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Abstract—This paper delves into the global existence of weak
solutions for a three-dimensional magnetoelastic interaction
model. This model combines a fractional harmonic map heat
flow with an evolution equation for displacement. By using the
Faedo-Galerkin method, we successfully establish the global
existence of weak solutions for this coupled system.

Index Terms—Fractional derivative, Landau-Lifshitz equa-
tion, ferromagnets, elasticity, weak solution.

I. INTRODUCTION

WE consider the following problem [23]:

mt = νm ×Heff − µm × (m ×Heff). (1)

ρ ntt − div
(
S(n) + 1

2
L(m)

)
= 0. (2)

The first equation, denoted as equation (1), is the famous
Landau-Lifschitz equation, extensively studied in references
[9] and [12]. This equation was originally introduced to
characterize the dynamics of micro-magnetic processes. The
evolution equation for the displacement field is given by (2).
The magnetization vector, m, is a map from D to S2 (the
unit sphere of R3) and mt is its derivative with respect to
time. The symbol × represents the vector cross product in
R3. We denote by mi, i = 1, 2, 3 the components of m. Heff
symbolizes the effective field and in this research we assume

Heff = −Λ2αm − ℓ(m,n) (3)

Λ = (−∆)
1
2 designate the square root of the Laplacian

which could be explained through Fourier transformation
[21]. In this approach, we use the Einstein summation
convention for repeated indices and we are more concerned
in the case α ∈ (1, 3

2 ).

The components of the vector ℓ(m,n) and the tensors
S(n), L(m) are represented by

ℓi = λijkl(x)mjϵkl(n), i = 1, 2, 3.

Skl = σijkl(x)ϵij(n) and Lkl = λijkl(x)mimj .

Here ϵij(n) = 1
2 (∂inj + ∂jni) represents the components

of the lnearized strain tensorc ϵ, λijkl(x) = λ1(x)δijkl +
λ2(x)δijδkl+λ3(x)(δikδjl+δilδjk), σijkl(x) = τ1(x)(δijkl−
δijδkl+δikδjl)+τ2(x)δijδkl whith δijkl = 1 si i = j = k = l
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and δijkl = 0 otherwise. σ(x) = (σijkl(x)), the elasticity
tensor is expected to fulfill the following symmetry property

σijkl(x) = σklij(x) = σjikl(x)

and moreover the inequality

(σijkl(x)ϵijϵkl) ≥ β
∑

|ϵji|2 (4)

holds for some β > 0.

Our investigation is focused on the existence of solutions
for the non-linear integro-differential problem described by
equations (1)and (2).In this context, we refer to the work pre-
sented in paper [7], which establishes the existence theorem
for the general three-dimensional magnetoelastic problem.
We aim to investigate the existence of global weak solutions
for a three-dimensional fractional problem in the case where
the parameters ν,µ and ρ are considered as variables bounded
coefficients.
We quote some references on the subjects of magnetoelas-
ticity ([1],[5],[6], [10], [11]) and viscoelasticity ([3], [4], [8],
[9], [13], [15], [16]) that inspired this paper.

The following notation will be used consistently through-
out this work: For D an open bounded domain of R3, we
denote by Lp(D) = (Lp(D))3 and H1(D) = (H1(D))3

the classical Hilbert spaces equipped with the usual norm
denoted by ∥.∥Lp(D) and ||.||H1(D) (in general, the product
functional spaces (X)3 are all simplified to X). For all s > 0,
W s,p denotes the usual Sobolev space consisting all f such
that

∥f∥W s,p := ∥F−1
(
1 + | · |2

) s
2
(
Ff

)
(·)∥Lp < ∞

where F denotes the Fourier transform and F−1 its inverse.
Let Ẇ s,p denote the corresponding homogeneous Sobolev
space. When p = 2, W s,p corresponds to the usual Sobolev
space Hs and we have

∥f∥Ḣs := ∥Λsf∥L2

We proceed as follows: In the following section, we present
the model on which we will work and we give a preliminary
result. In section 3 we we recall some lemmas. In section 4,
we present the main result that we will subsequently prove
in section 5.

