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Abstract. Card-based cryptography provides simple and practicable
protocols for performing secure multi-party computation (MPC) with
just a deck of cards. For the sake of simplicity, this is often done using
cards with only two symbols, e.g., ♣ and ♡. Within this paper, we target
the setting where all cards carry distinct symbols, catering for use-cases
with commonly available standard decks and a weaker indistinguishability
assumption. As of yet, the literature provides for only three protocols and
no proofs for non-trivial lower bounds on the number of cards. As such
complex proofs (handling very large combinatorial state spaces) tend
to be involved and error-prone, we propose using formal verification for
finding protocols and proving lower bounds. In this paper, we employ the
technique of software bounded model checking (SBMC), which reduces
the problem to a bounded state space, which is automatically searched
exhaustively using a SAT solver as a backend.
Our contribution is twofold: (a) We identify two protocols for converting
between different bit encodings with overlapping bases, and then show
them to be card-minimal. This completes the picture of tight lower bounds
on the number of cards with respect to runtime behavior and shuffle
properties of conversion protocols. For computing AND, we show that there
is no protocol with finite runtime using four cards with distinguishable
symbols and fixed output encoding, and give a four-card protocol with an
expected finite runtime using only random cuts. (b) We provide a general
translation of proofs for lower bounds to a bounded model checking
framework for automatically finding card- and length-minimal protocols
and to give additional confidence in lower bounds. We apply this to
validate our method and, as an example, confirm our new AND protocol
to have a shortest run for protocols using this number of cards.

Keywords: secure multiparty computation · card-based cryptography ·
formal verification · bounded model checking · standard decks

1 Introduction

Card-based cryptographic protocols allow to perform secure multi-party com-
putation (MPC), i.e., jointly computing a function while not revealing more
information about each individual input than absolutely necessary, with just
a (regular) deck of playing cards, as long as they have indistinguishable backs.



Let us start with an example. Assume that Alice and Bob meet in a bar and
spend the evening together. After quite some chat, they would like to find out
whether to have a second date. They are faced with the following problem: In
case only one of them likes to meet again, this would cause an uncomfortable
embarrassment, if he or she is the first to come out.1 Fortunately, Alice is a
notable cryptographer and likes card games, so she has with her a standard deck
of cards. She remembers the protocol by Niemi and Renvall [NR99] for computing
the AND function of two bits, here for outputting “yes”, if both players share
this mutual interest, and “no” otherwise. Doing so using an MPC protocol hides
the input of the respective other player, unless it is obvious from their own input
and output, hence hiding a “yes”-choice given of only one player, from the other.

In order to get a feeling for how such card-based protocols work, let us
introduce the said protocol by Niemi and Renvall. It uses five cards with distin-
guishable symbols, which we denote – for simplicity2 – as 1 2 3 4 and 5 . It is
essential that the cards’ backs are indistinguishable, such that when they are put
face-down on the table, the only thing observable is . With these
cards, the two players can encode a commitment to a bit (yes or no) by the order
of two cards i j , i, j ∈ {1, . . . , 5} (with i ̸= j) via the encoding

i j =̂

{
0, if i < j,

1, if i > j.

Alice inputs her bit by putting the cards 1 2 face-down and in the respective

order on the table (she puts 1 2 for input 0, and 2 1 for input 1), while Bob

does the same using his cards 3 4 . We need an additional helper-card, here a

5 , which is put to the left of the players’ cards.
The protocol starts by swapping Alice’s second card with Bob’s first card

in the card sequence (pile) on the table. The resulting card configuration has
an interesting property, namely that the order of the cards 1 and 4 in this

sequence already encodes the output of the protocol, i.e., it reads 4 1 if the

output is 1, and 1 4 otherwise. Hence, by securely removing the cards 2 and

3 (which is explained below), one directly obtains the output. We see this by
inspecting all possible cases:

Bits Input sequence After swap Removing 2 + 3

(0, 0) 5 1 2 3 4 5 1 3 2 4 5 1 x x 4

(0, 1) 5 1 2 4 3 5 1 4 2 3 5 1 4 x x

(1, 0) 5 2 1 3 4 5 2 3 1 4 5 x x 1 4

(1, 1) 5 2 1 4 3 5 2 4 1 3 5 x 4 1 x

We can remove the cards 2 and 3 , while keeping the relative order of all cards
in the sequence intact, by cutting the cards, i.e., rotating the sequence by a

1 This is known as the “dating problem”.
2 Alice and Bob in the story might, e.g., use 7, 8, 9, 10 and a queen with any symbol.
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random offset which is unknown to the players. We can then securely turn the
first card and remove it in case it is 2 or 3 . Due to the cut, the turned card
is random, and hence it does not reveal anything about the inputs. When both
cards are removed, we reach a configuration where 5 is the first card by the
same procedure where the two remaining cards encode the AND result. Here,
the 5 played the crucial role of a separator that keeps the relative order of the
remaining cards, starting from the separator, intact when doing a random cut.
(A formal version of this protocol is given in Protocol 2 and Figure 7.)

In this paper, we are interested in whether we can do away with the helping
card 5 , and whether there are simpler protocols. Moreover, in order to handle
the increasing combinatorial state space (relative to protocols on decks of just ♣
and ♡), we introduce formal verification to the field of card-based cryptography.

1.1 Secure Multiparty Computation with Cards

In combining different protocols, one can do much more than just computing the
AND function. For example, it is possible to compute arbitrary Boolean circuits
by combining the well-known fact that any circuit can be expressed using only
NOT and AND gates, with a method to duplicate the physically encoded bit in
case of forking wires, which we make explicit by a COPY gate. In the encoding
above, NOT simply inverts the order of the two cards, and a COPY-protocol is
given, e.g., in [M16]. Using this setup, we can do general MPC for any function
without needing to trust a possibly corrupted computer.

A particular advantage of protocols using physical assumptions is that they
can provide a bridge to reality. Examples of this are given in [GBG14; FFN14],
where the authors give a protocol for proving in zero-knowledge that a nuclear
warhead (to be disarmed due to an international treaty) conforms to a prescribed
template, without giving away anything about its internal design. In our setting
of cryptography with cards, this bridge is used if the cryptographic protocol is
embedded in a real card game, e.g., to prevent cheating3. Here, using computers
is not only cumbersome, but there is no guarantee that the card sequence on my
hand is the one I input into the software, hence no bridge to the physical world.

Another application of such protocols is to explain MPC in an interesting and
motivating way to students in cryptography lectures. Card-based cryptography
tries to find protocols for the above-mentioned AND and COPY functionalities
which are card-minimal, simple and practicable. For simplicity, many protocols
in card-based cryptography work with specially constructed decks, e.g., of only
two symbols, ♣ and ♡. This is easy for explanation, and there are nice and easily
describable protocols, such as the five-card trick by den Boer [dB89] and the
six-card AND protocol by Mizuki and Sone [MS09].

However, the setting where all cards are distinguishable, as described above,
has several advantages. Firstly, we assume little about the indistinguishability
of cards, which leads to stronger security guarantees. (This is more similar to

3 As an example, in a Duplicate Bridge tournament, one might prove that all sessions
are handed the same cards, eliminating the need of a trusted dealer (no pun intended).
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the indistinguishable version of tamper-evident seals, such as scratch-off cards,
by Moran and Naor [MN10].) We only need the backs (or envelopes wrapping
the cards, if one wishes) to be indistinguishable. Secondly, these standard decks
are more commonly available, in contrast to constructed decks. If one were to
use standard decks for the protocols above, they would need multiple copies of
the same card. Thirdly, considering this setting may lead to protocols using less
cards than the optimal ones in the two-symbol deck setting. In fact, as our paper
shows, one may use less cards than in the two-symbol deck setting. For example,
our new four-card Las Vegas AND protocol presented in Section 5 uses only a
very basic, practicable shuffling mechanism, namely random cuts, and uses one
card less than the provably card-minimal Las Vegas AND protocol (restricted
to certain types of practical shuffles) in the two-symbol deck setting. As of yet,
there has only been little research in this direction, with [NR99; M16] being the
only works that consider the setting where all cards have distinguishable symbols,
called “standard deck” setting. Nothing is known about non-trivial lower bounds
on the number of cards. This is likely due to the large state space, as there are
many more distinguishable card re-orderings compared to the two-symbol case.

Within this paper, our interest is to find an automatic way of constructing
compact card-based protocols which are secure and correct, based on only the
two standard operations turn and shuffle, given the desired number of cards.
We exploit the observation that, to the best of our knowledge, all findings in
the literature employ only protocols of comparatively small length using only a
small number of cards. Based on the hypothesis that we may always find some
number n which is greater than or equal to any length-minimal card-protocol, we
apply the automatic off-the-shelf formal program-verification technique software
bounded model checking (SBMC) [BCC+99]. This technique allows, given such
a bound n, to encode a program verification task into a decidable set of logical
equations, which can then be solved by a SAT or an SMT solver. In this work, we
propose an automatic method based on SBMC that, given the desired numbers
of cards and protocol length, either constructs such a protocol if and only if one
exists, or proves the underlying SAT formula to be unsatisfiable, i.e., shows that
no such protocol exists. Based thereon, we propose that the cumbersome and
error-prone task of finding such protocols or proving their non-existence by hand
may be supported or complemented by such an automatic approach which is
flexibly adaptable to a variety of card-based protocols and desired restrictions.

