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Almost Surely and Pth Moment Exponential
Stability of Nonlinear Stochastic Delayed Systems
Driven by G-Brownian Motion

Chao Wei

Abstract—This article is devoted to analyze the stability of
nonlinear stochastic delayed systems driven by G-Brownian
motion. Firstly, we study the existence of global unique solu-
tion. Secondly, by using G-Ito6 formula, G-Lyapunov function,
Gronwall’s inequality and Borel-Cantelli lemma, we discuss the
pth moment exponential stability and almost surely exponential
stability of stochastic delayed systems. Finally, we provide an
example to verify the results.

Index Terms—Nonlinear stochastic delayed systems; pth mo-
ment exponential stability; almost surely exponential stability;
G-Brownian motion; existence and uniqueness

I. INTRODUCTION

Most systems do not satisfy the principle of linear su-
perposition. Thence, except for a small part that can be
approximately regarded as linear systems, most of them
are nonlinear systems, such as simple pendulum systems (
[12]), gravitational three-body systems ( [20]) and turbulent
system of fluids ( [6]). The nonlinear system is the essence
and the linear system is the approximation or part of the
nonlinear system. Therefore, it is necessary to discuss the
properties of nonlinear systems. The research of nonlinear
system has always been a hot issue in the field of control.
For example, Liu et al. ( [9]) used an improved dwell
time technique to establish the framework for nonlinear
Markovian switched systems. Sun et al. ( [19]) studied finite
time feedback control problem for nonlinear systems. Liu
et al. ( [10]) used the adaptive control means to analyze
stochastic feedback Markovian switched system. Generally,
because of uncertain communication environment, the time
delay is always unavoidable. Therefore, it is required to be
taken into consideration for stochastic systems. Chen et al.
( [3]) provided two different types of mean square exponen-
tial stability analysis methods for stochastic systems with
aperiodic sampling and multiple time-delays. Feng et al. (
[5]) investigated the exponential stability for highly nonlinear
hybrid neutral stochastic systems with time varying delays by
the novel approach of multiple degenerate functionals. Plonis
et al. ( [17]) presented the procedure of synthesis of the
meander delay system using the Pareto-optimal multilayer
perceptron network and multiple linear regression model
with the M5 descriptor. Zhao and Zhu ( [24]) discussed
the existence and boundedness of unique global solution
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for highly nonlinear switched stochastic systems with time
delays.

In recent years, Peng pioneered the concept of G-
expectation and established a corresponding theoretical sys-
tem ( [13]-[15]). This topic has attracted wide attention.
For example, Chen and Yang ( [4]) analyzed time-varying
delay Hopfield neural networks. By applying aperiodically
intermittent adaptive control, Li et al. ( [8]) discussed the
stabilisation for stochastic complicated systems. By using
feedback control, Ren et al. ( [18]) studied stability for
discrete-time stochastic differential equations. Sun et al. (
[19]) discussed stability for delay impulsive stochastic C-G
neural networks.

The nonlinear characteristic of the systems make the
performance of the systems more complicated, which brings
difficulties to the analysis of stability of systems. Stability
has always been the most fundamental and core issue in
system analysis. In recent years, lots of results about stability
has been reported in the literature ( [1], [7], [21], [22]). For
example, by applying Lyapunov techniques, Caraballo et al.
( [2]) analyzed the stability of stochastic perturbed singular
systems. Ngoc ( [11]) used a new method to analyze stability
of delay stochastic system. Zhang et al. ( [23]) discussed
stability for time-varying stochastic system driven by multi-
plicative noise. Since G-Brownian motion has been widely
used in uncertainty problems and switching systems are an
important class of hybrid dynamic systemes, it is necessary to
consider these factors. In this article, the existence of global
unique solution for the nonlinear stochastic delayed systems
is proved. The pth moment exponential stability and almost
surely exponential stability of system are investigated with
the help of G-1t6 formula, Borel-Cantelli lemma, Gronwall’s
inequality, Holder inequality and Chebyshev inequality.