II. THE MODEL AND PRELIMINARY RESULTS

This paper delves into the global existence of weak so-
lutions in the spatial domain D = (0, 2π)d, with periodic
boundary conditions for the magnetization vector. We con-
sider d = 3 and assume that ν = 0 , µ0 ≤ µ(x) ≤ µ1, a0 ≤
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a(x) ≤ a1 , ρ0 ≤ ρ(x) ≤ ρ1 and λ0 ≤ λijkl(x) ≤ λ1.
The generic point of D is denoted by x = (x1, x2, x3). The
system under consideration is as follows:

mt = −µ(x)m × (m ×Heff)

ρ(x) ntt − div
(
S(n) + 1

2
L(m)

)
+ h = 0,

(5)

where h is a given external force. We impose the following
initial conditions:

n(·, 0) = n0, nt(·, 0) = n1, m(·, 0) = m0, |m0| = 1 in D,
(6)

with as a boundary condition for the displacement vector

n = 0 on Σ := ∂D × (0, T ). (7)

The double vector product in the first equation(5)presents
the main obstacle to straightforward analysis. To overcome
this challenge, we introduce an equivalent equation

m×mt = µ(x)m×Heff. (8)

Following a well-established approach (see [4]), we re-
place the first equation in system (5) with a quasilinear
parabolic equation of the Ginzburg-Landau type.

mε
t +a(x)µ(x)Λ2αmε+µ(x)ℓ(mε,nε)+

|mε|2 − 1

ε
mε = 0.

(9)
Here ε is a positive parameter and mε : D × R+ → R3.
The ε-penalization in (9) replaces the magnitude constraint
|m| = 1.

III. MAIN RESULT

Now we define the solution in the weak sense of the
problem (5)-(6)-(7).

Definition III.1. Let m0 ∈ Hα(D), |m0| = 1 a.e., n ∈
H1

0(D), n1 ∈ L2(D) and h ∈ L2(Q). We say that the pair
(m,n) is a weak solution of the problem (5)-(6)-(7) if:

• for all T > 0, m ∈ L∞(0, T ;Hα(D)),mt ∈
L2(0, T ;L2(D)), |m| = 1 a.e., n ∈ L2(0, T ;H1

0(D))
and nt ∈ L2(0, T ;L2(D));

• for all φ ∈ C∞(Q) and ψ ∈ H1
0(Q), we have:∫

Q

(mt×m)·φ dxdt+

∫
Q

a(x)µ(x)Λαm·Λα(m×φ) dxdt

+

∫
Q

(µ(x)ℓ(m,n)×m) ·φ dxdt = 0

−
∫
Q

ρ(x)nt·ψt dxdt+

∫
Q

(
S(n)+1

2
L(m)

)
·ϵ(ψ) dxdt

+

∫
Q

h ·ψ dxdt = 0;

• m(0, x) = m0(x) and n(0, x) = n0(x) in the trace
sense;

• for all T > 0, we have:
a0
2

∫
D

|Λαm(T )|2 dx

+
∫
Q
|mt|2 dxdt+ ρ0

2

∫
D
|nt(T )|2 dx

+β
4

∫
D
|∇n(T )|2 dx− β

4

∫
Q
|∇nε,N

t |2 dxdt

≤ a1
2

∫
D

|Λαm0|2 dx+
ρ1
2

∫
D

|n1|2 dx

+ 3τ
4

∫
D
|∇n0|2 dx+ C(D,β, λ,h),

(10)

where C(D,β, λ,h) is a positive constant which de-
pends only on D, β, λ and h.

The principal outcome of this paper can be summarized
as follows.

Theorem III.2. Let α ∈ (1, 3
2 ), m0 ∈ Hα(D) such that

|m0| = 1 a.e., n0 ∈H1
0(D), n1 ∈ L2(D) and h ∈ L2(Q).

Then a weak solution for the problem, as defined in III.1,
is guaranteed to exist.

A detailed proof of Theorem III.2 will be presented in
Section 5.

IV. SOME TECHNICAL LEMMAS

This section introduces several key lemmas that will play
a crucial role in subsequent analyses throughout the paper.
To get started, we need a handy result from Lions ([16], p.
57)

Lemma IV.1. Assume X,Y et Z are three Banach spaces
and satisfy X ⊂ Y ⊂ Z where the injections are continuous
with compact embedding X ↪→ Y and X, Z are reflexive.
Denote

D :=
{
v
∣∣v ∈ Lp0(0, T ;X), vt =

dv

dt
∈ Lp1(0, T ;Z)

}
where T is finite and 1 < pi < ∞, i = 0, 1.
Then D, equipped with the norm

||v||Lp0 (0,T ;X) + ||vt||Lp1 (0,T ;Z),

is a Banach space and the embedding D ↪→ Lp0(0, T ;Y ) is
compact.

We’ll also need another handy lemma from Lions ([16],
p. 12).