Prior to our work, it was not yet clear which role the input encoding plays
when devising new protocols. This is the question on whether it can make a
difference regarding the possibility of a protocol if we provide, e.g., 1 2 to Alice

and 3 4 to Bob, or 1 3 to Alice and 2 4 to Bob. We provide an analysis of
this question, showing that with certain restrictions, there is a relatively large
freedom in choosing the input (and/or output) bases. This is a useful prerequisite
in proving the impossibility of a protocol with a given number of cards.
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1.2 Contribution

Our contribution consists in providing interesting new protocols and impossibility
results, as well as a fully automatic method based on formal verification to
support such findings. The specific advances therein are the following (cf. also
Table 1 for a comparison to the literature):

(1) A four-card AND protocol in the standard deck setting, improving upon
[NR99] by one card, and reaching the theoretical minimum on the number
of cards. W.r.t. shuffling, this protocol only uses an expected number of 6
random cuts, compared to 7.5 random cuts in a (shortened) variant of [NR99].
Additionally, it has a natural interpretation and using only random cuts
makes it particularly easy to implement in an actively secure way, cf. [KW17].

(2) We show that under certain conditions the cards for encoding input or output
can be chosen freely. For one-bit output protocols and if five or more cards
are available, we can freely choose both input and output bases by only
extending the protocol by expected three shuffle and three turn steps. For
this matter, we identify two protocols for converting a bit encoding if the
new encoding shares one card with the old one.

(3) We show that there is no finite-runtime protocol for converting between bases
with non-empty intersection using four cards. Moreover, there cannot be a
finite-runtime AND protocol with four cards if we fix the basis in advance.

(4) We introduce formal verification to card-based cryptography by providing a
technique which automatically finds new protocols using as few as possible
operations and searches for lowest bounds on card-minimal protocols.

Table 1. Minimum number of cards required by AND and basis conversion protocols,
subject to the running time and shuffle restrictions specified in the first two columns.
Note that random cuts are a subclass of uniform closed shuffles.

Running Time Shuffle Restr. #Cards Protocol Lower Bound

AND Protocols:

Las Vegas random cuts 4 Theorem 3 – (trivial)
finite – }

≥ 5a,≤ 8 [M16, Sect. 3.4] Theorem 2
finite uniform closed

Disjoint Basis Convert Protocols:

finite uniform closed 4 [M16, Sect. 3.2] – (trivial)

Overlapping Basis Convert Protocols:

Las Vegas random cuts 3 Theorem 4 – (trivial)
finite – }

5 Theorem 5 Theorem 1
finite uniform closed
a Lower bound result only holds for fixed output basis, flexible case is still open.
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1.3 Related Work

The feasibility of card-based cryptographic MPC is due to [dB89; CK93; NR98],
with a formal model given by [MS14]. The only two papers looking at standard
deck solutions are [NR99; M16]. Lower bounds on card-based cryptographic
protocols are given by [KWH15; KKW+17; K18] for the two-symbol deck setting.
The card-minimal protocol for this setting, using only practicable (i.e., uniform
closed) shuffles, is given by [AHM+18] and uses five cards. The state trees used
for protocols in this paper are devised by [KWH15; KKW+17].

To the best of our knowledge, this is the first work which applies formal
methods to the field of card-based cryptography. However, a large range of research
has been done using formal methods in the more general field of secure two-party
and multiparty computations. This can be clustered into either analyzing security
protocols given as high-level, abstract (and usually idealized) models, or program-
based approaches targeting real(istic) protocol (software) implementations. Avalle,
Pironti, and Sisto [APS14] further structure this into the two main approaches
of automated model extraction and automated code generation. We refer the
interested reader to overviews as given by Blanchet [B12] or Avalle, Pironti, and
Sisto, and only go into a few selected works for which we identified closer links to
our approach, e.g., using software bounded model checking (SBMC), SAT solvers
on real(istic) protocol implementations, or relating in the analyzed security
model. Standard cryptographic assumptions using lower-level computational
models are – albeit more realistic – usually harder to formalize and automate.
One notable line of research is CBMC-GC [FHK+14] which builds on top of the
tool CBMC [CKL04]. It uses SBMC in a compiler framework translating secure
computations of ANSI C programs into an optimized Boolean circuit which can
subsequently be implemented securely utilizing the garbled circuit approach.
Another similar setting to ours is analyzed in [RSH19], where also an “honest-
but-curious” attacker model is assumed. Therein, a domain-specific language is
built on top of the F★ language, a full-featured, verification-oriented, effectful
programming language [SHK+16]. Swamy et al. then implement MPC programs
with enabled formal verification provided by the semantics of the language.

1.4 Outline

We give the computational model of card-based protocols, security definitions, etc.
and the necessary preliminaries as well as a basic setup for software bounded model
checking in Section 2. Section 3 discusses which freedom one has when choosing
the specific cards for encoding inputs and outputs to card-based protocols and
introduces a formal relabeling operation. We give lower bounds on the number
of cards for AND and basis-conversion protocols in Section 4. A four-card Las
Vegas AND protocol and two basis-conversion protocols are presented in Section 5
and Section 6, respectively. Section 7 gives results from applying our formal
verification setup based on SBMC to our new AND protocol.
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2 Preliminaries

In this section, we first formally introduce card-based protocols with their com-
putational model (including some basic required notions), a convenient formal
protocol representation, a suitable security notion, and the formal requirements
for proving lower bounds. Secondly, we introduce our applied formal technique
called software bounded model checking, on which, thirdly, we establish our
general technique for automatically finding card- and length-minimal protocols.

2.1 Card-based Protocols

Formally, a deck D of cards is a multiset over a (deck) alphabet or symbol set
Σ. We denote multisets by ⟦·⟧, e.g., ⟦♡,♡,♣,♣⟧ is a deck over {♡,♣}. In this
paper, we focus mainly on decks D = ⟦1, . . . , n⟧, n ∈ N, where each symbol occurs
exactly once. Following [M16], we call these decks standard decks, because decks
of common card games are a good representation of such formal decks.

For encoding a bit, we additionally assume a linear order on the card symbols
in Σ, which is the usual order on N for standard decks, and ♣ < ♡ for simple
two-element decks. Two face-down cards with distinct symbols s1, s2 ∈ Σ then
encode a bit via the following encoding rule introduced in [NR99]:

s1 s2 =̂

{
0, if s1 < s2,

1, if s1 > s2.

Card-based protocols proceed by mainly two actions on the sequence or pile of
cards: We can introduce uncertainty (about which card is which) by shuffling
them in arbitrary or in certain controlled ways, e.g., by cutting the cards in
quick succession, so that players do not know which card ended up where in the
card sequence (or pile). Slightly more formal, a (uniform) shuffle is specified by
a permutation set, from which one element is drawn uniformly at random and
applied to the cards, without the players learning which one it was. Secondly, we
may turn over cards and publicly learn their symbol, and act on the basis of this
information. Moreover, we may deterministically permute the cards.

Permutations and Groups. Let Sn denote the symmetric group on {1, . . . , n}.
For elements x1, . . . , xk ∈ {1, . . . , n} the cycle (x1 x2 . . . xk) is the cyclic
permutation π with π(xi) = xi+1 for 1 ≤ i < k, π(xk) = x1 and π(x) = x for all
x not occurring in the cycle. Every permutation can be written as a composition
of pairwise disjoint cycles. For example, (1 3 2)(4 5) maps 1 ↦→ 3, 3 ↦→ 2, 2 ↦→
1, 4 ↦→ 5, and 5 ↦→ 4. The identity permutation is denoted as id.

Given permutations π1, . . . , πk ∈ Sn, ⟨π1, . . . , πk⟩ denotes the group generated
by π1, . . . , πk. A shuffle is a random cut if its permutation set is the group ⟨π⟩ =
{π0, . . . , πl−1} generated by a single element π which is a cycle (x1 x2 . . . xl).
A shuffle is called a random bisection cut if its permutation set is generated
by a π which is the composition of pairwise disjoint cycles of length 2. Finally,
an Sk-shuffle is a shuffle with permutation set Sk.
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1234 X00 +X01

1243 X10

2134 X11

1234 1/2(X00 +X01 +X10)
1243 1/2(X00 +X01 +X10)
2134 1/2X11

2143 1/2X11

(shuffle, {id, (3 4)})

s1 µ(s1)
...

