Global Existence of Weak Solutions to a Three-dimensional Fractional Model in Magneto-Elastic Interactions

Mohamed EL IDRISSI, El-Hassan ESSOUFI

Abstract—This paper delves into the global existence of weak solutions for a three-dimensional magnetoelastic interaction model. This model combines a fractional harmonic map heat flow with an evolution equation for displacement. By using the Faedo-Galerkin method, we successfully establish the global existence of weak solutions for this coupled system.

Index Terms—Fractional derivative, Landau-Lifshitz equation, ferromagnets, elasticity, weak solution.

I. INTRODUCTION

E consider the following problem [23]:

$$\mathbf{m}_t = \nu \mathbf{m} \times \mathbf{H}_{\text{eff}} - \mu \mathbf{m} \times (\mathbf{m} \times \mathbf{H}_{\text{eff}}). \tag{1}$$

$$\rho \mathbf{n}_{tt} - \operatorname{div}\left(\mathcal{S}(\mathbf{n}) + \frac{1}{2}\mathcal{L}(\mathbf{m})\right) = 0.$$
 (2)

The first equation, denoted as equation (1), is the famous Landau-Lifschitz equation, extensively studied in references [9] and [12]. This equation was originally introduced to characterize the dynamics of micro-magnetic processes. The evolution equation for the displacement field is given by (2). The magnetization vector, \mathbf{m} , is a map from D to S^2 (the unit sphere of \mathbb{R}^3) and \mathbf{m}_t is its derivative with respect to time. The symbol \times represents the vector cross product in \mathbb{R}^3 . We denote by m_i , i=1,2,3 the components of \mathbf{m} . $\mathbf{H}_{\mathrm{eff}}$ symbolizes the effective field and in this research we assume

$$\mathbf{H}_{\text{eff}} = -\Lambda^{2\alpha} \mathbf{m} - \ell(\mathbf{m}, \mathbf{n}) \tag{3}$$

 $\Lambda=(-\Delta)^{\frac{1}{2}}$ designate the square root of the Laplacian which could be explained through Fourier transformation [21]. In this approach, we use the Einstein summation convention for repeated indices and we are more concerned in the case $\alpha\in(1,\frac{3}{2})$.

The components of the vector $\ell(m,n)$ and the tensors $\mathcal{S}(n),\,\mathcal{L}(m)$ are represented by

$$\ell_i = \lambda_{ijkl}(x) m_j \epsilon_{kl}(\mathbf{n}), \quad i = 1, 2, 3.$$

$$S_{kl} = \sigma_{ijkl}(x)\epsilon_{ij}(\mathbf{n})$$
 and $\mathcal{L}_{kl} = \lambda_{ijkl}(x)m_im_j$.

Here $\epsilon_{ij}(\mathbf{n})=\frac{1}{2}(\partial_i n_j+\partial_j n_i)$ represents the components of the lnearized strain tensorc $\epsilon,\ \lambda_{ijkl}(x)=\lambda_1(x)\delta_{ijkl}+\lambda_2(x)\delta_{ij}\delta_{kl}+\lambda_3(x)(\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk}),\ \sigma_{ijkl}(x)=\tau_1(x)(\delta_{ijkl}-\delta_{ij}\delta_{kl}+\delta_{ik}\delta_{jl})+\tau_2(x)\delta_{ij}\delta_{kl}$ whith $\delta_{ijkl}=1$ si i=j=k=l

Manuscript submitted October 12, 2023; revised February 28, 2024.

Mohamed EL IDRISSI is a Ph.D. student at Hassan First University of Settat, FST, MISI Lab, Settat, Morocco (e-mail: medelidrissi2020@gmail.com)

El-Hassan ESSOUFI is a professor at Hassan First University of Settat, FST, MISI Lab, Settat, Morocco (e-mail: ehessoufi@gmail.com)

and $\delta_{ijkl} = 0$ otherwise. $\sigma(x) = (\sigma_{ijkl}(x))$, the elasticity tensor is expected to fulfill the following symmetry property

$$\sigma_{ijkl}(x) = \sigma_{klij}(x) = \sigma_{jikl}(x)$$

and moreover the inequality

$$(\sigma_{ijkl}(x)\epsilon_{ij}\epsilon_{kl}) \ge \beta \sum |\epsilon_{ji}|^2$$
 (4)

holds for some $\beta > 0$.