Lemma IV.2. Let Θ be a bounded open set of Rd
x × Rt,

hk and h in Lq(Θ), 1 < q < ∞ such that ||fk||Lq(Θ) ≤
C, fk → f a.e. in Θ, then fk ⇀ f weakly in Lq(Θ).

Here is another Lemma ”fractional calculus” whose proof
can be found in [21].

Lemma IV.3. Suppose that p > q > 1 and 1
p + s

d = 1
q .

Assume that Λsh ∈ Lq , then f ∈ Lp and there is a constant
C > 0 such that

∥h∥Lp ≤ C∥Λsh∥Lq .

We conclude with this lemma (the proof can be found in
[12]).

Lemma IV.4. If u and v belong to H2α
per(D) := {u ∈

L2(D)/Λ2αu ∈ L2(D)}, then∫
D

Λ2αu · v dx =

∫
D

Λαu · Λαv dx.
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V. PROOF OF THEOREM III.2

A. The penalty problem

We consider for ε > 0 fixed parameter the following
problem

mε
t + a(x)µ(x)Λ2αmε + µ(x)ℓ(mε,nε)

+
|mε|2 − 1

ε
mε = 0

ρ(x) nε
tt − div

(
S(nε) +

1

2
L(mε)

)
+ h = 0,

(11)

with the initial and boundary conditions:

nε(·, 0) = n0, nε
t (·, 0) = n1,

mε(·, 0) = m0, |m0| = 1 a.e. in D,

nε = 0 on Σ.

We apply the Faedo-Galerkin method: for {fi}i∈N an or-
thonormal basis of L2(D) consisting of all the eigenfunctions
for the operator Λ2α (the existence of such a basis can be
proved as in [22], Ch.II)

Λ2αfi = αifi, i = 1, 2, ...

under periodic boundary conditions, and {gi}i∈N be an or-
thonormal basis of L2(D) consisting of all the eigenfunctions
for the operator −∆

−∆gi = βigi, i = 1, 2, ...

gi = 0 on ∂D.

and we consider the following penalized system
in Q = D × (0, T )

mε,N
t + a(x)µ(x)Λ2αmε,N + µ(x)ℓ(mε,N ,nε,N )

+
|mε,N |2 − 1

ε
mε,N = 0

ρ(x) nε,N
tt − div

(
S(nε,N ) +

1

2
L(mε,N )

)
+ hN = 0,

(12)
where the vector hN satisfies∫

D

hN (x, t)gi(x) dx =

∫
D

h(x, t)gi(x) dx,

as well as the corresponding initial and boundary conditions:

nε,N (·, 0) = nN (·, 0), nε,N
t (·, 0) = nN

t (·, 0),

mε,N (·, 0) = mN (·, 0), in D,

nε,N = 0 on Σ = ∂D × (0, T ).

and ∫
D

nN (x, 0)gi(x) dx =

∫
D

n0(x)gi(x) dx∫
D

nN
t (x, 0)gi(x) dx =

∫
D

n1(x)gi(x) dx,∫
D

mN (x, 0)fi(x) dx =

∫
D

m0(x)fi(x) dx.

We are seeking for approximate solutions
(mε,N ,nε,N )
to (12) under the form

mε,N =
N∑
i=1

ai(t)fi(x) , nε,N =
N∑
i=1

bi(t)gi(x),

where ai and bi are R3-valued vectors.

Multiplying each scalar of the first equation (12) by fi and
the second part by gi, and integrating over the domain D,
leads to a system of ordinary differential equations involving
the unknowns (αi(t), βi(t)), i = 1, 2, ..., N . Standard ordi-
nary differential equations theory allows us to demonstrate
the existence of local solutions to the problem, which can be
extended to the interval [0, T ] using a priori estimates. For
this, we multiply the first equation of (12) by mε,N

t and the
second by nε,N

t integrating in D, we obtain



∫
D

|mε,N
t |2dx+

∫
D

a(x)µ(x)Λ2αmε,N · mε,N
t dx

+
∫
D
µ(x)ℓ(mε,N ,nε,N ) · mε,N

t dx

+
1

4ε

d

dt

∫
D

(|mε,N |2 − 1)2dx = 0

1

2

d

dt

∫
D

ρ(x)|nε,N
t |2dx

−
∫
∂D

(
S(nε,N ) +1

2L(m
ε,N )

)
Υ · nε,N

t dx

+

∫
D

(
S(nε,N ) +

1

2
L(mε,N )

)
· ∇nε,N

t dx

+
∫
D

hN · nε,N
t dx = 0

where Υ is the outer unit normal at the boundary ∂D. On
the other hand (note that λijkl(x) = λjikl(x))∫