...
sℓ µ(sℓ)

s′1 1/|Π|
∑

π∈Π µ(π−1(s′1))
...

...
s′k 1/|Π|

∑
π∈Π µ(π−1(s′k))

(shuffle,Π)

Fig. 1. A shuffle operation, given by example (left), and via the general rule (right).

Computational Model and Protocol Tree Representation. For our formal
descriptions, we make heavy use of the KWH trees introduced in [KWH15] and
shown to be equivalent to the computational model of [MS14; MS17] in [KKW+17].
We start by the start node

12 34 X00

12 43 X01

21 34 X10

21 43 X11

and add eventually needed further cards ( 5 , 6 , . . . ) to the right of the players
bits. The state (or KWH) tree is directed, with annotations at the outgoing edges
of the state, specifying the action that is performed next. Let µ be the state with
the outgoing annotation, then the actions are defined as:

1. (shuffle, Π) leads to a µ′ as in Figure 1, where Π ⊆ S|D| is a permutation set.
2. (turn, T ) branches the tree into states µv for each observation v possible by

revealing the cards at positions from the set T ⊆ {1, . . . , |D|}, as in Figure 2.
µv contains the sequences from µ which are compatible with the observation
v. For each sequence s compatible with v, we have µv(s) := µ(s)/Pr[v], where
Pr[v] ∈ (0, 1] is the probability of observing v.

3. (perm, π) permutes the sequences of µ according to π.
4. (result, p1, p2) stops the computation and returns the cards at p1, p2 as output.

We start by a state that encodes the input sequences attached to their
respective symbolic input probabilities, see [KKW+17] for a thorough explanation:

12 34 X00

12 43 X01

21 34 X10

21 43 X11

A protocol computes a Boolean function f : {0, 1}2 → {0, 1} if the start state
(tree root) encodes each b ∈ {0, 1}2 in the first four cards (the remaining cards
being at fixed positions), and in the leaf nodes of the protocol’s state tree, it holds
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s1 µ(s1)
...

...
sℓ µ(sℓ)

s1,1 1/Pr[v1] · µ(s1,1)
...

...
s1,ℓ1 1/Pr[v1] · µ(s1,ℓ1)

sn,1 1/Pr[vn] · µ(sn,1)
...

...
sn,ℓn 1/Pr[vn] · µ(sn,ℓn)

(turn, T )
v1 vn

. . .

Fig. 2. A turn operation. Here, v1, . . . , vn, are the possible observation by turning the
cards at positions in T . For each i ∈ {1, . . . , n} the si,1, . . . , si,ℓi are the sequences from
s1, . . . , sℓ which are compatible with vi. Note that in secure protocols, the probability
of observing vi, denoted as Pr[vi], is constant.

for the positions given by the result operation that the cards at these positions
encode a value o ∈ {0, 1} if all Xi occurring in µ(s) for sequence s satisfy f(i) = o
(Correctness). We say that a protocol has finite runtime if its tree is finite. It is
a Las Vegas protocol, if it is not finite runtime, but the expected length of any
path in its tree is finite. Note that while we consider looping protocols, we do not
consider the case where a complete restart is necessary. For self-similar infinite
trees, we simplify by drawing edges to earlier states.

Security of Card-based Protocols. We slightly adjust the security notion
from the literature to standard decks. For more details, we refer to [K19]. Since
different encodings for the same bit are possible, we want the encoding basis
of the output bit to not give away anything about the inputs. We say that a
protocol is secure if at any turn operation the probability for each observation v
is a constant ρ ∈ [0, 1] (using

∑
i∈{0,1}2 Xi = 1), and additionally if at any result

operation the probability of each output basis is constant in the same sense.
As in [KKW+17], for our impossibility proofs and formalizations with bounded

model checkers, it is useful to consider a weaker form of security, which is a
necessary criterion for security as defined above: A protocol is possibilistically
output-secure, if at any state of the protocol, every output can still be possible.
This weakens the normal security guarantee, as the probability for a given input
sequence could be higher in this state. One could even be able to exclude a
specific input sequence, if the corresponding output can still be possible through
another input sequence. Together with possibilistic input-security, this discussion
leads to the following formal definition:

Definition 1 (cf. [KKW+17]). A protocol P = (D, U,Q,A) computing a
function f : {0, 1}2 → {0, 1} has possibilistic input security (possibilistic output
security) if it is correct, i.e., output O = f(I) almost surely and for uniformly4

4 Actually, the distribution does not matter, as long as Pr[I = i] > 0 for all i ∈ {0, 1}k.
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random input I and any visible sequence trace v with Pr[v] > 0 as well as any input
i ∈ {0, 1}2 (any output o ∈ {0, 1}) we have Pr[v |I = i] > 0 (Pr[v |f(I) = o]).

Proving Lower Bounds. We call two states, µ and µ′, similar, if µ is equal to
µ′ up to row or column permutation. This is an interesting equivalence relation
for reducing the state space and we make use of it in our impossibility results.

As in [KKW+17, Definition 3], we define reduced states, where states are not
annotated by their symbolic probabilities, but by the result that is specified by
their inputs. This simplifies impossibility proofs by reducing information and
the state space. Any such reduced tree captures only a weak form of security,
possibilistic security, as discussed above where each output (reachable in principle)
needs to be still possible. Showing that a protocol is impossible even in this weak
setting implies its general impossibility.

To obtain a reduced state tree, we project all the symbolic probabilities
of the sequences in a state tree to a type (representing the possible future
output associated with the sequence in a correct protocol, see below), which
can be any o ∈ {0, 1}. For this, let P be a protocol computing a function
f : {0, 1}2 → {0, 1} and µ be a state in the state tree. For any sequence s with
µ(s) being a polynomial with positive coefficients for the variables Xb1 , . . . , Xbi

(i ≥ 1), set µ̂(s) := o ∈ {0, 1} if o = f(b1) = f(b2) = . . . = f(bi) in the resulting
reduced state µ̂. We call sequences in µ̂ according to their type o-sequences.

For proving impossibility results, we make use of the backwards calculus as
given in [K18]. We highlight the main ideas here, but refer to it for reference.
Denote by shuf−1(G), for a set of states G, the set of states that are transformed
into a state in G by a shuffle. The trivial shuffle is allowed, i.e., G ⊆ shuf−1(G).
Moreover, turn−1

f (G) is the set of states being in G or having a turnable position
i such that all immediate successor states from a turn at i are in G. Define by
clf(G) the closure of turn−1

f (·) and shuf−1(·) operations on G. Hence, it holds that
if the start state is not in clf(G), then no finite-runtime protocol can exist.

2.2 Automatic Formal Verification Using SBMC

In the following, we introduce an automatic technique from formal program
verification, namely software bounded model checking (SBMC), to the field of
card-based cryptography. We first describe the general technique of using SBMC
to check for software properties, before we explain how we apply it to search
for cryptographically secure card-based protocols. In a nutshell, we translate
the task to a reachability problem in software programs (which will later-on be
a program encoding operations on an abstract state tree as described above),
which the SBMC tool encodes into an instance of the SAT problem.

We assume we are given an imperatively defined function f under the form of
an imperative program (for example, written in the C language), that uses some
parameter values taken among a set of possible start values I. An entry i ∈ I is a
list of values, one value for each such parameter: it gives a value to everything that
a run of f depends on, such as its input variables, or anything that is considered
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non-deterministic (i.e., of arbitrary, but fixed, value for any concrete evaluation
of f) from the point of view of f . For this reason, those parameters are qualified
as “non-deterministic”, to distinguish them from normal parameters used in a
programming language to pass information around. Moreover, some values can
be “derived”, thus, computed in f from the non-deterministic parameter values,
or declared as constants in f , and both values of non-deterministic parameters
or derived values can then be used as normal parameters in the program. We are
also given a software property to be checked about f , in the form Cant ⇒ Ccons,
where ant and cons stand for antecedent and consequence respectively. Both Cant

and Ccons are sets of Boolean statements. A Boolean statement is a statement of
f that evaluates to a Boolean value, for example, a simple statement checking
that some computed intermediate value is positive. An entry i is said to satisfy
a set of Boolean statements if and only if all Boolean statements in the set
evaluate to true during the execution of f using the non-deterministic parameter
values i, and is said to fail the set of Boolean statements otherwise. The property
Cant ⇒ Ccons requires that for all possible entries i ∈ I, if i satisfies Cant, then
i satisfies Ccons. As an example, assume f computes, given i, two intermediate
integer values v1 and v2, and then returns a third value v3. The property to be
checked could, e.g., be: if v1 is negative, then v2 is positive and v3 is odd. A
solver that is asked to check a software property Cant ⇒ Ccons thus exhaustively
searches for an entry i that satisfies Cant but fails Ccons. The property is valid if
and only if there does not exist any such entry i, i.e., it is impossible to find.

