity, we show that OCB [33] and COPA [4] succumb to attacks by
using unverified plaintext to construct forgeries. For privacy an overview of our
results can be seen in Table 1, where we also include the encryption-only modes
CTR and CBC as random IV examples. We draw a distinction between the
schemes that are online and the schemes that are not, where an online scheme
is one that is able to produce ciphertext blocks as it receives plaintext blocks.

Most of the schemes in Table 1 fail to achieve PA1. As a result, we demon-
strate techniques to restore PA1 for nonce IV and arbitrary IV schemes. For the
former, we introduce the nonce decoy technique, and for the latter the PRF-to-
IV method, which converts a random IV PA1 scheme into an arbitrary IV PA1
scheme. For online arbitrary IV schemes, we demonstrate that PA1 security can
be achieved only if the ciphertext is substantially longer than the plaintext, or
the decryption is offline. We show that McOE-G [20] achieves PA1 if the plain-
text is padded so that the ciphertext becomes twice as long. We also prove that
APE [2], an online deterministic AE scheme with offline decryption, achieves
PA1.

Finally we show that the nonce decoy preserves INT-RUP, and the PRF-to-
IV method turns any random IV scheme into an INT-RUP arbitrary IV scheme.

1.3 Background and Related Work

The definition of encryption and AE has been extended and generalized in dif-
ferent ways. In 2004, Rogaway [32] introduced nonce IV encryption schemes, in
contrast with prior encryption modes that used a random IV, as in the CBC
mode standardized by NIST in 1980 [29].

Rogaway and Shrimpton [34] formalized deterministic AE (DAE), where an
IV input is optional and can therefore take arbitrary values. Secure DAE differs
from secure nonce IV AE schemes in that DAE privacy is possible only up to
message repetition, namely an adversary can detect repeated encryptions. Un-
fortunately, DAE schemes cannot be online. To resolve this issue, Fleischmann et
al. [20] explored online DAE schemes, where privacy holds only up to repetitions
of messages with identical prefixes or up to the longest common prefix.

Tsang et al. [38] gave syntax and security definitions of AE for streaming
data. Bellare and Keelveedhi [6] considered a stronger security model where
data may be key-dependent. Boldyreva et al. reformulated AE requirements
and properties to handle ciphertext fragmentation in [16], and enhanced the
syntax and security definitions so that the verification oracle is allowed to handle
multiple failure events in [17]. Our formalization can be interpreted as a special
case of the work in [17], yet the emphasis and results differ.



Table 1. PA1 and PA2 security of deterministic and non-deterministic schemes, sep-
arated as described in Sect. 3.1. In the columns for PA1 and PA2, ✓ means secure
(there exists an extractor), and ✗ means insecure (there exists an attack). Proofs for
the security results in this table can be found in Sect. 5.

IV type Online Scheme PA1 PA2 Remark

random ✓ CTR, CBC [29] ✓ ✗

nonce ✓ OCB [33] ✗ ✗

✓ GCM [28], SpongeWrap [14] ✗ ✗

✗ CCM [40] ✗ ✗ not online [35]

arbitrary ✓ COPA [4] ✗ ✗ privacy up to prefix
✓ McOE-G [20] ✗ ✗ ′′
✓ APE [2] ✓ ✗ ′′, backwards decryption
✗ SIV [34], BTM [23], HBS [24] ✓ ✗ privacy up to repetition
✗ Encode-then-Encipher [12] ✓ ✓ ′′, VIL SPRP, padding

2 Preliminaries

Symbols. Given two strings A and B in {0, 1}∗, we use A‖B and AB inter-
changeably to denote the concatenation of A and B. The symbol ⊕ denotes
the bitwise XOR operation of two strings. Addition modulo 2n is denoted by +,
where n usually is the bit length of a block. For example, in the CTR mode of op-
eration of a block cipher, we increment the IV value by addition IV +i (mod 2n),
where n is the block size, the n-bit string IV = IVn−1 · · · IV1IV0 ∈ {0, 1}

n is
converted to an integer 2n−1IVn−1+ · · ·+2IV1+IV0 ∈ {0, 1, . . . , 2

n−1}, and the

result of addition is converted to an n-bit string in the reverse way. By K
R

← K

we mean that K is chosen uniformly at random from the set K. All algorithms
and adversaries are considered to be “efficient”.