D

ℓ(mε,N ,nε,N ) · mε,N
t dx

=

∫
D

λijkl(x)m
ε,N
j ṁε,N

i ϵkl(nε,N ) dx

=
1

2

∫
D

λijkl(x)(m
ε,N
j ṁε,N

i +mε,N
i ṁε,N

j )ϵkl(nε,N ) dx

=
1

2

d

dt

∫
D

λijkl(x)m
ε,N
i mε,N

j ϵkl(nε,N )dx

−1
2

∫
D

λijkl(x)m
ε,N
i mε,N

j ϵkl(nε,N
t )dx,

by symmetry of both tensor S and L , we obtain∫
D

(
S(nε,N ) +

1

2
L(mε,N )

)
· ϵ(nε,N

t ) dx

=

∫
D

(
S(nε,N ) +

1

2
L(mε,N )

)
· ∇nε,N

t dx,

and ∫
D

σijkl(x)ϵij(nε,N )ϵkl(nε,N
t ) dx
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=
1

2

d

dt

∫
D

σijkl(x)ϵij(nε,N )ϵkl(nε,N ) dx.

By using the Lemma IV.4, we have



∫
D

|mε,N
t |2 dx+

1

2

d

dt

∫
D

a(x)µ(x)|Λαmε,N |2 dx

+ 1
2

d

dt

∫
D

µ(x)λijkl(x)m
ε,N
i mε,N

j ϵkl(nε,N ) dx

−1

2

∫
D

µ(x)λijkl(x)m
ε,N
i mε,N

j ϵkl(nε,N
t ) dx

+
1

4ε

d

dt

∫
D

(|mε,N |2 − 1)2 dx = 0

1

2

d

dt

∫
D

ρ(x)|nε,N
t |2 dx

+ 1
2

d
dt

∫
D
σijkl(x)ϵij(nε,N )ϵkl(nε,N ) dx

+
1

2

∫
D

λijkl(x)m
ε,N
i mε,N

j ϵkl(nε,N
t ) dx

+
∫
D

hN · nε,N
t dx = 0

By summing the both equations, we obtain∫
D

|mε,N
t |2 dx+

1

2

d

dt

∫
D

a(x)|Λαmε,N |2 dx

+
1

4ε

d

dt

∫
D

(|mε,N |2 − 1)2 dx+
1

2

d

dt

∫
D

ρ(x)|nε,N
t |2 dx

+
1

2

d

dt

∫
D

σijkl(x)ϵij(nε,N )ϵkl(nε,N ) dx

+
1

2

d

dt

∫
D

λijkl(x)m
ε,N
i mε,N

j ϵkl(nε,N ) dx+

∫
D

hN · nε,N
t dx

+
1

2

∫
D

(1− µ(x))λijkl(x)m
ε,N
i mε,N

j ϵkl(nε,N
t ) dx = 0.

Now integrating in time∫
Q

|mε,N
t |2 dxdt+

1

2

∫
D

a(x)|Λαmε,N (T )|2 dx

+ 1
4ε

∫
D
(|mε,N (T )|2 − 1)2 dx+

1

2

∫
D

ρ(x)|nε,N
t (T )|2 dx

+ 1
2

∫
D
σijkl(x)ϵij(nε,N )ϵkl(nε,N )(T ) dx

+
1

2

∫
D

λijkl(x)m
ε,N
i mε,N

j ϵkl(nε,N )(T ) dx

+
1

2

∫
Q

(1− µ(x))λijkl(x)m
ε,N
i mε,N

j ϵkl(nε,N
t ) dxdt

= −
∫
Q

hN · nε,N
t dx+ 1

2

∫
D
|a(x)ΛαmN (0)|2 dx

+
1

4ε

∫
D

(|mN (0)|2 − 1)2 dx+
1

2

∫
D

ρ(x)|nN
t (0)|2 dx

+
1

2

∫
D

σijkl(x)ϵij(nN )ϵkl(nN )(0) dx

+
1

2

∫
D

λijkl(x)m
N
i mN

j ϵkl(nN )(0) dx.

(13)

We call Bε,N (T ) the left hand side of (13) and BN (0) its
right hand side.

Now for a positive parameter λ such that
2λ

9
> sup

ijkl
|λijkl(x)|

we have by Young’s inequality, omitting superscripts,

|λijkl(x)mimjϵkl(nt)| ≤
2λ

9
|mi||mj ||ϵkl(nt)|

≤ 2λ

9

(λ
β
|mi|2|mj |2 +

β

4λ
|ϵkl(nt)|2

)
.