SBMC is a fully-automatic static program analysis technique used to verify
whether such a software property is valid, given a function and a property to be
checked. It covers all possible inputs within a specified bound. It is static in the
sense that programs are analyzed without executing them on concrete values or
considering any side channels. Instead, programs are symbolically executed and
exhaustively checked for errors up to a certain bound, restricting the number
of loop iterations to limit runs through the program to a bounded length. This
is done by unrolling the control flow graph of the program and translating it
into a formula in a decidable logic that is satisfiable if and only if a program run
exists which satisfies Cant and fails Ccons. The variables in the formula are the
non-deterministic parameters of f , and their possible values are taken from I.

This reduces the problem to a decidable satisfiability problem. Modern SAT-
solving technology can then be used to verify whether such a program run exists,
in which case an erroneous input has been found, and the run is presented to
the user. If the solver cannot find such a program run, it may be either because
the property is valid, or because it is invalid only for some run which exceeds
the bound. In some cases, SBMC is also able to infer statically which bound is
sufficient to bring a definitive conclusion.

2.3 Automatic Formal Verification for Card-based Protocols

Our approach employs a standardized program representation of the KWH trees
introduced in [KWH15] (and described in the beginning of this section). This
allows a general programmatic encoding of both shuffle and turn operations, as
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well as of the fixed input state (indicated by the input card sequences from the
table in the very beginning of this paper), the non-deterministic reachable states,
and the logical function to be computed securely.

The input state is trivially derived from the specified numbers of cards as
the size and order of the players’ commitments is fixed and the (without loss of
generality) consecutively ordered card sequence of (distinguishable) helper-cards
is simply prepended to the input card sequence, annotated with their respective
input probabilities. Any input state thus consists of exactly four distinguishable
card sequences. Based on this input state, the program performs a loop, which
successively performs turn or shuffle operations based on the input state and
computes the resulting states from which it continues performing turn or shuffle
operations. The loop ends when the specified bound (representing the length of
the protocol to be found) is reached, checks whether the final state is indeed
a valid computation of the secure function, and (if and only if the check is
successful) the found protocol is then presented to the user.

However, this task involves multiple computational complexities, most notably
both the number of (possibly) reachable states, and the choice of the next
operation, i.e., either choosing the card(s) to be turned or which shuffle to perform.
We partially overcome the first computational complexity by not considering Las
Vegas protocols as this relieves us from checking every reachable sequence of states
to be finite. In fact, we compute all reachable states after every protocol operation,
but only check each of them to be valid, and then proceed our operations
on only one of them, which is non-deterministically chosen among them. The
second computational complexity consists in first non-deterministically choosing
whether to shuffle or to turn, and then to perform the respective operation. The
turn operation is less interesting as it is mostly the obvious implementation
for updating the computed state and its probabilities using mostly standard
imperative program operations, except that the turn observations are again
non-deterministically chosen, hence making the SBMC tool consider any of them
to be possible. The more interesting operation is the shuffle operation, as it must
randomly draw a set of permutations on which the thereby reachable states
are computed. We implement this by non-deterministically choosing a set of
permutations from a precomputed set of all generally possible permutations.
Both the amount5 and the choices of the respective permutations are chosen non-
deterministically. Moreover, we restrict our experiments to only closed shuffles
and proceed by restricting the computed set of permutations to be either closed
or of size one (i.e., a simple permutation).

Finally, after iterating the afore-mentioned loop for the specified bound number
with the described operations and restricting that final state indeed computes
the secure function, we specify the software property Ccons to be checked simply
as the Boolean value false. This trivially unsatisfiable property implies that
the verification task always fails once there exist input and non-deterministic
parameters such that the respective program run reaches the statement in the

5 In order to keep the execution times still manageable for our experiments, we bound
this amount by the (arguably quite reasonable) number 8.
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program which checks this property. The SBMC tool exhaustively searches for a
run of the specified length through the program which leads from the starting
state to a correct and secure state which satisfies the given security notion, i.e.,
reaches the above-metioned statement. Hence, if there exists any protocol of the
specified length which computes the secure function and for which the specified
operations and valid intermediate states (representing KWH-trees) exist, such
a protocol is presented by our method. If no such protocol can be found, we
know there is no card-based protocol of the specified length satisfying all our
restrictions on permitted turn and shuffle operations, as well as intermediate and
final states. This means there exists no model for the SAT formula which encodes
the set of all permitted program runs given our specified requirements.

Hence, assuming our translation of KWH trees and respective protocol op-
erations into a simple imperative program are correct, this method can then
be used in an iterative manner to strengthen the bounds from the literature.
Note that this is largely based on the so-called “small-scope hypothesis”, i.e., a
large number of bugs are already exposed for small program runs. We apply this
hypothesis to the setting of card-based security protocols as all protocols in the
literature only use a small number of turn and shuffle operations and the length
of any found protocol is below ten operations.

This approach can be generalized to search for card-based protocols using a
pre-defined number of actions and adhering to a given formal security notion.
We have written a general program6 to search for such situations parameterized
in the desired restrictions on actions and security notions. Note that, in order
to cope with the still considerable state space size, we use the refined security
notion of output-possibilistic security.

3 On the Choice of Cards for Input and Output

We essentially show that the choice of input basis (or output basis, but not
necessarily both) is irrelevant for the functioning of the protocol. In rare cases,
one has to append two operations to existing protocols to make them fully basis
flexible. In the Niemi–Renvall protocol shown above, the protocol description
specifies Alice’s cards to be of symbols 1, 2, and Bob’s to be of symbols 3, 4
and the helping card to be a 5. To simplify later proofs and to demonstrate
an interesting symmetry in card-based protocols, we show that this choice is
irrelevant for the functioning of the protocol.

For this, we define a relabeling from deck alphabet Σ to a deck alphabet Σ′, i.e.,
a bijective function λ : Σ → Σ′.7 A relabeling of a sequence s = (s1, . . . , sn) is a
relabeling of each of its symbols, i.e., λ(s) := (λ(s1), . . . , λ(sn)). A relabeling of a
state is given by the relabeling of all its sequences, a relabeling of a protocol/state
(sub)tree is the relabeling of all its states as described by Figures 3 and 5.

6 The source code is available under https://github.com/mi-ki/cardCryptoVerification.
7 In case of the decks being a subset of N, we may use usual permutation notation. We
require that if λ maps x to y, that the cardinalities of x and y are equal in the deck.
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...

1324 X0

2134 X0

1342 X1

2143 X1

3123 X0

4312 X0

3124 X1

4321 X1

relabel : (1 3)(2 4)

3142 X0

3124 X1

4312 X0

4321 X1

(turn, {1, 2})
31?? 43??

(result, 4, 3)

✓
(result, 3, 4)

✓

...

1324 X0

2134 X0

1342 X1

2143 X1

1324 X0

1342 X1

2134 X0

2143 X1

(turn, {1, 2})
13?? 21??

(result, 3, 4)

✓
(result, 3, 4)

✓

Fig. 3. Example of the relabel action, swapping the card symbols of 1 and 3, and of
2 and 4, respectively. This action is for abbreviated writing only, it does not actually
relabel the physical cards, which seems impossible without learning their symbols.
Hence, the tree on the left is virtually translated to the right. Note that the relabeling
only affects the sequences, the observations at edges belonging to turn actions and may
swap the order of the indices in result operations.

Lemma 1. If P is a protocol with deterministic output basis, one can relabel
the cards without affecting the functioning.

Note that the deterministic output basis restriction is important, because if
we have a randomized output encoding such as in Figure 4 on the left, a relabeling
might affect the monotonicity of the encoding of only one of the possible output
bases. In this case, we make use of the following lemma, as illustrated Figure 4.

Lemma 2. Every protocol with one-bit output and a randomized output basis
can be transformed into a protocol with deterministic output basis, by inserting a
shuffle and a turn before any result operation with randomized output basis.

4 Impossibility of Finite-Runtime Four-Card AND and
Basis Conversion with Overlapping Bases

In this section we give our main impossibility results.

Theorem 1. There is no four-card finite-runtime basis conversion protocol for
overlapping bases with deck D = ⟦1, 2, 3, 4⟧.

Proof. We proceed by using the backwards calculus technique from [K18], as
described in Section 2.1. That is, we show that if we start with the set of (highly-
structured) final states G0 of basis conversion protocols and enlarge this set
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...

43 21 1/2X1

21 34 1/2X1

34 12 1/2X0

12 34 1/2X0

(result, 1, 2)

✓

...