The rest of this paper is organized as follows. The system,
some definitions and assumptions are introduced in Section
2. The existence of global unique solution is derived in
Section 3. Moreover, the pth moment exponential stability
and almost surely exponential stability of the system are
studied as well. We provide an example in Section 4. We
make the conclusion and give some future works in Section
5.

II. PROBLEM FORMULATION AND PRELIMINARIES

Denote ({F;}+>0) is a filtration generated by G-Brownian
motion {B(t),t > 0}, CH?(R™ x R™ x Ry;Ry) is the
family of V(z,y,t) > 0. Define M%°([0,t],R",S) =
{a(w) = E;V:ill%jﬁty (w)l[t.wtjﬂ);ﬁt]‘ € L%t(Q;Rn)7t >
0}, M%([0,t],R™,S):= the completion of M%°([0,],R™,S)
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under the norm [|al| a2, (j0,4,8,5) = (fg@|as|pds)% where

b, (4 R™:= the family of all F; measurable R"-valued
stochastlc variables 3 satisfies E|3[P < oo.

The nonlinear stochastic delayed systems driven by G-
Brownian motion is introduced as follows:

= f(z(t),z(t — 7(t)),t)dt
+g(z(t),x(t — 7(¢t)),t)d < B > (t)
+h(x(t), z(t — 7(t)),t)dB(t), (D

where 0 < 7(¢) < 7, the nonrandom initial data {x(¢) =
§(t) : =7 <t <0} =¢ € C([—7,0;R™), B(t) is a one di-
mensional G-Brownian motion with G(a) := 3E[aB?*(1)] =
%(62a+ + ga™), for a € R, where at = max{a,0},
a~ = max{—a,0}, 3° = E[B(1)], ¢®> = —E[-B?(1)],
< B > (t) is the quadratic variation process of B(t), E
stands for the G-expectation. The mapping rules of f, g and
h are: R™ x R® x Ry — R™.

Firstly, we give some assumptions, definitions and lemmas.

dx(t)

ly1] < K,
|f(£[',y,t) - f(xhylat)' \ |g(.’L‘,y,t) _9(9517y17t)|
VIh(z,y,t) — h(z1,91,8)| < L (|z — 21] + |y — y1]).

Assumption 2:

£O,6,1) =0, g(0,,i)=0, h(0,t,7) =0.

Assumption 3:

lim inf V(x,y,t) = oo,

|z|—00 t>0

EV(‘I y,t) —a3V($ Y, )a

where V(z,y,t) € CL2(R" x R® x Ry;Ry), az > 0

Definition 1: The system (1) is said to be pth moment
exponentially stable if there is a pair of positive constants A
and C' such that

|2 (t;to, mo|P < Clag|Pe M10) 1> ¢,

for all xg € R™. When p = 2, it is said to be exponentially
stable in mean square.

Definition 2: The system (1) is said to be almost sure
exponentially stable if

. 1
tlggo sup glog(\x(t,to,xoﬂ) < 0,a.s.

for all o € R™.
Given V € C12(R"™ x R™ x R4 ;R ). The expression of
operator LV is as follows:

LV (z,y,t) = Vi(z,y,t) + Va(z,y,t)f(z,y,t)
+ G@2Vi(z,y,t)g(x,y,1)
—l—hT(x,y,t)Vm(x,y,t)h(a:,y,t)).

Lemma 1: ( [14]) (G-Itd6 formula): Let ¢ € CL2(R™ x
R+;R+) and

t t t
X =Xy +/ fsds +/ gsd < B > +/ hsdBs,
0 0 0

where f,g,h € MZ(0,T;R™). Then, for V¢ > 0,

(X2 1) — 9(Xo, )
=f@ﬂ&@+@w&@ﬂ
+GE)281<P(X ,8)9s) + Owap(X s, s)h2]ds

‘ / (X shaB.+ [ Bp(X. 0

+- 8m<p( ,8)h3ld < B >

0

III. MAIN RESULTS AND PROOFS

Theorem 1: When Assumptions 1-3 hold, the global u-
nique solution of system (1) exists.
Proof: Let the initial value |xo| < . Form > &, m € N,
define the truncation function

f(z,y,1)
fm(ajzyvt) = f(@7@; )
| [yl

iflz|, [y <m,

iflzl gl >m, @

g(z,y,t) iflzl |yl <m,
gm(xayat) = (@ my )