From where ∑
ijkl

|λijkl(x)mimjϵkl(nt)|

≤ 2λ

9

(9λ
β

∑
i

|mi|2
∑
j

|mj |2 +
9β

4λ

∑
kl

|ϵkl(nt)|2
)

= 2λ
(λ
β

(∑
i

|mi|2
)2

+
β

4λ

∑
kl

|ϵkl(nt)|2
)

=
2λ2

β
|m|4 + β

2

∑
kl

|ϵkl(nt)|2.

Inspired by the work of Valente [23], we have

1

2
|
∫
Q

(1− µ(x))λijkl(x)mimjϵkl(nt)dxdt|

=
1

2
|
∫
Q

(1− µ(x))
∑
ijkl

λijkl(x)mimjϵkl(nt)dxdt|

≤ 1

2

∫
Q

∑
ijkl

|λijkl(x)mimjϵkl(nt)|dxdt

≤ λ2

β

∫
Q

|m|4dxdt+ β

4

∫
Q

∑
kl

|ϵkl(nt)|2dxdt

=
λ2

β

∫
Q

(
|m|2 − 1 + 1

)2

dxdt

+
β

4

∫
Q

∑
kl

|ϵkl(nt)|2dxdt

≤ 2λ2

β

∫
Q

(
|m|2 − 1

)2

dxdt+
2λ2T

β
vol(D)

+
β

4

∫
Q

∑
kl

|ϵkl(nt)|2dxdt

≤ 2λ2

β

∫
Q

(
|m|2 − 1

)2

dxdt+
2λ2T

β
vol(Q)

+
1

4

∫
Q

σijkl(x)ϵij(n)ϵkl(nt)dxdt.

by using (4). Now, for ε < β
16λ2 we have

1

2
|
∫
Q

(1− µ(x))λijkl(x))mimjϵkl(n)dxdt|

≤ 1

8ε

∫
Q

(
|m|2 − 1

)2

dxdt+
2λ2T

β
vol(D)

+
1

4

∫
Q

σijkl(x))ϵij(nt)ϵkl(n)dxdt.
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Which implies

− 1

8ε

∫
Q

(
|mε,N |2 − 1

)2

dxdt− 2λ2T

β
vol(D)

−1

4

∫
Q

σijkl(x))ϵij(nε,N )ϵkl(nε,N
t )dxdt

≤ 1

2

∫
Q

(1− µ(x))λijkl(x))m
ε,N
i mε,N

j ϵkl(nε,N
t )dxdt.

also, we have
1

2

∫
D

λijkl(x))m
N
i mN

j ϵkl(nN )(0)dx

≤ 1

8ε

∫
D

(
|mN (0)|2 − 1

)2

dx+
2λ2

β
vol(D)

+
1

4

∫
D

σijkl(x))ϵij(nN )ϵkl(nN )(0)dx,

and

− 1

8ε

∫
D

(
|mε,N (T )|2 − 1

)2

dx− 2λ2

β
vol(D)

−1

4

∫
D

σijkl(x))ϵij(nε,N )ϵkl(nε,N )(T )dx

≤ 1

2

∫
D

λijkl(x))m
ε,N
i mε,N

j ϵkl(nε,N )(T )dx.

According to the definition of Bε,N (T ) and BN (0)
we can write∫

Q

|mε,N
t |2 dxdt+

a0
2

∫
D

|Λαmε,N (T )|2 dx

+ 1
8ε

∫
D
(|mε,N (T )|2 − 1)2 dx+

ρ0
2

∫
D

|nε,N
t (T )|2 dx

+ 1
4

∫
D
σijkl(x))ϵij(nε,N )ϵkl(nε,N )(T ) dx

− 2λ2(T+1)
β vol(D)− 1

8ε

∫
Q

(
|mε,N |2 − 1

)2

dxdt

−1

4

∫
Q

σijkl(x))ϵij(nε,N )ϵkl(nε,N
t )dxdt ≤ Bε,N (T ),

and

BN (0) ≤ −
∫
Q

hN · nε,N
t dx+

a1
2

∫
D

|ΛαmN (0)|2 dx

+
3

8ε

∫
D

(|mN (0)|2 − 1)2 dx +
ρ1
2

∫
D

|nN
t (0)|2 dx

+
3

4

∫
D

σijkl(x))ϵij(nN )ϵkl(nN )(0) dx+
2λ2

β
vol(D).