43 21 1/2X1

21 34 1/2X1

34 12 1/2X0

12 34 1/2X0

43 12 1/4X1

43 21 1/4X1

21 34 1/4X1

21 43 1/4X1

34 12 1/4X0

34 21 1/4X0

12 34 1/4X0

12 43 1/4X0

(shuffle, ⟨(3 4)⟩), i.e. shuffle
arbitrary on remaining cards

43 12 X1

34 12 X0

43 21 X1

34 21 X0

21 34 X1

12 34 X0

21 43 X1

12 43 X0

(turn, {3, 4})
??12

??21 ??34
??43

(result, 1, 2)

✓
(result, 1, 2)

✓
(result, 1, 2)

✓
(result, 1, 2)

✓

Fig. 4. Example of making the basis deterministic, cf. Lemma 2. On the left you see a
tree part with one-bit output and randomized basis, i.e., the output basis may be {1, 2}
or {3, 4}, each with a probability of 1/2. We can make it known to the players, i.e.,
deterministic, by splitting up the state via an Sk-shuffle (here: k = 2) on the remaining
cards (so that they no longer contain any information), turning these and then doing
the result operation. By what is visible in the turn, one can derive the output basis.

iteratively by states which reach the given states by a shuffle or a turn, we obtain
the closure clf(G0). If we consider only reduced states, the set of possible states
is finite, so applying turn−1

f (·) and shuf−1(·) operations to the growing set of
states, starting from G0, will become stationary. It remains to show that the
start state is not contained in the closure. We assume w.l.o.g. the input basis
{1, 2} with helping cards 3 and 4, and the output basis {o1 < o2} such that
|{1, 2} ∩ {o1, o2}| = 1. For simplicity, we want the output basis {1, 3} and argue
later why this choice did not affect the proof statement. Hence, the final state is
any choice of at least one 1-sequence and one 0-sequence of the state on the left:

13 24 0
13 42 0
31 24 1
31 42 1

12 34 0
21 34 1
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s1 µ(s1)
...

...
sℓ µ(sℓ)

λ(s1) µ(s1)
...

...
λ(sℓ) µ(sℓ)

relabel : λ : Σ → Σ′

(result, τ(i), τ(j)),
with τ ∈ {id, (i j)}

✓

s1 µ(s1)
...

...
sℓ µ(sℓ)

(result, i, j)

✓

Fig. 5. The formal rule for relabeling leaf nodes of one-bit output protocols. Let
r1 = sk[i], r2 = sk[j] ∈ D be the output symbols (before relabeling) of some arbitrary
sequence sk of µ. Then, τ = id, if r1 < r2 implies λ(r1) < λ(r2) (λ is monotone on r1,
r2) and τ = (i j) otherwise.

The state on the right is the start state of a basis-conversion protocol. Both
states are considered up to similarity.

We have shuf−1(G0) = G0, i.e., shuffling steps do not help in the last step of a
output-possibilistically secure protocol, because any subset of a final state which
contains at least one 1-sequence and one 0-sequence (required as 1-/0-sequences
cannot be generated out of thin air by a shuffle), is already final. Hence, we consider
G1 := turn−1

f (G0), i.e., the states turnable at a position i, where all immediate child
nodes when turning at i are in G0. W.l.o.g. we assume the turn to be at position
4. By [K18, Lemma 3], we use that G1 = turn−1

f (G0) = G0 ∪ turn−1
f (cc(G0)), where

cc(G0) is the subset of G0 with states that have a constant column:

13 24 0
31 24 1

13 42 0
31 42 1

However, we aim to enlarge this set (which we can do since our claim is only
made stronger by monotonicity of the backwards operations) by the states

24 13 0
42 13 1

24 31 0
42 31 1

,
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because they would be reachable anyway via a disjoint basis conversion due to
[M16, Sect. 3.2]. The states from G1 \ G0 look as follows:

. . . a 0

. . . a 1

. . . b 0

. . . b 1

. . . c 0

. . . c 1

. . . d 0

. . . d 1

where at least two of the blocks are present, and a, b, c, d ∈ D are pairwise distinct.
Note that the start state cannot be of this form, as it contains only two sequences.
To show that another backwards turn step does not enlarge the set by showing
that cc(G1) = cc(G0). For this, note that the states from cc(G0) have two constant
columns, but with the specific pairing that if one is 1, the other is 3 and vice
versa, or if one is 2, the other is 4 and vice versa. Hence, having another constant
column in the state from G1 \ G0 above, say at position 3, would need the same
symbol (given by the pairing) in the fourth column. Hence, it can only have two
sequences, i.e., it is already in G0. This shows that turn

−1
f (G1) = G1.

Now, for the main step of the proof, set G2 := shuf−1(G1) and G3 := turn−1
f (G2).

Because the shuffling is unrestricted, applying another backwards shuffle to G2

cannot give a larger set, as we can always combine two shuffles into one. The
remaining proof will show that G3 = G2 in which case no further enlargement is
possible. Afterwards, showing that the start state is not in G2 finishes the proof.

As G2’s states are subsets of G1’s states, cc(G2)’s general form is on the left:

. . . da 0

. . . da 1

. . . db ?

. . . dc ?

. . . da 0

. . . da 1

. . . db ?
(. . . ab ?)

. . . dc ?
(. . . ac ?)

(. . . xd ?)
(. . . yd ?)

where ? can be either 0 or 1 and x, y are either both a, or one is b and the other
c. To see this, observe that it is a subset of the state on the right where we leave
out at least all sequences interfering with our wish of a constant column in this
position (in parentheses on the right). Our aim is to show that these states are
more specifically the states of cc(G0) again, i.e., it is impossible to reach any
state of form in G1 via a shuffle from these states. Due to the complexity of the
situation, we do a case distinction on the number of sequences of µ ∈ cc(G2).

Let us consider only the first case, the other cases are analogously and are
to be found in a full version of the paper. Let µ contain two sequences. If they
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were both from the first block, the state would trivially be in cc(G0). This leaves
us with two choices, either include a sequence ending with da or exclude it. For
concreteness, we choose w.l.o.g. a = 2, d = 4, b = 1 and c = 3, and have this:

1342 0
3142 1

2341 1
4321 0

(. . . 43 ?)
(. . . 23 ?)

(. . . x4 ?)
(. . . y4 ?)

1342 0
2341 1

id

(1 4 3)

(1 4 2)

id

Reaching this state on the left by a shuffle should contain at least {id, (1 4 3), (1 4 2)}.
But if we apply (1 4 2) to the first sequence gives a sequence 3241 which is not
possible on the left side due to its trailing 1. The other cases are similar.

Theorem 2. There is no four-card finite-runtime AND protocol with deck D =
⟦1, 2, 3, 4⟧ with fixed-in-advance output basis.

Proof. If the output basis is not given using only Alice’s or only Bob’s cards,
this follows from Theorem 1, because if there would be such an AND protocol,
by fixing the second bit to 1 one could easily generate a basis-convert protocol,
which is impossible. In the remaining case, e.g., of the output basis being Alice’s
cards, say 1, 2, this would not be a basis-convert, as the bit remains unchanged.
In this case, a close analysis of the proof of Theorem 1 above yields that the
theorem also holds in this case. We omit the details, and refer to the full version.

5 Card-Minimal Protocols for AND

Theorem 3. There is a four-card Las Vegas AND protocol with deck D =
⟦1, 2, 3, 4⟧ using only random cuts.

Proof. See Figure 6 and Protocol 1.

To get a better understanding of why the protocol works and how it is related
to the protocol of [NR99], let us consider exemplarily the case that the first card
to be revealed is a 1, the other cases are analogous. In this situation, let us look at
the different cases, given in Table 2. Using the method as before, we can remove
3 by performing a random cut while leaving the relative order intact ( 1 here is

assigned the role of the 5 in Niemi and Renvall’s protocol) and waiting until

it appears when turning. Later we can remove the 1 from the remaining cards,

to get the output encoded using the cards 2 and 4 . A closer analysis of the

situation after removing 3 shows that one can take a shortcut when one is not

bound to the output being cards 2 4 (which is not our goal, because in the
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1234 X00

1243 X01

2134 X10

2143 X11

1234 1/4X00

1243 1/4X01

2134 1/4X10

2143 1/4X11

4123 1/4X00

3124 1/4X01

4213 1/4X10

3214 1/4X11

3412 1/4X00

4312 1/4X01

3421 1/4X10

4321 1/4X11

2341 1/4X00

2431 1/4X01

1342 1/4X10

1432 1/4X11

(shuffle, ⟨(1 2 3 4)⟩)

1234 X00

1243 X01

1342 X10

1432 X11

2341 X00

2431 X01

2134 X10

2143 X11

2134 X00

2143 X01

2413 X10

2314 X11

(perm, (2 3 4))

3412 X00

3124 X01

3421 X10

3214 X11

3124 X00

3241 X01

3214 X10

3142 X11

(perm, (2 4 3))

4123 X00

4312 X01

4213 X10

4321 X11

1243 X00

1234 X01

1324 X10

1423 X11

(perm, (3 4))

4213 X00

4132 X01

4123 X10

4231 X11

(perm, (2 3))

(turn, {1})
1???