Adversaries and Advantages. An adversary is an oracle Turing machine. Let
D be some class of computationally bounded adversaries; a class D can consist
of a single adversary D, i.e. D = {D}, in which case we simply write D instead
of D. For convenience, we use the notation

∆
D

(f ; g) := sup
D∈D

∣∣Pr[Df = 1]− Pr[Dg = 1]
∣∣

to denote the supremum of the distinguishing advantages over all adversaries
distinguishing oracles f and g, where the notation DO indicates the value output
by D after interacting with oracle O. The probabilities are defined over the
random coins used in the oracles and the random coins of the adversary, if
any. Multiple oracles are separated by a comma, e.g. ∆(f1, f2 ; g1, g2) denotes
distinguishing the combination of f1 and f2 from the combination of g1 and g2.

If D is distinguishing (f1, f2, . . . , fk) from (g1, g2, . . . , gk), then by Oi we
mean the ith oracle that D has access to, i.e. either fi or gi depending upon
which oracles it is interacting with. By Oi →֒ Oj we describe a set of actions
that D can perform: first D queries Oi, and then at some point in the future D



queries Oj with the output of Oi, assuming the output of Oi can be used directly
as the input for Oj . If the oracles Oi and Oj represent a family of algorithms

indexed by inputs, then the indices must match. For example, say that EN,A
K and

DN,A
K are families indexed by (N,A). Then EK →֒ DK describes a set of actions,

which includes querying EN,A
K (M) to receive C, and then at some point in the

future querying DN,A
K (C), where K, N , A, and C are reused.

Our security definitions follow [9] and are given in terms of adversary ad-
vantages. A scheme is said to be secure with respect to some definition if it is
negligible with respect to all adversaries with time complexity polynomial in
the security parameter. As in [9], positive results are given as explicit bounds,
whereas negative results, i.e. separations, are given in asymptotic terms, which
can easily be converted into concrete bounds.

Online Functions. A function f : M → C is said to be n-online if there exist
functions fi : {0, 1}

i → {0, 1}ci and f ′
i : {0, 1}

i → {0, 1}c
′

i such that ci > 0, and
for all M ∈ M we have

f(M) = fn(M1) f2n(M1M2) · · · fjn(M1M2 · · ·Mj) f
′
|M|(M) ,

where j = ⌊(|M | − 1)/n⌋ and Mi is the ith n-bit block of M . Often we just say
f is online if the value n is clear from context.

3 AE Schemes: Syntax, Types, and Security

3.1 New AE Syntax

A conventional AE scheme Π = (E ,D) consists of an encryption algorithm E
and a decryption algorithm D:

(C, T )← EIV,AK (M) ,

M/⊥ ← DIV,A
K (C, T ) ,

where K ∈ K is a key, IV ∈ IV an initialization value, A ∈ A associated data,
M ∈ M a message, C ∈ C the ciphertext, T ∈ T the tag, and each of these sets is
a subset of {0, 1}∗. The correctness condition states that for all K, IV , A, and

M , DIV,A
K (EIV,AK (M)) = M . A secure AE scheme should return ⊥ when it does

not receive a valid (C, T ) tuple.
In order to consider what happens when unverified plaintext is released, we

disconnect the decryption algorithm from the verification algorithm so that the
decryption algorithm always releases plaintext. A separated AE scheme is a
triplet Π = (E ,D,V) of keyed algorithms — encryption E , decryption D, and
verification V — such that

(C, T )← EIV,AK (M) ,

M ← DIV,A
K (C, T ) ,

⊤/⊥ ← VIV,A
K (C, T ) ,



where K, IV,A,M,C, and T are defined as above. Note that in some determin-
istic schemes IV may be absent, in which case we can expand the interface of
such schemes to receive IV input with which it does nothing. Furthermore, for
simplicity we might omit A if there is no associated data. The special symbols
⊤ and ⊥ indicate the success and failure of the verification process, respectively.

As in the conventional setting we impose a correctness condition: for all K,
IV , A, and M such that EIV,AK (M) = (C, T ), we require DIV,A

K (C, T ) = M and

VIV,A
K (C, T ) = ⊤.