Since Bε,N (T ) = BN (0), we have∫
Q

|mε,N
t |2 dxdt+

a0
2

∫
D

|Λαmε,N (T )|2 dx

+
1

8ε

∫
D

(|mε,N (T )|2 − 1)2 dx+
ρ0
2

∫
D

|nε,N
t (T )|2 dx

+
1

4

∫
D

σijkl(x))ϵij(nε,N )ϵkl(nε,N )(T ) dxβvol(D)

−2λ2T

β
vol(D)− 1

8ε

∫
Q

(
|mε,N |2 − 1

)2

dxdt

−1

4

∫
Q

σijkl(x))ϵij(nε,N )ϵkl(nε,N
t )dxdt

≤ −
∫
Q

hN · nε,N
t dx+

a1
2

∫
D

|ΛαmN (0)|2 dx

+
3

8ε

∫
D

(|mN (0)|2 − 1)2 dx+
ρ1
2

∫
D

|nN
t (0)|2 dx

+
3

4

∫
D

σijkl(x))ϵij(nN )ϵkl(nN )(0) dx+
4λ2

β
vol(D).

At this point, we introduce the functional:

Fε,N (T )

=

∫
Q

|mε,N
t |2 dxdt+

a0
2

∫
D

|Λαmε,N (T )|2 dx

+ 1
8ε

∫
D
(|mε,N (T )|2 − 1)2 dx

− 1
8ε

∫
Q

(
|mε,N |2 − 1

)2

dxdt+
ρ0
2

∫
D

|nε,N
t (T )|2 dx

+β
4

∫
D
|∇nε,N |2(T ) dx− β

4

∫
D
|∇nε,N

t |2 dx

− 2λ2T
β vol(D),

then

Fε,N (0)

=
a1
2

∫
D

|Λαmε,N (0)|2 dx+
1

8ε

∫
D

(|mε,N (0)|2 − 1)2 dx

+
ρ1
2

∫
D

|nε,N
t (0)|2 dx+

β

4

∫
D

|∇nε,N |2(0) dx.

In addition

−
∫
Q

hN · nε,N
t dx ≤ ρ1

2
||uε,N

t ||2L2(Q) +
1

2ρ1
||hN ||2L2(Q),∫

D

|∇nε,N (T )|2 dx ≤
∫
D

∑
kl

|ϵkl(nε,N (T ))|2dx,

and under the assumption σijkl(x)ϵij(n)ϵkl(n) ≤ τ |∇n|2
(for a positive constant τ ), we have∫

Q

|mε,N
t |2 dxdt+

a0
2

∫
D

|Λαmε,N (T )|2 dx

+
1

8ε

∫
D

(|mε,N (T )|2 − 1)2 dx

− 1

8ε

∫
Q

(
|mε,N |2 − 1

)2

dxdt

−β

4

∫
Q

|∇nε,N
t |2 dx− 2λ2T

β
vol(D)

+
ρ0
2

∫
D

|nε,N
t (T )|2 dx+

β

4

∫
D

|∇nε,N |2(T ) dx ≤ (14)

a1
2

∫
D

|ΛαmN (0)|2 dx+
3

8ε

∫
D

(|mN (0)|2 − 1)2 dx

+
ρ1
2

∫
D

|nN
t (0)|2 dx+

1

2ρ1
||hN ||2L2(Q)

+
3τ

4

∫
D

|∇nN (0)|2 dx+
4λ2

β
vol(D),
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which implies

Fε,N (T ) ≤
∫ T

0

Fε,N (t) dt+ 3Fε,N (0)

+
1

2ρ1
||hN ||2L2(Q) +

4λ2

β
vol(D),

and from the Gronwall lemma, we have

Fε,N (T ) ≤ eT
(
3Fε,N (0) +

1

2ρ1
||hN ||2L2(Q) +

4λ2

β
vol(D)

)
.

Since n0 ∈ H1
0(D), n1 ∈ L2(D) and m0 ∈ Hα(D) which

is embedded into L4(D) for 1 < α < 3
2 the right hand side

is uniformly bounded. Indeed, for constants C1, C2, C3, C4

and C(h) independent of N∫
D

(|mN (0)|2 − 1)2 dx

=

∫
D

|mN (0)|4 dx− 2

∫
D

|mN (0)|2 dx+ vol(D)

≤ ||mN (0)||4L4(D) + vol(D)

≤ C1||mN (0)||4Hα(D) + C2

≤ C3,∫
D

|∇nN (0)|2 dx

=

∫
D

|∇nN (0)−∇n0 +∇n0|2 dx

≤ 2

∫
D

|∇nN (0)−∇n0|2 dx+ 2

∫
D

|∇n0|2 dx

≤ 2

∫
D

|∇nN (0)−∇n0|2 dx+ 2

∫
D

|∇n0|2 dx

≤ 2||nN (0)− n0||2H1
0(D) + 2||n0||2H1

0(D)