2??? 3???
4???

relabel : (1 2)(3 4) relabel : (1 2)(3 4)

1243 1/4X00

1234 1/4X01

1324 1/4X10

1423 1/4X11

3124 1/4X00

4123 1/4X01

4132 1/4X10

3142 1/4X11

4312 1/4X00

3412 1/4X01

2413 1/4X10

2314 1/4X11

2431 1/4X00

2341 1/4X01

3241 1/4X10

4231 1/4X11

(shuffle, ⟨(1 2 3 4)⟩)

2431 X00

2341 X01

2413 X10

2314 X11

4312 X00

4123 X01

4132 X10

4231 X11

3124 X00

3412 X01

3241 X10

3142 X11

(turn, {1})

1???

2??? 3??? 4???

(shuffle, ⟨(1 2 3 4)⟩)
(shuffle, ⟨(1 2 3 4)⟩)

3124 1/3X0

3412 1/3X0

3241 1/3X0

3142 1/3X1

3214 1/3X1

3421 1/3X1

(shuffle, ⟨(2 3 4)⟩)

3124 X0

3142 X1

3241 X0

3214 X1

3412 X0

3421 X1

(turn, {2})

?1?? ?2?? ?4??

(result, 3, 4)

✓
(result, 4, 3)

✓
(result, 3, 4)

✓

4213 1/4X00

4132 1/4X01

4123 1/4X10

4231 1/4X11

3421 1/4X00

2413 1/4X01

3412 1/4X10

1423 1/4X11

1342 1/4X00

3241 1/4X01

2341 1/4X10

3142 1/4X11

2134 1/4X00

1324 1/4X01

1234 1/4X10

2314 1/4X11

(shuffle, ⟨(1 2 3 4)⟩)

2134 X00

2413 X01

2341 X10

2314 X11

1342 X00

1324 X01

1234 X10

1423 X11

3421 X00

3241 X01

3412 X10

3142 X11

(turn, {1})

1??? 2??? 3???

4???

(shuffle, ⟨(1 2 3 4)⟩)
(shuffle, ⟨(1 2 3 4)⟩)

2134 1/3X0

2413 1/3X0

2341 1/3X0

2314 1/3X1

2431 1/3X1

2143 1/3X1

(shuffle, ⟨(2 3 4)⟩)

2134 X0

2143 X1

2341 X0

2314 X1

2413 X0

2431 X1

(turn, {2})

?1?? ?3?? ?4??

(result, 3, 4)

✓
(result, 4, 3)

✓
(result, 3, 4)

✓

Fig. 6. Four-card Las Vegas AND protocol using random cuts, cf. Protocol 1. Here,
X0 := X00 +X01 +X10 and X1 := X11. The relabel operations are not actual actions
to be performed but help abbreviate the write-up of the protocol, see Section 3.
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Table 2. The different states of Protocol 1 after 1 was revealed in the first turn. The
permutation to be applied in this case is (3 4). The situation is similar in all other cases.

Bits Sequence After permutation Removing 3

(0, 0) 1 2 3 4 1 2 4 3 1 2 4 x

(0, 1) 1 2 4 3 1 2 3 4 1 2 x 4

(1, 0) 1 3 4 2 1 3 2 4 1 x 2 4

(1, 1) 1 4 3 2 1 4 2 3 1 4 2 x

other cases besides the first turn being 1 it is different anyway, and one would
have to add conversion protocols to ensure this). The situation is as follows: The
remaining three cards are either a cyclic rotation (cut) of the sequence 1 2 4 ,

if the output is 0, or a cyclic rotation of the sequence 1 4 2 , otherwise. A cut
cannot rotate a sequence of the former type to become the other, or vice versa.
After the cut we can safely turn any card and, from the resulting symbol, deduce
in which order the other cards must be output to encode the protocol result.

Protocol 1. Our four-card AND protocol. The first bit is in basis {1, 2},
the second in {3, 4}, and the output in {1, 2, 3, 4}\{v2, v3}, where v2, v3 are
the last two revealed symbols. See Figure 6 for a KWH tree representation.

(shuffle, ⟨(1 2 3 4)⟩)
v1 := (turn, {1})
if v1 = 1 then (perm, (3 4))
else if v1 = 2 then (perm, (2 3 4))
else if v1 = 3 then (perm, (2 4 3))
else if v1 = 4 then (perm, (2 3))

Let π := (1 3)(2 4)
repeat

(shuffle, ⟨(1 2 3 4)⟩)
v2 := (turn, {1})

until v2 = π(v1)

(shuffle, ⟨(2 3 4)⟩)
v3 := (turn, {2})
Let σ := (1 4)(2 3)
if v3 = σ(v2) then (result, 4, 3)
else (result, 3, 4)

For an analysis of the number of shuffle steps in the protocol, observe that
we have performed two shuffles until we reach the loop condition, which holds
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with probability 1/4. After the loop, we have one additional shuffle step. Hence,
the expected number of shuffles is 3 +

∑∞
n=1

(
1− 1

4

)n
= 6.

Comparison to [NR99]. The previous protocol, using five cards, was described
in the introduction. For a pseudo-code description, see Protocol 2.

Protocol 2. Five-card AND protocol by Niemi and Renvall [NR99]. The
first bit is in basis {1, 2}, the second in basis {3, 4}. The output basis is
{1, 4}. See also Figure 7 for a KWH tree representation.

(perm, (3 4))
repeat

(shuffle, ⟨(1 2 3 4 5)⟩)
v := (turn, {1})

until v = 2 or v = 3
repeat

(shuffle, ⟨(2 3 4 5)⟩)
v := (turn, {2})

until v = 2 or v = 3
repeat

(shuffle, ⟨(3 4 5)⟩)
v := (turn, {3})

until v = 5
(result, 4, 5)

As Niemi and Renvall state, their running time in the number of shuffle steps
is calculated as follows: Their protocol starts with a shuffle and repeats this
with probability 3/5. The second loop contains a shuffle and has a repeating
probability of 3/4. The shuffle in the final loop is repeated with probability 2/3. In
total, the expected running time is 3 +

∑∞
n=1

(
3
5

)n
+
∑∞

n=1

(
3
4

)n
+
∑∞

n=1

(
2
3

)n
=

3+1.5+3+2 = 9.5. However, for a fair comparison to our protocol, we eliminate
the last loop from their protocol, as its only function is to ensure that the output
is in basis {1, 4}, which our protocol does not guarantee. In this case, the modified
Niemi–Renvall protocol has an expected number of 3 + 1.5 + 3 = 7.5 shuffle
steps. Hence, our four-card AND protocol needs one card less and outperforms
the Niemi–Renvall protocol by an expected number of 1.5 shuffle steps.

6 Card-Minimal Protocols for Basis Conversion with
Overlapping Bases

In this section, we give two protocols for converting a basis encoding in the case
where the old and the new encoding share a card. The first protocol has an
expected (finite) running time of three shuffle and turn operations. While it has
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12 34 5 X00

12 43 5 X01

21 34 5 X10

21 43 5 X11

51324 1/5X00

51423 1/5X01

52314 1/5X10

52413 1/5X11

13245 1/5X00

14235 1/5X01

23145 1/5X10

24135 1/5X11

32451 1/5X00

42351 1/5X01

31452 1/5X10

41352 1/5X11

24513 1/5X00

23514 1/5X01

14523 1/5X10

13524 1/5X11

45132 1/5X00

35142 1/5X01

45231 1/5X10

35241 1/5X11

(perm, (1 2 4 5))
(shuffle, 〈(1 2 3 4 5)〉)

1 3245 X00

1 4235 X01

1 4523 X10

1 3524 X11

2 4513 X00

2 3514 X01

2 3145 X10

2 4135 X11

3 2451 X00

3 5142 X01

3 1452 X10

3 5241 X11

4 5132 X00

4 2351 X01

4 5231 X10

4 1352 X11

5 1324 X00

5 1423 X01

5 2314 X10

5 2413 X11

(turn, {1})

1????
2???? 3????

4????5????

(shuffle, 〈(1 2 3 4 5)〉) (shuffle, 〈(1 2 3 4 5)〉)

2 4513 1/4X00

2 3514 1/4X01

2 3145 1/4X10

2 4135 1/4X11

2 3451 1/4X00

2 4351 1/4X01

2 5314 1/4X10

2 5413 1/4X11

2 1345 1/4X00

2 1435 1/4X01

2 4531 1/4X10

2 3541 1/4X11

2 5134 1/4X00

2 5143 1/4X01

2 1453 1/4X10

2 1354 1/4X11

(shuffle, 〈(2 3 4 5)〉)

21 345 X00

21 435 X01

21 453 X10

21 354 X11

23 451 X00

23 514 X01

23 145 X10

23 541 X11

24 513 X00

24 351 X01

24 531 X10

24 135 X11

25 134 X00

25 143 X01

25 314 X10

25 413 X11

(turn, {2})
?1???

?3??? ?4???
?5???