3
g b b ( )
2|7 |yl

if |zl ly| > m.

h(z,y,t)
h(2,y,t) = (mx my )

Tl Tyl

iflz], [yl < m,

iflzl gl >m. @

It can be checked that £(™), g(™) and h(™) fulfill the linear
growth condition and Lipschitz condition. Thus,

dxm(t) = fm(xm (t) Tm (t - T(t))a t)dt
+9m($m(t),$m(t —7(t)),t)d < B > (t)
)

( (t)7$m<t_7—(t))7t dB(t)a (5)
has the global unique solution.
Let
N = Inf{t > 0: |z, ()] > m}, (6)
where inf ¢ = oc.

When 0 < ¢t < 1y, () = 1. Then, {9} is an
increasing sequence. Thus, 35 satisfies

n= lm 7,. )

m—r o0

Let

z(t) = lm x,,(¢),

m—r o0

0<t<n. (8)

We get that z(t) is unique.
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With the help of G-Itd formula, when ¢ > 0, we obtain
V(ZmEANm)s T (EA D — TEA D)), EA D)
= V(£(0), 2 (—7(0)), 0)
tANm

+/ ﬁmv($m(s)a ;z:m(s - T(S))v S)dS

—1—/0 Vz(aﬁm( ), T (s — 7(8)), 8)
h(x";( 8), T (s — 7(s)), s)dB(s)

+ [ Wl onls = (5.9
g( m(8); Tm (s — 7(s)), )

+5 hT(xm( ), Tm(s —7(s)),s)
Vm(l'm(s) Ty (s —7(5)), 8)
hzm (8), zm (s — 7(8)),8)]d < B > (s)
- /0 G2V, (i (5)s 2 (5 — 7(5)), 8)
9(Tm(8),Tm(s — 7(s)),s)

+hT (@ (s), 2m (s — 7(s)), 5)

Vew(@m (8), xm (s — 7(8)), s)

h(zm (8), zm (s — 7(8)), s)ds,

where L,V (2 (), Tm (s — 7(5)), $)
7(s)),s) when 0 < s <t Anp,.
According to ( [16]),

~

B [ V@ (), (s — (). )
B (5). (s — 7(s)). $)dB(s)

and

B Ve (5), (s — (). )
o (5) (s =61

AT (), (s~ 7()). )

Voo (9, 25 = 7(5)),5)

h(x,,zgil T (s —7(8)),8)]d < B > (s)
o R CATHERNEES BN

9(@m(s), Tm(s — 7(s)), s)
AT (@ (8), (s = 7(s)), )
Vew (2m(8), Tm(s — 7(8)), 8)
h(zm(8), zm (s — 7(s)), s)ds]
<0.

Then,

[Y(T/m(tAﬂm) Lo (E AN — TE A Nm)) st A 1)
< E[V(£(0), zm(—7(0)), 0)]
E

/0 " LV (@), (5 — 7(5)), 5)d]
E[V(g(O) T (=7(0)),0)]
P BV (@ (s), 25 — 7(s)), 5)]ds.

+

\

=LV (m(8), Tm(s—

According to the Gronwall’s inequality, we get

B[V (@ (t A thn)s T (A 1y = 7(E A 1)) £ A )]
< E[V(£(0), zm (—7(0)),0)]e"" 7.