Our investigation is focused on the existence of solutions for the non-linear integro-differential problem described by equations (1)and (2).In this context, we refer to the work presented in paper [7], which establishes the existence theorem for the general three-dimensional magnetoelastic problem. We aim to investigate the existence of global weak solutions for a three-dimensional fractional problem in the case where the parameters ν,μ and ρ are considered as variables bounded coefficients.

We quote some references on the subjects of magnetoelasticity ([1],[5],[6], [10], [11]) and viscoelasticity ([3], [4], [8], [9], [13], [15], [16]) that inspired this paper.

The following notation will be used consistently throughout this work: For D an open bounded domain of \mathbb{R}^3 , we denote by $\mathbf{L}^p(D) = (L^p(D))^3$ and $\mathbf{H}^1(D) = (H^1(D))^3$ the classical Hilbert spaces equipped with the usual norm denoted by $\|.\|_{\mathbf{L}^p(D)}$ and $\|.\|_{\mathbf{H}^1(D)}$ (in general, the product functional spaces $(X)^3$ are all simplified to \mathbf{X}). For all s>0, $W^{s,p}$ denotes the usual Sobolev space consisting all f such that

$$||f||_{W^{s,p}} := ||\mathcal{F}^{-1}(1+|\cdot|^2)^{\frac{s}{2}}(\mathcal{F}f)(\cdot)||_{L^p} < \infty$$

where \mathcal{F} denotes the Fourier transform and \mathcal{F}^{-1} its inverse. Let $\dot{W}^{s,p}$ denote the corresponding homogeneous Sobolev space. When p=2, $W^{s,p}$ corresponds to the usual Sobolev space H^s and we have

$$||f||_{\dot{H}^s} := ||\Lambda^s f||_{L^2}$$

We proceed as follows: In the following section, we present the model on which we will work and we give a preliminary result. In section 3 we we recall some lemmas. In section 4, we present the main result that we will subsequently prove in section 5.

II. THE MODEL AND PRELIMINARY RESULTS

This paper delves into the global existence of weak solutions in the spatial domain $D=(0,2\pi)^d$, with periodic boundary conditions for the magnetization vector. We consider d=3 and assume that $\nu=0$, $\mu_0\leq\mu(x)\leq\mu_1$, $a_0\leq$

 $a(x) \leq a_1$, $\rho_0 \leq \rho(x) \leq \rho_1$ and $\lambda_0 \leq \lambda_{ijkl}(x) \leq \lambda_1$. The generic point of D is denoted by $x=(x_1,x_2,x_3)$. The system under consideration is as follows:

$$\begin{cases} \mathbf{m}_{t} = -\mu(x)\mathbf{m} \times (\mathbf{m} \times \mathbf{H}_{\text{eff}}) \\ \rho(x) \ \mathbf{n}_{tt} - \text{div}\Big(\mathcal{S}(\mathbf{n}) + \frac{1}{2}\mathcal{L}(\mathbf{m})\Big) + \mathbf{h} = 0, \end{cases}$$
 (5)

where \mathbf{h} is a given external force. We impose the following initial conditions:

$$\mathbf{n}(\cdot,0) = \mathbf{n}_0, \ \mathbf{n}_t(\cdot,0) = \mathbf{n}_1, \ \mathbf{m}(\cdot,0) = \mathbf{m}_0, \ |\mathbf{m}_0| = 1 \text{ in } D,$$
(6)

with as a boundary condition for the displacement vector

$$\mathbf{n} = 0 \quad \text{on} \quad \Sigma := \partial D \times (0, T).$$
 (7)

The double vector product in the first equation(5) presents the main obstacle to straightforward analysis. To overcome this challenge, we introduce an equivalent equation

$$\mathbf{m} \times \mathbf{m}_t = \mu(x)\mathbf{m} \times \mathbf{H}_{\text{eff}}.$$
 (8)