Relation to Conventional Syntax. Given a separated AE scheme Π =
(E ,D,V), we can easily convert it into a conventional AE schemeΠ = (E ,D). Re-

member that the conventional decryption oracle D
IV,A

K (C, T ) outputs M where

M = DIV,A
K (C, T ) if VIV,A

K (C, T ) = ⊤, and ⊥ otherwise.
The conversion in the other direction is not immediate. While the verification

algorithm V can be easily “extracted” from D (i.e., one can easily construct V
using D — just replace M with ⊤), it is not clear if one can always “naturally”
extract the decryption algorithm D from D. However, all practical AE schemes
that we are aware of can be constructed from a triplet (E ,D,V) as above, and
hence their decryption algorithms D are all separable into D and V .

3.2 Types of AE Schemes

Classification Based on IVs. In order to achieve semantic security [22], AE
schemes must be probabilistic or stateful [5]. Usually the randomness or state
is focused into an IV [32]. How the IV is used restricts the scheme’s syntax and
the types of adversaries considered in the security notions:

1. Random IV. The environment chooses a random IV for each encryption,
thus an adversary has no control over the choice of IV for each encryption.
The generated IV must be sent along with the ciphertext so that the receiver
can decrypt.

2. Nonce IV. A distinct IV must be used for each encryption, thus an ad-
versary can choose but does not repeat nonce IV values in its encryption
queries. How the parties synchronize the nonce is typically left implicit.

3. Arbitrary IV. No restrictions on the IV are imposed, thus an adversary
may choose any IV for encryption. Often a deterministic AE scheme does
not even have an IV input, in which case an IV can be embedded into the
associated data A, which gets authenticated along with the plaintext M but
does not get encrypted; A is sent in the clear.

In all IV cases the adversary can arbitrarily choose the IV input values to the
decryption oracle. In some real-world protocols the decryption algorithm can be
stateful [7], but such schemes are out of the scope of this paper, and schemes
designed to be secure with deterministic decryption algorithms will be secure in
those settings as well.

While random and nonce IV schemes can achieve semantic security, arbi-
trary IV schemes cannot, and therefore reduce to deterministic security. In the



Table 2. The type of random oracle needed depending upon the class of AE scheme
considered.

IV type
type of encryption

online offline

random random oracle random oracle
nonce random oracle random oracle
arbitrary random-up-to-prefix oracle random-up-to-repetition oracle

latter case, the most common notions are “privacy up to repetition” which is
used for DAE [34] and “privacy up to prefix” which is used for authenticated
online encryption [20]. In any case, we write $ to indicate the ideal oracle from
which an adversary tries to distinguish the real encryption oracle EK , regardless
of the IV type. This means that the ideal $ oracle should be either the random
oracle, random-up-to-repetition oracle, or random-up-to-prefix oracle, depend-
ing upon the IV. Each of the cases with their respective random oracles are
listed in Table 2. In order to avoid redundancy in the wording of the definitions,
whenever we write ∆(EK , . . . ; $, . . .), it is understood that the $ oracle is the
one appropriate for the AE scheme consisting of E .

Online Encryption/Decryption Algorithms. A further distinction is made
between online schemes and the others. An AE scheme with online encryption
is one in which the ciphertext can be output as the plaintext is received, namely
we require that for each (K, IV,A) the resulting encryption function is online as
a function of the plaintext M .

Although decryption in AE schemes can never be online due to the fact that
the message needs to be verified before it is output, we still consider schemes
which can compute the plaintext as the ciphertext is received. In particular, a
scheme with online decryption is one in which this plaintext-computing algo-
rithm, viewed as a function of the ciphertext and tag input, is online. Note that
in some schemes the tag could be received before the ciphertext, in which case
we still consider D to be online (even though our new syntax implies that the
tag is always received after the ciphertext).

3.3 Conventional Security Definitions under the New Syntax

Let Π = (E ,D,V) denote an AE scheme as a family of algorithms indexed by
the key, IV, and associated data. With the new separated syntax we reformulate
the conventional security definitions, IND-CPA, IND-CCA, and INT-CTXT. As
mentioned above, the security notions are defined in terms of an unspecified $,
where the exact nature of $ depends on the type of IV allowed (cf. Table 2).
In the definitions the only fixed input to the algorithms is the key, indicated by
writing EK and DK ; all other inputs, such as the IV and associated data, can be
entered by the adversary.