≤ C4,

and
||hN ||2L2(Q) = ||hN − h + h||2L2(Q)

≤ 2||hN − h||2L2(Q) + 2||h||2L2(Q)

≤ C(h),

Due to the strong convergences mN (., 0) → m0 in Hα(D),
nN (., 0) → n0 in H1

0(D) and hN (x) → h(x) in L2(Q). For
the other term (nN

t (0)), the estimate can be carried out in an
analogous way using the strong convergence nN

t (., 0) → n1

in L2(D). Moreover, noting that (for a constant C indepen-
dent of ε and N )∫

D

|mε,N |2 dx =

∫
D

(|mε,N |2 − 1 + 1) dx

≤ 1

2

∫
D

(|mε,N |2 − 1)2 dx+ C.

Therefore, for a fixed parameter ε > 0 we have

(mε,N )N is bounded in L∞(0, T ;Hα(D)),

(mε,N
t )N is bounded in L2(0, T ;L2(D)),

(|mε,N |2 − 1)N is bounded in L∞(0, T ;L2(D)),

(nε,N )N is bounded in L2(0, T ;H1
0(D)), (15)

(nε,N
t )N is bounded in L2(0, T ;L2(D)).

Note that, (15) is due to the Poincaré lemma. classical
compactness results imply the existence of two subsequences
still denoted by (mε,N ) and (nε,N ) such that for fixed ε > 0

mε,N ⇀ mε weakly in L2(0, T ;Hα(D)),

mε,N
t ⇀ mε

t weakly in L2(Q),

mε,N → mε strongly in L2(0, T,Hβ(D)) (16)

and a.e. for 0 ≤ β < α

|mε,N |2 − 1 ⇀ ζ weakly in L2(Q),

nε,N ⇀ nε weakly in L2(0, T ;H1
0(D)),

nε,N
t ⇀ nε

t weakly in L2(Q),

nε,N → nε strongly in L2(Q).

The convergence (16) is due to Lemma IV.1 and thanks to
Lemma IV.2 it can be shown that ζ = |mε|2 − 1. based on
the Sobolev embedding Hα(Q) ↪→ L4(Q), since 1 < α < 3

2
,the subsequent compactness result ensues

mε,N
i mε,N

j → mε
im

ε
j strongly in L2(Q), (17)

and

mε,N
i ϕj → mε

iϕj strongly in L2(Q).

Therefore, we consider the variational formulation of (12).

∫
Q

mε,N
t · ϕ dxdt+

∫
Q

a(x)µ(x)Λαmε,N · Λαϕ dxdt

−
∫
Q

µ(x)λijkl(x)m
ε,N
i mε,N

j ϵkl(nε,N
t )ϕi dxdt

+

∫
Q

µ(x)λijklm
ε,N
i mε,N

j ϵkl(nε,N )ϕi dxdt

+
∫
Q

|mε,N |2 − 1

ε
mε,N · ϕ dxdt = 0

−
∫
Q

ρ(x)nε,N
t ·ψt dxdt

+
∫
Q
σijkl(x)ϵij(nε,N )ϵkl(ψ) dxdt

+
1

2

∫
Q

λijkl(x)m
ε,N
i mε,N

j ϵkl(ψ) dxdt

+
∫
Q

hN ·ψ dxdt = 0,
(18)

for any ϕ ∈ L2(0, T ;Hα(D)) and ψ ∈ H1
0(Q).

Taking the limit N → ∞ in (18), we obtain
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∫
Q

mε
t · ϕ dxdt+

∫
Q

a(x)µ(x)Λαmε · Λαϕ dxdt

−
∫
Q

µ(x)λijkl(x)m
ε,N
i mε,N

j ϵkl(nε,N
t )ϕi dxdt

+

∫
Q

µ(x)λijklm
ε
im

ε
jϵkl(n

ε)ϕi dxdt

+
∫
Q

|mε|2 − 1

ε
mε · ϕ dxdt = 0

−
∫
Q

ρ(x)nε
t ·ψt dxdt+

∫
Q

σijkl(x)ϵij(nε)ϵkl(ψ) dxdt

+
1

2

∫
Q

λijkl(x)m
ε
im

ε
jϵkl(ψ) dxdt+

∫
Q

h ·ψ dxdt = 0,

(19)

for any ϕ ∈ L2(0, T ;Hα(D)) and ψ ∈ H1
0(Q). We proved

the following result.