Furthermore, as

P{nm <t} V(z,y,t)

|z|, |y\>m t>0
g /
Nm <t

V(@m(EAm), T (EA D — T(EADm))s A D)dP
<EV(@mEA D), Zm (EADm — TEA D)), A D),

we have
E[V(f(o)v Tm (_T(O))’ 0)]et/\nm
P{nm <t} < . 9
{77 } mflml’\y|2m,t20 V(J:,y,t) 9
When t — oo,
Thus,

|
Theorem 2: For V(z,y,t) € (R" x R" x Ry), If
IV (z,y,t) > 0, a1,as, A > 0 satisfy

ar|z? < V(z,y,t) < asfzf?, 12)
LV (z,y,t) < =AV(z,y,1), 13)

the system (1) is almost sure exponentially stable.
Proof: By using G-Itd formula, for ¢ > 0, A > 0, we
get

e’\tVt(x(t), a(t —7(t)),t) —
:/ [)\e’\sV(as s),xz(s —7(s)), s)

(s)
0
+eMV(a(s), 2(s — 7(5)), )
(s = 7(s5)), ) f(x(s), 2(s = 7(5)),5)
)

V(zg,2(—7(0),0)

)
+e MV, (x(s), =
+G(2e*V, (2(s), z(s — 7(s5)), 5)
g(x(s),x(s — 7(s)), 5)
+e**hT (z(s), x(s — 7(s)), 5)
Vaa (2(s), 2(s — 7(s)), s)
h(z(s),xz(s — 7(s)), s))]ds

+/O PV, (2(s), 2(5 — 7(5)), )
h(x(s). 2(s — 7(s)), 5)dB(s)
+/O[*Sv< £(s),2(s — 7(s)). 5)

g(@(s), x(s — 7(s)), s)
3R (a(s), (s — 7(5)), )
Vm(x( ), x(s = 7(s5)), )
h(z(s),z(s — 7(s)),s)]d < B > (s)
—G(2eMV, (x(s), 2(s — 7(s)), 9)
g(x(s),x(s = 7(s)), s
+e* T (z(s), x(s — 7(5)), 8)Vau (x(5), (s — 7(5)), 5)
h(z(s), x(s — 7(s)), s))]ds
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Thence,

MV (w(t), (t — (1)), t)

-

= V(zo,z(—7(0),0) + et

AV (z(s),z(s —7(s)),5)
—|—£Vt(ac(s),x(s -7

[}

+ [ 1ata), 26 - 7))
g(@(s),z(s — 7(s)), s)
5NN (a(s), 2(s — 7(5)), )
Vaa (2(5),2(s — 7(s)), 5)
h(z(s),z(s —7(s)),8)]d < B > (s)
—G(2eV, (2(5), z(s — 7(5)), 5)
g(@(s),x(s — 7(s)), s)

+ehT (z(s), z(s — 7(s)), 5)
Vew(2(8),2(s — 7(9)), 8)

h(z(s), x(s — 7(s)), s))]ds.

According to ( [16]), it can be checked that

Thus,

Then,

Hence,

E

mA PV, (2(s), 2(5 — 7(5)), )
h(z(s), 2(s — 7(s)), s)dB(s)]
=0,

ﬂé[“v<<> (s — 7(s)), )

g(f(s) z(s —7(s)), )
+2€AShT( z(s),z(s — 7(s)), )
Vaz(2(8), 2(s — 7(8)), 5)
h(z(s),xz(s —7(s)),s)]d < B > (s)

—G(2e’\ngE(gc(s)7 z(s —7(s)),s)
g(@(s),z(s — 7(s)), s)

+ehT (z(s), z(s — 7(s)), 5)
Vea(2(8), 2(s — 7(8)), 8)
h(z(s), z(s — 7(s)), 5))]

<0.
E[eMV (x(t), z(t — 7(t)), )]
< E[V (2, z(—7(0), 0)]

+EAe SV (2(s), 2(s — 7(5)), 5)
)

+LV (2(s),2(s — 7(5)), s)]ds
< as|zol”.
[V (x(t), z(t — 7(t)),1)] < e Mag|zolP.

aElz ()P < e Mag|ao|?,

which implies that

Elz(t)[P < Ze 2|z, a7
ay

Therefore, the system (1) is pth moment exponentially
stable.

The proof is complete. ]

Corollary 1: Under the conditions in Theorem 2, the
system (1) is almost sure exponentially stable.