Definition 1 (IND-CPA Advantage). Let D be a computationally bounded

adversary with access to one oracle O, and let K
R

← K. Then the IND-CPA



advantage of D relative to Π is given by

CPAΠ(D) := ∆
D

(EK ; $) .

Definition 2 (IND-CCA Advantage). Let D be a computationally bounded
adversary with access to two oracles O1 and O2, such that D never queries

O1 →֒ O2 nor O2 →֒ O1, and let K
R

← K. Then the IND-CCA advantage of D
relative to Π is given by

CCAΠ(D) := ∆
D

(EK ,DK ; $,DK) .

Note that IND-CCA as defined above does not apply to the random IV setting.
When a random IV is used, the adversary is not prohibited from querying O2 →֒
O1. We introduce a version of IND-CCA below, which can be applied to all IV
settings.

Definition 3 (IND-CCA′ Advantage). Let D be an adversary as in Def. 2,

except D may now query O2 →֒ O1, and let K
R

← K. Then the IND-CCA′

advantage of D relative to Π is given by

CCA
′
Π(D) := ∆

D

(EK ,DK ; $,DK) .

Definition 4 (INT-CTXT Advantage). Let F be a computationally bounded
adversary with access to two oracles EK and VK , such that F never queries
EK →֒ VK . Then the INT-CTXT advantage of F relative to Π is given by

CTXTΠ(F) := Pr
[
FEK ,VK forges

]
,

where the probability is defined over the random key K and random coins of F.
Here, “forges” means that VK returns ⊤ to the adversary.

4 Security Under Release of Unverified Plaintext

4.1 Security of Encryption

We introduce the notion of plaintext-aware encryption of symmetric-key encryp-
tion schemes. An analysis of existing plaintext-aware schemes can be found in
Sect. 5. The formalization is similar to the one in the public-key setting [10]. Let
Π = (E ,D) denote an encryption scheme.

Definition 5 (PA1 Advantage). Let D be an adversary with access to two
oracles O1 and O2. Let E be an algorithm with access to the history of queries
made to O1 by D, called a PA1-extractor. We allow E to maintain state across
invocations. The PA1 advantage of D relative to E and Π is

PA1
E

Π(D) := ∆
D

(EK ,DK ; EK ,E) ,

where K
R

← K, and the probability is defined over the key K, the random coins
of D, and the random coins of E.



The adversary D tries to distinguish the case in which its second oracle O2 is
given by DK versus the case in which O2 is given by E. The task of E is to
mimic the outputs of DK given only the history of queries made to EK by D
(the key is not given to E). Note that D is allowed to make queries of the form
EK →֒ E; these can easily be answered by E via the query history.

PA2 is a strengthening of PA1 where the extractor no longer has access to
the query history of EK ; the extractor becomes a simulator for the decryption
algorithm. Note that in order for this to work, we cannot allow the adversaries
to make queries of the form EK →֒ E.

Definition 6 (PA2 Advantage). Let D be an adversary as in Def. 5, with
the added restriction that it may not ask queries of the form O1 →֒ O2. Let E
be an algorithm, called a PA2-extractor. We allow E to maintain state across
invocations. The PA2 advantage of D relative to E and Π is

PA2
E

Π(D) := ∆
D

(EK ,DK ; EK ,E) ,

where K
R

← K, and the probability is defined over the key K, the random coins
of D, and the random coins of E.

An equivalent way of describing PA2 is via decryption independence (DI), which
means that the adversary cannot distinguish between encryption and decryption
under the same key and under different keys. The equivalence between PA2 and
DI is proven in [3].

Definition 7 (Decryption Independence). Let D be a distinguisher accept-
ing two oracles not making queries of the form O1 →֒ O2, then the DI advantage
of D relative to Π is

DIΠ(D) := ∆
D

(EK ,DK ; EK ,DL) ,

where K,L
R

← K are independent.

4.2 Security of Verification

Integrity when releasing unverified plaintext is a modification of INT-CTXT
(Def. 4) to include the decryption oracle as a means to obtain unverified plain-
text. Let Π = (E ,D,V) be an AE scheme with separate decryption and verifica-
tion.