Proposition V.1. Let m0∈ Hα(D) such that |m0| = 1 a.e.,
n0∈H1

0(D) and n1∈L2(D). Then, for any positive ε small
enough and any fixed time T , There exists a solution mε, to
the problem (11) in the sense of distributions. Moreover, we
have the following energy estimate∫

Q

|mε
t |2 dxdt+

a0
2

∫
D

|Λαmε(T )|2 dx

+
1

8ε

∫
D

(|mε(T )|2 − 1)2 dx+
ρ0
2

∫
D

|nε
t (T )|2 dx

+
β

4

∫
D

|∇nε|2(T ) dx− β

4

∫
Q

|∇nε,N
t |2 dxdt (20)

−2λ2T

β
vol(D) ≤ a1

2

∫
D

|Λαm0|2 dx

+
ρ1
2

∫
D

|n1|2 dx+
3τ

4

∫
D

|∇n0|2 dx

+
4λ2

β
vol(D) + C(h).

Remark V.2. By taking the lower semicontinuous limit in
(14),We can deduce (20)

B. Convergence of approximate solutions

Our aim here is to take the limit as ε → 0. Based on the
estimate given in (20), we can conclude that the following
quantities are uniformly bounded.

(mε)ε is bounded in L∞(0, T ;Hα(D)),

(mε
t )ε is bounded in L2(0, T ;L2(D)),

(|mε|2 − 1)ε is bounded in L∞(0, T ;L2(D)),

(nε)ε is bounded in L2(0, T ;H1
0(D)),

(nε
t )ε is bounded in L2(0, T ;L2(D)).

Subsequently, there are two subsequences that we continue
to denote as (mε) and (nε) such that

mε ⇀ m weakly in L2(0, T ;Hα(D)),

mε
t ⇀ mt weakly in L2(0, T ;L2(D)),

mε → m strongly in L2(0, T,Hβ(D))

and a.e. for 0 ≤ β < α

|mε|2 − 1 → 0 strongly in L2(Q) and a.e. (21)

nε ⇀ n weakly in L2(0, T ;H1
0(D)),

nε
t ⇀ nt weakly in L2(Q),

nε → n strongly in L2(Q).

We can deduce that |m| = 1 a.e.,by using the convergence
(21)
To take the limit as ε approaches 0 in equation (19), let
ϕ = mε × φ where φ ∈ C∞(Q). Since ϕ belongs to
L2(0, T ;Hα(D)), the following holds:



∫
Q

mε
t · (mε ×φ) dxdt

+
∫
Q
a(x)µ(x)Λαmε · Λα(mε ×φ) dxdt

−
∫
Q

µ(x)λijkl(x)m
ε
im

ε
jϵkl(n

ε
t )ϕi dxdt

+

∫
Q

µ(x)λijkl(x)m
ε
jϵkl(n

ε)(mε ×φ)i dxdt = 0

−
∫
Q

ρ(x)nε
t ·ψt dxdt+

∫
Q

σijkl(x)ϵij(nε)ϵkl(ψ) dxdt

+
1

2

∫
Q

λijkl(x)m
ε
im

ε
jϵkl(ψ) dxdt+

∫
Q

h ·ψ dxdt = 0.

(22)

Due to recent convergences we have established, and a result
similar to the one in equation (17), and based on ([7]) We
take the limit in (22) when ε → 0

Hence

∫
Q

mt · (m ×φ) dxdt

+
∫
Q
a(x)µ(x)Λαm · Λα(m ×φ) dxdt

−
∫
Q

µ(x)λijkl(x)mimjϵkl(nt)(m ×φ)i dxdt

+

∫
Q

µ(x)λijkl(x)mimjϵkl(n)(m ×φ)i dxdt = 0

−
∫
Q

ρ(x)nt ·ψt dxdt+

∫
Q

σijklϵij(n)ϵkl(ψ) dxdt

+
1

2

∫
Q

λijklmimjϵkl(ψ) dxdt+

∫
Q

h ·ψ dxdt = 0,

for all φ ∈ C∞(Q) and ψ ∈ H1
0(Q). It is worth

noting that, from the estimate given in equation (20), one
can readily obtain equation (10).Therefore, (m,n) is a
solution to the problem (5)-(6)-(7) in the sense of the
definition in III.1, thus completing the proof of Theorem
III.2.

Remark V.3. If µ(x) = 1, we can readily prove the
existence of the global solutions of the problem defined by
equations (5), (6), and (7).
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