Following a well-established approach (see [4]), we replace the first equation in system (5) with a quasilinear parabolic equation of the Ginzburg-Landau type.

$$\mathbf{m}_t^\varepsilon + a(x)\mu(x)\Lambda^{2\alpha}\mathbf{m}^\varepsilon + \mu(x)\boldsymbol{\ell}(\mathbf{m}^\varepsilon, \mathbf{n}^\varepsilon) + \frac{|\mathbf{m}^\varepsilon|^2 - 1}{\varepsilon}\mathbf{m}^\varepsilon = 0.$$

Here ε is a positive parameter and $\mathbf{m}^{\varepsilon}: D \times \mathbb{R}^+ \to \mathbb{R}^3$. The ε -penalization in (9) replaces the magnitude constraint $|\mathbf{m}| = 1$.

III. MAIN RESULT

Now we define the solution in the weak sense of the problem (5)-(6)-(7).

Definition III.1. Let $\mathbf{m}_0 \in \mathbf{H}^{\alpha}(D), |\mathbf{m}_0| = 1$ a.e., $\mathbf{n} \in \mathbf{H}_0^1(D), \mathbf{n}_1 \in \mathbf{L}^2(D)$ and $\mathbf{h} \in \mathbf{L}^2(Q)$. We say that the pair (\mathbf{m}, \mathbf{n}) is a weak solution of the problem (5)-(6)-(7) if:

- for all T > 0, $\mathbf{m} \in L^{\infty}(0,T;\mathbf{H}^{\alpha}(D)), \mathbf{m}_t \in L^2(0,T;\mathbf{L}^2(D)), |\mathbf{m}| = 1 \text{ a.e., } \mathbf{n} \in L^2(0,T;\mathbf{H}^1_0(D))$ and $\mathbf{n}_t \in L^2(0,T;\mathbf{L}^2(D));$
- for all $\varphi \in \mathbf{C}^{\infty}(\overline{Q})$ and $\psi \in \mathbf{H}_0^1(Q)$, we have:

$$\int_{O} (\mathbf{m}_{t} \times \mathbf{m}) \cdot \boldsymbol{\varphi} \, dx dt + \int_{O} a(x) \mu(x) \Lambda^{\alpha} \mathbf{m} \cdot \Lambda^{\alpha} (\mathbf{m} \times \boldsymbol{\varphi}) \, dx dt$$

$$+ \int_{Q} (\mu(x) \ell(\mathbf{m}, \mathbf{n}) \times \mathbf{m}) \cdot \boldsymbol{\varphi} \, dx dt = 0$$

$$-\int_{Q} \rho(x) \mathbf{n}_{t} \cdot \boldsymbol{\psi}_{t} \, dx dt + \int_{Q} \left(\mathcal{S}(\mathbf{n}) + \frac{1}{2} \mathcal{L}(\mathbf{m}) \right) \cdot \epsilon(\boldsymbol{\psi}) \, dx dt$$

$$+ \int_{\Omega} \mathbf{h} \cdot \boldsymbol{\psi} \, dx dt = 0;$$

• $\mathbf{m}(0,x) = \mathbf{m}_0(x)$ and $\mathbf{n}(0,x) = \mathbf{n}_0(x)$ in the trace sense;

• for all T > 0, we have:

$$\frac{a_0}{2} \int_{D} |\Lambda^{\alpha} \mathbf{m}(T)|^2 dx
+ \int_{Q} |\mathbf{m}_{t}|^2 dx dt + \frac{\rho_0}{2} \int_{D} |\mathbf{n}_{t}(T)|^2 dx
+ \frac{\beta}{4} \int_{D} |\nabla \mathbf{n}(T)|^2 dx - \frac{\beta}{4} \int_{Q} |\nabla \mathbf{n}_{t}^{\varepsilon, N}|^2 dx dt \qquad (10)
\leq \frac{a_1}{2} \int_{D} |\Lambda^{\alpha} \mathbf{m}_{0}|^2 dx + \frac{\rho_1}{2} \int_{D} |\mathbf{n}_{1}|^2 dx
+ \frac{3\tau}{4} \int_{D} |\nabla \mathbf{n}_{0}|^2 dx + C(D, \beta, \lambda, \mathbf{h}),$$

where $C(D, \beta, \lambda, \mathbf{h})$ is a positive constant which depends only on D, β , λ and \mathbf{h} .