Definition 8 (INT-RUP Advantage). Let F be a computationally bounded
adversary with access to three oracles EK, DK , and VK , such that F never queries
EK →֒ VK . Then the INT-RUP advantage of F relative to Π is given by

INT-RUPΠ(F) := Pr
[
FEK ,DK ,VK forges

]
,

where the probability is defined over the key K and random coins of F. Here,
“forges” means the event of the oracle VK returning ⊤ to the adversary.



5 Achieving Plaintext Awareness

5.1 Why Existing Schemes Do Not Achieve PA1

In conventional AE schemes such as OCB, GCM, SpongeWrap, CCM, COPA,
and McOE-G, a ciphertext is computed using some bijective function, and then
a tag is appended to the ciphertext. The schemes achieve AE because the tag
prevents all ciphertexts from being valid. But if the tag is no longer checked,
then we cannot achieve PA1, as explained below.

Let Π = (EK ,DK) be a nonce or arbitrary IV encryption scheme, then we
can describe Π as follows,

EIV,AK (M) = EIV,A
K (M) ‖ F IV,A

K (M) ,

where EK is length-preserving, i.e. |EIV,A
K (M)| = |M |. One can view F IV,A

K (M)
as the tag-producing function from a scheme such as GCM. In the following
proposition we prove that if Π is IND-CPA and PA1, then EK cannot be bi-
jective for each (IV,A), assuming either a nonce or arbitrary IV. Note that the
proposition only holds if Π is a nonce or arbitrary IV scheme.

Proposition 1. Say that EK is bijective for all (IV,A), then there exists an
adversary D such that for all extractors E, there exists an adversary D1 such
that

1− CPAΠ(D1) ≤ PA1
E

Π(D) ,

where D makes one O1 query, one O2 query, and D1 is as efficient as D plus
one query to E.

Proof. See [3]. ⊓⊔

We conclude that in order for a nonce or arbitrary IV scheme to be PA1 and
IND-CPA, EK must either not be bijective, or not be length-preserving.

5.2 PA1 Random IV Schemes

We illustrate Def. 5 and the idea of an extractor by considering the CTR mode
with a random IV.

Example 1 (RIV-CTR Extractor). Let F : {0, 1}k×{0, 1}n → {0, 1}n be a PRF.
For Mi ∈ {0, 1}

n, 1 ≤ i ≤ ℓ, define RIV-CTR encryption as

EC0

K (M1 · · ·Mℓ) = FK(C0 + 1)⊕M1 ‖ · · · ‖ FK(C0 + ℓ)⊕Mℓ ,

where C0 is selected uniformly at random from {0, 1}n for each encryption, and
decryption as

DC0

K (C1 · · ·Cℓ) = FK(C0 + 1)⊕ C1 ‖ · · · ‖ FK(C0 + ℓ)⊕ Cℓ .

We can define an extractor E for RIV-CTR as follows. Initially, E generates a
random key K ′ which it will use via FK′ . Let (C0, C1 · · ·Cℓ) denote an input to
E. Using C0, the extractor searches its history for a ciphertext with C0 as IV.



1. If such a ciphertext exists, we let (C′
1
· · ·C′

m,M ′
1
· · ·M ′

m) denote the longest
corresponding EK query-response pair. Define κi := C′

i ⊕M ′
i for 1 ≤ i ≤

min{ℓ,m}. Notice that κi corresponds to the keystream generated by FK

for 1 ≤ i ≤ ℓ. For m < i ≤ ℓ we generate κi by FK′(C0 + i).
2. If there is no such ciphertext, then we generate κi as FK′(C0+i) for 1 ≤ i ≤ ℓ.

Then we set EC0(C1 · · ·Cℓ) = (C1 ⊕ κ1, C2 ⊕ κ2 ‖ · · · ‖ Cℓ ⊕ κℓ) .

Proposition 2. Let D be a PA1 adversary for RIV-CTR making queries whose
lengths in number of blocks sum up to σ, then

PA1
E

RIV-CTR(D) ≤ ∆
D1

(FK , FK ; FK , FK′) +
σ2

2n
,

where D1 is an adversary which may not make the same query to both of its
oracles, and makes a total of σ queries with the same running time as D.

We refer to a proof of this proposition to the full version of the paper [3]. Here,
we also describe and analyze an extractor for the CBC mode.