Proof: According to Theorem 2, when p = 2, we obtain
that

Elz(t)]* < —2e™ M|zl

(18)

By applying the elementary inequality
ja+b+cf* < 3(al* + B + |e]*),

we have

a(t I*Mwﬁ/f

+Ag@@m@—ﬁ» $)d < B > (s)

(s —7(s)),s)ds

' —7(8)),S s)|?
+/0 h(z(s),z(s — 7(s)), s)dB(s)|

< 4] 2 +4|/0 F(a(s), 2(s — 7(5)), 5)ds|?

t

+4] | g(x(s),x(s = 7(s)),8)d < B > (s)|?
0
¢
+4] | h(x(s),z(s — 7(s)), s)dB(s)[*
(14) ’
(15)
For Vq > 0 satisfies ¢>L% (1 + 55%¢) < I and positive
(16) integer kg, let Kk = Kkg,ko + 1,K9 + 2,---. By using the
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Holder inequality, we get

E[ swp |a(t)] < 4E[le(xq)]’]

rq<t<(k+1)q

~

(k+1)q
+4E</ F(a(s), 5,7(s))|ds)?

+4E| /

(s—71(s)),s)d < B> (s)|2

5))dB(s)[?

(s = 7(s)), 5)|ds)”

sup [ f(z(s),
kq<s<(r+1)q

(k+1)q
|/
kg<s<(k+1)q

sup
9(@(s), (s — 7(s)), s)d < B > (s)|?]

N (k+1)q
+4E[  sup | /
kq<s<(k+1)q

h(z(s), 2(s = 7(s)), 5)dB(s)[’]

+4E|

< AE[z(kq)|*] + 4°LKE[  sup  |a(s)’
rq<s<(k+1)q
+165**LLE]  sup  |z(s)|?]
rq<s<(nt1)q
+HF P LLE] sup fa(s)[’]
rq<s<(k+1l)q
S |J) |2 —AKq
+4q2L%(<1+5a4q>IE[ sup  Ja(s)[?].
rg<s<(k+1)q
Then,
E| o) < s )
sup x < —.
kg<t<(k+1)q 1- 4‘12L%((1 + 5U4Q)
Thus,
Plw: sup |z(t) >e =)
rg<t<(k+1)g
E[Suangtg(n-s-l)q |$(t)‘2]
<
— e—)\m]
422 |z
T 1-4¢2L% (1 +50%q)"
From the Borel-Cantelli lemma, we get
sup  |z(t)] < e 2 (20)
kq<t<(k+1)gq
Therefore, for kg <t < (k + 1)q,
-
hm sup — log(|x( ) < 5 < 0. 21
The proof is complete.
|

IV. EXAMPLE

Let G-Brownian motion B(t) ~ N(0, [¢2,5?%]).
The nonlinear stochastic delayed systems driven by G-
Brownian motion is as follows:

de(t) = f(x(t),z(t —7(t)), t)dt
+g(a(t), 2(t — (1)), t)d < B > (t)
+h(z(t), z(t — (1)), t)dB(t),

where
Flalt), (e~ 7(0),1) = ~6a() + a(t — (1),
o(e(t), ot~ 7(0),1) = a(t)
ha(t), 2t — (1)), 1) = (1),

7(t) =1+ 0.2sin(t).

Hence, 7 = 1.2. Let V(z,y,t) = 22. According to G-1td
formula, we have

LV (z,y,t) < —102? + 45222,

Let 32 = 1, we obtain that

LV (z,t,1) < —62% = -6V (z,y,1).

Then, the system are pth moment exponential stability and
almost surely exponential stability.

V. CONCLUSION

In this article, we have analyzed the pth moment expo-
nential stability and almost sure exponential stability for
nonlinear stochastic delayed systems driven by G-Brownian
motion. Compared with the previous literature, our results
and methods are different from them. We have proved the
existence of global unique solution and provided sufficient
conditions for the stability based on G-It6 formula, G-
Lyapunov function, Gronwall’s inequality and Borel-Cantelli
lemma. We will consider the stability for delay fractional
system in the future.
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