The principal outcome of this paper can be summarized as follows.

Theorem III.2. Let $\alpha \in (1, \frac{3}{2})$, $\mathbf{m}_0 \in \mathbf{H}^{\alpha}(D)$ such that $|\mathbf{m}_0| = 1$ a.e., $\mathbf{n}_0 \in \mathbf{H}_0^1(D)$, $\mathbf{n}_1 \in \mathbf{L}^2(D)$ and $\mathbf{h} \in \mathbf{L}^2(Q)$. Then a weak solution for the problem, as defined in III.1, is guaranteed to exist.

A detailed proof of Theorem III.2 will be presented in Section 5.

IV. SOME TECHNICAL LEMMAS

This section introduces several key lemmas that will play a crucial role in subsequent analyses throughout the paper. To get started, we need a handy result from Lions ([16], p. 57)

Lemma IV.1. Assume X, Y et Z are three Banach spaces and satisfy $X \subset Y \subset Z$ where the injections are continuous with compact embedding $X \hookrightarrow Y$ and X, Z are reflexive. Denote

$$D := \left\{ v \middle| v \in L^{p_0}(0, T; X), v_t = \frac{dv}{dt} \in L^{p_1}(0, T; Z) \right\}$$

where T is finite and $1 < p_i < \infty$, i = 0, 1.

Then D, equipped with the norm

$$||v||_{L^{p_0}(0,T;X)} + ||v_t||_{L^{p_1}(0,T;Z)},$$

is a Banach space and the embedding $D \hookrightarrow L^{p_0}(0,T;Y)$ is compact.

We'll also need another handy lemma from Lions ([16], p. 12).

Lemma IV.2. Let Θ be a bounded open set of $\mathbb{R}^d_x \times \mathbb{R}_t$, h_k and h in $L^q(\Theta), 1 < q < \infty$ such that $||f_k||_{L^q(\Theta)} \le C, f_k \to f$ a.e. in Θ , then $f_k \to f$ weakly in $L^q(\Theta)$.

Here is another Lemma "fractional calculus" whose proof can be found in [21].

Lemma IV.3. Suppose that p>q>1 and $\frac{1}{p}+\frac{s}{d}=\frac{1}{q}$. Assume that $\Lambda^sh\in L^q$, then $f\in L^p$ and there is a constant C>0 such that

$$||h||_{L^p} \le C||\Lambda^s h||_{L^q}.$$

We conclude with this lemma (the proof can be found in [12]).

Lemma IV.4. If u and v belong to $H^{2\alpha}_{per}(D):=\{u\in L^2(D)/\Lambda^{2\alpha}u\in L^2(D)\}$, then

$$\int_D \Lambda^{2\alpha} u \cdot v \ dx = \int_D \Lambda^{\alpha} u \cdot \Lambda^{\alpha} v \ dx.$$

V. PROOF OF THEOREM III.2

A. The penalty problem

We consider for $\varepsilon>0$ fixed parameter the following problem

$$\begin{cases} \mathbf{m}_{t}^{\varepsilon} + a(x)\mu(x)\Lambda^{2\alpha}\mathbf{m}^{\varepsilon} + \mu(x)\boldsymbol{\ell}(\mathbf{m}^{\varepsilon}, \mathbf{n}^{\varepsilon}) \\ + \frac{|\mathbf{m}^{\varepsilon}|^{2} - 1}{\varepsilon}\mathbf{m}^{\varepsilon} = 0 \\ \rho(x) \ \mathbf{n}_{tt}^{\varepsilon} - \operatorname{div}\left(\mathcal{S}(\mathbf{n}^{\varepsilon}) + \frac{1}{2}\mathcal{L}(\mathbf{m}^{\varepsilon})\right) + \mathbf{h} = 0, \end{cases}$$
(11)