In the following subsections we discuss ways of achieving PA1 assuming a
nonce and arbitrary IV. Our basic building block will be a random IV PA1
scheme.

5.3 PA1 Nonce IV Schemes

Nonce IV schemes are not necessarily PA1 in general. For example, CTR mode
with a nonce IV is not PA1 and in [3] we show that IND-CPA is distinct from
PA1. Furthermore, coming up with a generic technique which transforms nonce
IV schemes into PA1 schemes in an efficient manner is most likely not possible.

If we assume that the nonce IV scheme, when used as a random IV scheme,
is PA1, then there is an efficient way of making the nonce IV scheme PA1. Note
that we already have an example of a scheme satisfying our assumption: nonce
IV CTR mode is not PA1, but RIV-CTR is.

Nonce Decoy. The nonce decoy method creates a random-looking IV from the
nonce IV and forces the decryption algorithm to use the newly generated IV.
Note that we are not only transforming the nonce into a random nonce: the
solution depends entirely on the fact that the decryption algorithm does not
recompute the newly generated IV from the nonce IV.

Let Π = (E ,D,V) be a nonce-IV-based AE scheme. For simplicity assume
IV := {0, 1}n, so that IVs are of a fixed length n. We prepare a pseudo-random
function GK′ : IV → IV with an independent key K ′. We then construct an AE
scheme Π̃ = (Ẽ , D̃, Ṽ) as follows.

ẼIV,A

K,K′(M):

ĨV ← GK′(IV )

(C, T )← E ĨV ,A

K

(
M

)

C̃ ← ĨV ‖C

return (C̃, T )

D̃IV,A

K,K′(C̃, T ):

ĨV ‖C ← C̃

M ← DĨV ,A

K (C, T )
return M

ṼIV,A

K,K′ (C̃, T ):

ĨV
∗

← GK′(IV )

ĨV ‖C ← C̃

b← V ĨV ,A
K (C, T )

return (ĨV
∗

= ĨV and b = ⊤)?⊤ : ⊥



Note that the decryption algorithm D̃ does not make use of K ′ or IV . If the
decryption algorithm recomputes ĨV using K ′ and IV , then Π̃ will not be PA1.
Furthermore, one can combine D̃ and Ṽ in order to create a scheme which rejects
ciphertexts when the IV it receives does not come from an encryption query.

The condition that Π with random IVs be PA1 is necessary and sufficient
in order for Π̃ to be PA1, assuming G is a PRF; see [3] for the proof of this
statement. In Sect. 6.2 we discuss what the nonce decoy does for INT-RUP.

5.4 PA1 Arbitrary IV Schemes

PRF-to-IV. Using a technique similar to MAC-then-Encrypt [9], we can turn
a random IV PA1 scheme into an arbitrary IV PA1 scheme.

The idea behind the PRF-to-IV method is to evaluate a VIL PRF over the
input to the scheme and then to use the resulting output as an IV for the random
IV encryption scheme. Let Π = (E ,D,V) be a random IV PA1 scheme taking
IVs from {0, 1}n, and let G : {0, 1}k × {0, 1}∗ → {0, 1}n be a VIL PRF.

ẼIV,A

K,K′(M):

ĨV ← GK′(IV ‖A‖M)

(C, T )← E ĨV ,A
K

(
M

)

return (C, ĨV ‖T )

D̃IV,A

K,K′ (C, ĨV ‖T ):

M ← DĨV ,A

K (C, T )
return M

ṼIV,A

K,K′ (C, ĨV ‖T ):

M ← D̃IV,A

K,K′ (C, ĨV ‖T )
IV ∗ ← GK′(IV ‖A‖M)

b← V ĨV ,A

K (C, T )

return (ĨV = IV ∗ and b = ⊤)?⊤ : ⊥

The PRF-to-IV method is more robust than the nonce decoy since D̃ really only
can use ĨV to decrypt properly.

The condition that Π with random IVs be PA1 is necessary and sufficient in
order for Π̃ to be PA1, assuming G is a VIL-PRF; see [3] for the proof of this
statement. Note that the PRF-to-IV method is the basic structure behind SIV,
BTM, and HBS. We show that the PRF-to-IV method is INT-RUP in Sect.6.2.