(shuffle, 〈(2 3 4 5)〉) (shuffle, 〈(2 3 4 5)〉)

23 451 1/3X0

23 514 1/3X0

23 145 1/3X0

23 541 1/3X1

23 154 1/3X1

23 415 1/3X1

(shuffle, 〈(3 4 5)〉)

231 45 X0

231 54 X1

234 51 X0

234 15 X1

235 14 X0

235 41 X1

(turn, {3})

??1?? ??4?? ??5??

(shuffle, 〈(3 4 5)〉)

(result, 4, 5)

X

3 2451 X00

3 5142 X01

3 1452 X10

3 5241 X11

3 1245 X00

3 2514 X01

3 2145 X10

3 1524 X11

3 4512 X00

3 1425 X01

3 4521 X10

3 2415 X11

3 5124 X00

3 4215 X01

3 5214 X10

3 4152 X11

(shuffle, 〈(2 3 4 5)〉)

31 245 X00

31 425 X01

31 452 X10

31 524 X11

32 451 X00

32 514 X01

32 145 X10

32 415 X11

34 512 X00

34 215 X01

34 521 X10

34 152 X11

35 124 X00

35 142 X01

35 214 X10

35 241 X11

(turn, {2})
?1???

?2??? ?4???
?5???

(shuffle, 〈(2 3 4 5)〉) (shuffle, 〈(2 3 4 5)〉)

32 451 X0

32 514 X0

32 145 X0

32 415 X1

32 154 X1

32 541 X1

(shuffle, 〈(3 4 5)〉)

321 45 X0

321 54 X1

324 51 X0

324 15 X1

325 14 X0

325 41 X1

(turn, {3})

??1?? ??4?? ??5??

(shuffle, 〈(3 4 5)〉)

(result, 4, 5)

X

Fig. 7. KWH tree of the five-card AND protocol of [NR99] with D = ⟦1, 2, 3, 4, 5⟧ using
only random cuts, cf. Protocol 2. Note that X0 := X00 +X01 +X10 and X1 := X11.
The output is in basis {1, 4}.
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not been explicit in the literature, it is in a way implicit in the protocol by Niemi
and Renvall [NR99], as the authors aimed to get a fixed-in-advance output basis.

213 X1

123 X0

213 1/3X1

123 1/3X0

321 1/3X1

312 1/3X0

132 1/3X1

231 1/3X0

(shuffle, ⟨(1 2 3)⟩)

132 X1

123 X0

213 X1

231 X0

321 X1

312 X0

(turn, {1})

1?? 2?? 3??

(shuffle, ⟨(1 2 3)⟩) (shuffle, ⟨(1 2 3)⟩)

(result, 3, 2)

✓

Fig. 8. Three-card Las Vegas basis convert for D = ⟦1, 2, 3⟧ with uniform closed shuffles.

Theorem 4. There is a three-card Las Vegas basis-conversion protocol for over-
lapping bases with deck D = ⟦1, 2, 3⟧ and uniform closed shuffles.

Proof. See Figure 8 and Protocol 3.

Protocol 3. Three-card Las Vegas basis conversion protocol as given in
Figure 8 with D = ⟦1, 2, 3⟧, input basis {1, 2} and output basis {1, 3}
repeat

(shuffle, ⟨(1 2 3)⟩)
v := (turn, {1})

until v = 2
(result, 3, 2)

Theorem 5. There is a five-card finite-runtime basis conversion protocol for
overlapping bases with deck D = ⟦1, 2, 3, 4, 5⟧. It only uses two random bisection
cuts as shuffle operations.

Proof. This is just applying the basis conversion of [M16] twice, cf. Protocol 4.

23



Protocol 4. Five-card finite-runtime conversion protocol with overlapping
bases for D = ⟦1, 2, 3, 4, 5⟧, input basis {1, 2} and output basis {1, 3}
(shuffle, ⟨(1 2)(4 5)⟩)
v := (turn, {1})
if v = 2 then (perm, (1 2)(4 5))

(shuffle, ⟨(1 3)(4 5)⟩)
v := (turn, {4})
if v = 4 then (result, 1, 3)
else (result, 3, 1)

1 struct sequence {

2 uint val[numberOfCards];

3 struct fractions probs;

4 };

Listing 1. C struct holding the state trees.

7 An Illustration of Our Verification Methodology

In the following, we exemplify our translation of card-based cryptographic proto-
cols using standard decks to a specific the bounded model checker CBMC which
takes programs in the C language, and compute a secure AND function. For
our experiments, we used CBMC 5.11 [CKL04] with the built-in solver based
on the SAT-solver MiniSat 2.2.0 [ES03]. All experiments are performed on an
AMD Opteron(tm) 2431 CPU at 2.40 GHz with 6 cores and 32 GB of RAM.

We translate KWH trees in the C language using a simple encoding into
a bounded C program with only static structures and no pointers, e.g., we
employ C structs (see Listing 1) holding an array of card sequences for the
sequence s, attached with their respective values for each probability (for the
probabilistic security notion) or dependency (for output-possibilistic security) Xi

occurring in µ(s), which is simply encoded by another C struct fractions. The
sequences are constructed using non-deterministic values restricted by respective
software conditions to enforce a lexicographic ordering. Moreover, we assign
the starting values in µ(s) with fixed (i.e., deterministic) values based on the
constructed sequences. Subsequently, an array of (consecutively) reachable states
is constructed non-deterministically using simple implementations of the turn
and the shuffle operation as explained in Section 2. We then repeatedly (after
each turn/shuffle) check whether all possible resulting (non-deterministic) states
correctly and securely compute the specified function, e.g., here a secure AND.

An example shuffle operation is shown in Listing 2 for the case of output-
possibilistic security. Therein, the keyword __CPROVER_assume is used by the
bounded model checker to restrict all program runs passing this statement to
satisfy the specified (Boolean) condition. By assigning values using the spe-
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1 uint permSetSize = nondet_uint();

2 __CPROVER_assume (0 < permSetSize);

3 __CPROVER_assume (permSetSize <= NUM_POSS_SEQ);

4 uint permutationSet[permSetSize][numberOfCards];

5 uint takenPermutations[NUM_POSS_SEQ] = { 0 };

6

7 for (uint i = 0; i < permSetSize; i++) {

8 uint permIndex = nondet_uint();

9 __CPROVER_assume (permIndex < NUM_POSS_SEQ);

10 __CPROVER_assume (!takenPermutations[permIndex]);

11

12 takenPermutations[permIndex] = 1;

13 for (uint j = 0; j < numberOfCards; j++) {

14 permutationSet[i][j] =

15 startState.seq[permIndex][j] - 1;

16 }

17 }

18 struct state result =

19 doShuffle(startState, permutationSet, permSetSize);

20 __CPROVER_assume (isBottomFree(result));

Listing 2. Simplified shuffle operation for CBMC.

cial function nondet_uint(), we assign a non-deterministic non-negative integer
number, which is restricted to values greater than zero and at most of value
NUM_POSS_SEQ (which is a variable computed by the pre-processor and is the
maximum number of sequences possible with the given deck) in the following
program statement. In the shown example, the non-determinism is used to con-
struct a set of permitted permutation sets (to be used by the shuffle operation),
which makes the SBMC tool inspect the following program code for all possible
assignments of this value. If necessary, this may result in a fully exhaustive search,
however, the prover is often able to restrict the domain based on further program
statements and dependencies seen in the rest of the program. A similar trick
is used when computing the concrete permutations using the non-deterministic
value of permIndex in order to check all possible permutations which possibly
move the values, but preserve all existing numbers in the sequence itself. This is
done using the int-array takenPermutations, which is first initialized to zero and,
when choosing a concrete permutation, assumed to be zero at position permIndex,
however set to the number one right afterwards (such that it is not permitted to
be chosen again). In the subsequent inner loop, the permutations are assigned
choosing the according cards from the sequences in the start state using the
non-deterministic value permIndex. Finally, the shuffle is applied, resulting in the
state variable result, which is then checked using a further method isBottomFree

to not contain any sequences with impermissible values for Xi, which would
result in incorrect computations of the AND function.
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We applied our approach to the computation of a secure AND protocol using
four cards in order to, firstly, substantiate our proof that no protocol of a length
below six can be found, and, secondly, automatically find a permitted protocol
using six operations. Using our approach, we were able to show that no four-
card protocol exists using five operations within 57 hours and constructed an
output-possibilistic protocol using six operations within 31 hours. The sizes of
the constructed formulas consisted of between 150 and 180 million SAT clauses.