Online Encryption. Since the PRF needs to be computed over the entire
message before the message is encrypted again, the PRF-to-IV method does
not allow for online encryption. Recall that an encryption scheme has online
encryption if for all (K, IV,A), the resulting function is online. Examples of
such schemes include COPA and McOE-G.

If we want encryption and decryption to both be online in the arbitrary IV
setting, then a large amount of ciphertext expansion is necessary, otherwise a
distinguisher similar to the one used in the proof of Prop. 1 can be created.

An encryption scheme Π = (E ,D) is online if for some n there exist functions
fi and f ′

i such that

EK(M) = fn(M1) f2n(M1M2) · · · fjn(M1M2 · · ·Mj) f
′
|M|(M) ,

where j = ⌊(|M | − 1)/n⌋ and Mi is the ith n-bit block of M . If the encryption
scheme has online decryption as well, then the decryption algorithm can start
decrypting each “block” of ciphertext, or

DK(fn(M1) f2n(M1M2) · · · fin(M1M2 · · ·Mi)) = M1M2 · · ·Mi ,



for all i ≤ j.

Proposition 3. Let Π = (E ,D) be an encryption scheme where E is n-online
for all K, IV , and A, and D is online as well, then there exists a PA1-adversary
D such that for all extractors E there exists an IND-CPA adversary D1 such
that

1− CPAΠ(D1) ≤ PA1
E

Π(D) ,

where D makes one O1 query, one O2 query, and D1 is as efficient as D plus
one query to E.

Proof. See [3]. ⊓⊔

Example 2. In certain scenarios, padding the plaintext is sufficient for PA1. Do-
ing so makes schemes such as McOE-G secure in the sense of PA1, while keeping
encryption and decryption online. The cost is a substantial expansion of the ci-
phertext. For the case of McOE-G, the length of the ciphertext becomes roughly
twice the size of its plaintext.

It is important to note that McOE-G is based on an n-bit block cipher,
and each n-bit message block is encrypted (after it is XORed with some state
values) via the block cipher call. Since the underlying block cipher is assumed
to be a strong pseudo-random function (SPRP), we can pad a message M =
M1M2 · · ·Mℓ (each Mi is an n/2-bit string) as 0n/2M1

∥∥ 0n/2M2

∥∥ · · ·
∥∥ 0n/2Mℓ

and then encrypt this padded message using McOE-G. So each block cipher call
processes 0n/2Mi for some i. This “encode-then-encipher” scheme [12] is PA1 as
shown in [3].

Example 3. If we do not require the decryption to be online, then we can achieve
PA1 without significant ciphertext expansion. An example of a scheme that falls
into this category is the recently-introduced APE mode [2], whose decryption is
backward (and hence not online). A proof of this is given in [3].

5.5 PA2 Schemes

Most AE schemes are proven to be IND-CPA and INT-CTXT, which allows one
to achieve IND-CCA [9] assuming verification works correctly. In order to be
as efficient as possible, the underlying encryption schemes in the AE schemes
are designed to only achieve IND-CPA and not IND-CCA, since achieving IND-
CCA for encryption usually requires significantly more operations. For example,
GCM, SIV, BTM, and HBS all use CTR mode for encryption, yet CTR mode is
not IND-CCA. Since IND-CPA+PA2 is equivalent to IND-CCA′, none of these
schemes achieve PA2.

A scheme such as APE also cannot achieve IND-CCA′ because its decryption
is online “in reverse”. If (EK ,DK) denotes APE, then an adversary can query
EK(M1M2) = C1C2 and then DK(C′

1
C2), which equals M ′

1
M2. But if an ad-

versary interacts with ($,DK) (see Def. 3), then DK(C′
1C2) will most likely not

output M ′
1
M2.



Existing designs which do achieve PA2 include those which are designed
to be IND-CCA′, such as the solutions presented by Bellare and Rogaway [12],
Desai [19], and Shrimpton and Terashima [36]. These solutions cannot be online,
and they are usually at least “two-pass”, meaning the input is processed at least
twice.

6 Integrity in the INT-RUP Setting

6.1 INT-RUP Attack

Several AE schemes become insecure if unverified plaintext is released. In Propo-
sition 4, we explain that OCB [33] and COPA [4] are not secure in the RUP
setting.

The strategy of our attack is similar to that of Bellare and Micciancio on the
XHASH hash function [8]. However, our attack is an improved version that solves
a system of linear equations in GF (2) with only half the number of equations
and variables.