8 Conclusion

In this paper, we proposed a new method to search card-based protocols for
any secure computation, by giving a general formal translation applicable to be
used by the formal technique of software bounded model checking (SBMC). This
method allows us to find new protocols automatically, and prove lower bounds
on required shuffle and turn operations for any protocol, and provide an example
for the computation of a minimal AND protocol. We also found a new protocol
that only uses the theoretical minimum of four distinguishable cards for an AND

computation. Moreover, we supported this finding by our automatic method in
showing the impossibility of any protocol using less shuffle and turn operations
using only practicable shuffles (random cuts). The protocol is hence optimal w.r.t.
the running time restriction “restart-free Las-Vegas”. For the four-card standard
deck setting, we showed that there is no finite runtime protocol, regardless of the
shuffle operations used. This result completes the picture of tight lower bounds for
the four-card setting. Finally, we showed tight lower bounds on basis conversions
for single bits and proposed the missing protocols, and establish the theorem
that using a minimum of five cards, both input- and output-bases can be chosen
freely, which fosters our impossibility result for the four-card setting.

Open Problems. Let us point out some open problems in the card-based
security area that could be approached based on the findings in this paper:
(1) For finite-runtime protocols, there exist no proven tight lower bounds on the
required number of cards (five to eight cards). We recommend more research
applying computer-aided formal methods at this point, as the state space for
five or more cards is very large. (2) Our verification approach is fast for finding
protocols and/or lower bounds on the operations needed in a protocol for given
shuffle-restrictions. However, this is based on the assumption that protocols
exist already for a given predefined length to find or confirm impossibility
results. Investigating computer-aided formal methods for universal impossibility
results might be worthwhile. (3) The two most common settings in card-based
cryptography are the standard deck setting with only distinguishable cards and
the two-color decks using ♣ and ♡. However, it may be possible that by mixing
these settings (e.g., only distinguishable cards with one pair of identical cards),
we might find more efficient protocols (especially in the finite runtime setting).
For such a mixed setting, [SM19] provide nice results to use in further research.
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Appendix: Protocols from the Literature

This appendix contains the 8-card AND protocol of [M16] (Figure 9) and a second
four-card protocol which uses a number of 4.5 shuffles in expectation, which are,
however, non-closed and hence, more impractical to implement, cf. Figure 10.

21 43 56 78 X11

21 34 56 78 X10

12 43 56 78 X01

12 34 56 78 X00

21 43 56 78 1/2X11

21 34 56 78 1/2X10

12 43 56 78 1/2X01

12 34 56 78 1/2X00

21 43 78 56 1/2X11

21 34 78 56 1/2X10

12 43 78 56 1/2X01

12 34 78 56 1/2X00

(shuffle, ⟨(5 7)(6 8)⟩)

21 43 56 78 1/4X11

21 34 56 78 1/4X10

12 43 56 78 1/4X01

12 34 56 78 1/4X00

21 43 78 56 1/4X11

21 34 78 56 1/4X10

12 43 78 56 1/4X01

12 34 78 56 1/4X00

21 34 65 78 1/4X11

21 43 65 78 1/4X10

12 34 65 78 1/4X01

12 43 65 78 1/4X00

21 34 87 56 1/4X11

21 43 87 56 1/4X10

12 34 87 56 1/4X01

12 43 87 56 1/4X00

(shuffle, ⟨(3 4)(5 6)⟩)

21 34 56 78 1/2X10

12 34 56 78 1/2X00

21 34 78 56 1/2X10

12 34 78 56 1/2X00

21 34 65 78 1/2X11

12 34 65 78 1/2X01

21 34 87 56 1/2X11

12 34 87 56 1/2X01

21 43 56 78 1/4X11

12 43 56 78 1/4X01

21 43 78 56 1/4X11

12 43 78 56 1/4X01

21 43 65 78 1/4X10

12 43 65 78 1/4X00

21 43 87 56 1/4X10

12 43 87 56 1/4X00

(turn, {3, 4})
??34???? ??43????

(perm, (3 4)(5 6))

12 34 87 56 1/4X01

21 34 87 56 1/4X11

12 34 65 78 1/4X01

21 34 65 78 1/4X11

12 34 78 56 1/4(X10 +X00)
21 34 78 56 1/4(X10 +X00)
12 34 56 78 1/4(X10 +X00)
21 34 56 78 1/4(X10 +X00)

12 34 78 65 1/4X11

21 34 78 65 1/4X01

12 34 56 87 1/4X11

21 34 56 87 1/4X01

(shuffle, ⟨(1 2)(5 7)(6 8)⟩)

12 34 87 56 1/2X01

12 34 65 78 1/2X01

12 34 78 56 1/2(X10 +X00)
12 34 56 78 1/2(X10 +X00)
12 34 78 65 1/2X11

12 34 56 87 1/2X11

(result, 7, 8)

✓

21 34 87 56 1/2X11

21 34 65 78 1/2X11

21 34 78 56 1/2(X10 +X00)
21 34 56 78 1/2(X10 +X00)
21 34 78 65 1/2X01

21 34 56 87 1/2X01

(result, 5, 6)

✓

(turn, {1, 2})
12?????? 21??????

Fig. 9. The eight-card finite-runtime AND protocol of [M16], with D = ⟦1, . . . , 8⟧ and
uniform-closed shuffles. Output is in basis {5, 6} or {7, 8}, each with probability 1/2.
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1234 X00

1243 X01

2134 X10

2143 X11

1234 1/2X00

1243 1/2X01

2134 1/2X10

2143 1/2X11

2341 1/2X00

2431 1/2X01

1342 1/2X10

1432 1/2X11

(shuffle, {id, (1 4 3 2)})

1234 X00

1243 X01

1342 X10

1432 X11

2341 X00

2431 X01

2134 X10

2143 X11

(turn, {1})
1??? 2???

1234 1/3(X00 +X01)
1243 1/3(X00 +X01)
1342 1/3X10

1432 1/3X11

1324 1/3X10

1423 1/3X11

3421 1/3X00

4321 1/3X01

4231 1/3X10

3241 1/3X11

(shuffle, {id, (3 4), (1 4 2 3)})

3421 X00

4321 X01

1324 X10

1423 X11

1234 X00 +X01

4231 X10

1432 X11

1243 X00 +X01

1342 X10

3241 X11

(turn, {3})
??4?

??3?
??2?

2341 1/3(X00 +X01)
2431 1/3(X00 +X01)
2134 1/3X10

2143 1/3X11

2314 1/3X10

2413 1/3X11

4213 1/3X00

3214 1/3X01

3241 1/3X10

4231 1/3X11

(shuffle, {id, (2 3), (1 2 4 3)})

4213 X00

3214 X01

2314 X10

2413 X11

2341 X00 +X01

3241 X10

2143 X11

2431 X00 +X01

2134 X10

4231 X11

(turn, {3})

??1? ??3?
??4?

(perm, (1 2 3))(perm, (1 4 3))

1243 1/3X0

1342 1/3X0

3241 1/3X1

3142 1/3X11

4132 1/3(X00 +X01)
4123 1/3X10

4312 1/3X1

(shuffle, {id, (2 4), (1 2 4 3)})

1342 X0

4312 X1

1243 X0

3241 X1

4132 X00 +X01

4123 X10

3142 X11

(turn, {2})
?1??

?2???3??

(result, 1, 4)

✓
(result, 1, 3)

✓

4132 1/3X0

4123 1/3X0

3142 1/3X11

3124 1/3X1

1342 1/3(X00 +X01)
1243 1/3X10

1432 1/3X1

(shuffle, {id, (3 4), (1 3 2)})

1342 X00 +X01

1243 X10

3142 X11

4132 X0

1432 X1

4123 X0

3124 X1

(turn, {3})
??4?

??3? ??2?

(result, 2, 1)

✓
(result, 4, 1)

✓

(perm, (2 4))

1234 1/3X0

4231 1/3X0

1432 1/3X1

2431 1/3X11

2341 1/3(X00 +X01)
2314 1/3X10

4321 1/3X1

(shuffle, {(1 2 4), (1 2), (2 3)})

4231 X0

4321 X1

1234 X0

1432 X1

2341 X00 +X01

2314 X10

2431 X11

(turn, {1})
2???

1??? 4???

(result, 2, 4)

✓
(result, 2, 3)

✓

2341 1/3X0

2314 1/3X0

2431 1/3X11

2413 1/3X1

4231 1/3(X00 +X01)
1234 1/3X10

3241 1/3X1

(shuffle, {id, (3 4), (1 2 3)})

4231 X00 +X01

1234 X10

2431 X11

2314 X0

2413 X1

2341 X0

3241 X1

(turn, {3})
??3?

??1???4?

(result, 2, 4)

✓
(result, 1, 2)

✓

(perm, (1 2))

(perm, (1 4 2))(perm, (1 2 4))

Fig. 10. A four-card Las Vegas AND protocol with deck D = ⟦1, 2, 3, 4⟧ and uniform
shuffles. Note that X0 := X00 +X01 +X10 and X1 := X11. The output is in one of the
bases {1, 3}, {1, 4}, {2, 3}, {3, 4}, determined by the position of the final state in the
tree, and can be converted as needed.
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