The attack works by first querying the encryption oracle under nonce N to
get a valid ciphertext and tag pair. Then, two decryption queries are made under
the same nonce N . Using the resulting plaintexts a system of linear equations is
set up, which when solved will give the a forgery with high probability. A formal
description of the attack is given in [3].

Proposition 4. For OCB and COPA, for all ℓ ≥ n there exists an adversary
A such that

INT-RUPΠ(A) ≥ 1− 2n−ℓ ,

where A makes one encryption query and two decryption queries, each consisting
of ℓ blocks of n bits. Then, the adversary solves a system of linear equations in
GF (2) with n equations and ℓ unknowns.

6.2 Nonce Decoy and PRF-to-IV

In Sect. 5 we introduced a way of turning a random IV PA1 scheme into a nonce
IV PA1 scheme, the nonce decoy, and a way of turning a random IV PA1 scheme
into an arbitrary IV PA1 scheme, the PRF-to-IV method. Here we consider what
happens to INT-RUP when the two methods are applied.

The nonce decoy adds some integrity to the underlying random IV PA1
scheme. Using the notation from Sect. 5.3, Π needs to be a slightly lighter
form of INT-RUP in order for Π̃ to be INT-RUP. Concretely, Π only needs
to be INT-RUP against adversaries which use IVs which are the result of an
encryption query. Furthermore, this requirement on Π is sufficient to prove that
Π̃ is INT-RUP.

Naturally if Π is INT-RUP, then Π̃ is INT-RUP as well. In fact, if Π is
INT-RUP against adversaries which use IVs which are the result of an encryption
query, then Π̃ is INT-RUP. These statements and their proofs can be found in [3].



The PRF-to-IV method is a much stronger transform than the nonce decoy.
Following the notation from Sect. 5.4, we do not need to assume anything about
the underlying random IV scheme Π in order to prove that Π̃ is INT-RUP.

7 Conclusions

Many practical applications desire that an AE scheme can securely output plain-
text before verification. We formalized security under the release of unverified
plaintext (RUP) to adversaries by separating decryption and verification.

Two symmetric-key notions of plaintext awareness (PA1 and PA2) were intro-
duced. In the RUP setting, privacy is achieved as a combination of IND-CPA and
PA1 or PA2. For integrity, we introduced the INT-RUP notion as an extension
of INT-CTXT, where a forger may abuse unverified plaintext. We connected our
notions of privacy and integrity in the RUP setting to existing security notions,
and saw that the relations and separations depended on the IV type.

The CTR and CBC modes with a random IV achieve IND-CPA+PA1, but
this is non-trivial for nonce-based or deterministic encryption schemes. Our re-
sults showed that many AE schemes such as GCM, CCM, COPA, and McOE-G
are not secure in the RUP setting. We provided remedies for both nonce-based
and deterministic AE schemes. For the former case, we introduced the nonce
decoy technique, which allowed to transform a nonce to a random-looking IV.
The PRF-to-IV method converts random IV PA1 schemes into arbitrary IV PA1
schemes. We showed that deterministic AE schemes cannot be PA1, unless the
decryption is offline (as in APE) or there is significant ciphertext expansion.

Future Work. Given that our PRF-to-IV method is rather inefficient, we leave
it as an open problem to efficiently modify any encryption-only scheme into an
AE scheme that is INT-RUP. A related problem is to fix OCB and COPA to
be INT-RUP in an efficient way. The PA1 solutions we provide all start with
the assumption that the nonce IV or arbitrary IV scheme is PA1 when a ran-
dom IV is used instead. An interesting problem is to find alternative solutions
to constructing nonce IV and arbitrary IV PA1 schemes. A problem of theo-
retical interest is to find a non-pathological random IV encryption scheme that
is not PA1. In some applications, formalizing security in the RUP setting as
IND-CPA+PA1 and INT-RUP may be sufficient. It is interesting to investi-
gate how well this formalization reflects the problems encountered in real-world
implementations, to see where PA2 may also be necessary, and how blockwise
adaptive adversaries [25] play a role in the RUP setting. Finally, our paper does
not address the behavior of applications which use unverified plaintext. A fur-
ther understanding of the security risks involved in using unverified plaintext in
applications is necessary.
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