with the initial and boundary conditions:

$$\begin{split} \mathbf{n}^{\varepsilon}(\cdot,0) &= \mathbf{n}_0, & \mathbf{n}_t^{\varepsilon}(\cdot,0) &= \mathbf{n}_1, \\ \mathbf{m}^{\varepsilon}(\cdot,0) &= \mathbf{m}_0, & |\mathbf{m}_0| &= 1 \quad a.e. \quad \text{in} \quad D, \\ \mathbf{n}^{\varepsilon} &= 0 \quad \text{on} \quad \Sigma. \end{split}$$

We apply the Faedo-Galerkin method: for $\{f_i\}_{i\in\mathbb{N}}$ an orthonormal basis of $L^2(D)$ consisting of all the eigenfunctions for the operator $\Lambda^{2\alpha}$ (the existence of such a basis can be proved as in [22], Ch.II)

$$\Lambda^{2\alpha} f_i = \alpha_i f_i, i = 1, 2, \dots$$

under periodic boundary conditions, and $\{g_i\}_{i\in\mathbb{N}}$ be an orthonormal basis of $L^2(D)$ consisting of all the eigenfunctions for the operator $-\Delta$

$$\begin{cases} -\Delta g_i = \beta_i g_i, i = 1, 2, \dots \\ g_i = 0 \quad \text{on} \quad \partial D. \end{cases}$$

and we consider the following penalized system in $Q = D \times (0,T)$

$$\begin{cases} \mathbf{m}_{t}^{\varepsilon,N} + a(x)\mu(x)\Lambda^{2\alpha}\mathbf{m}^{\varepsilon,N} + \mu(x)\boldsymbol{\ell}(\mathbf{m}^{\varepsilon,N},\mathbf{n}^{\varepsilon,N}) \\ + \frac{|\mathbf{m}^{\varepsilon,N}|^{2} - 1}{\varepsilon}\mathbf{m}^{\varepsilon,N} = 0 \\ \rho(x) \ \mathbf{n}_{tt}^{\varepsilon,N} - \operatorname{div}\left(\mathcal{S}(\mathbf{n}^{\varepsilon,N}) + \frac{1}{2}\mathcal{L}(\mathbf{m}^{\varepsilon,N})\right) + \mathbf{h}^{N} = 0, \end{cases}$$
(12)

where the vector \mathbf{h}^N satisfies

$$\int_{D} \mathbf{h}^{N}(x,t)g_{i}(x) dx = \int_{D} \mathbf{h}(x,t)g_{i}(x) dx,$$

as well as the corresponding initial and boundary conditions:

$$\begin{split} \mathbf{n}^{\varepsilon,N}(\cdot,0) &= \mathbf{n}^N(\cdot,0), \quad \mathbf{n}^{\varepsilon,N}_t(\cdot,0) = \mathbf{n}^N_t(\cdot,0), \\ \mathbf{m}^{\varepsilon,N}(\cdot,0) &= \mathbf{m}^N(\cdot,0), \text{ in } D, \\ \mathbf{n}^{\varepsilon,N} &= 0 \quad \text{on} \quad \Sigma = \partial D \times (0,T). \end{split}$$

and

$$\int_{D} \mathbf{n}^{N}(x,0)g_{i}(x) dx = \int_{D} \mathbf{n}_{0}(x)g_{i}(x) dx$$

$$\int_{D} \mathbf{n}_{t}^{N}(x,0)g_{i}(x) dx = \int_{D} \mathbf{n}_{1}(x)g_{i}(x) dx,$$

$$\int_{D} \mathbf{m}^{N}(x,0)f_{i}(x) dx = \int_{D} \mathbf{m}_{0}(x)f_{i}(x) dx.$$

We are seeking for approximate solutions $(\mathbf{m}^{\varepsilon,N},\mathbf{n}^{\varepsilon,N})$

to (12) under the form

$$\mathbf{m}^{\varepsilon,N} = \sum_{i=1}^{N} \mathbf{a}_i(t) f_i(x)$$
 , $\mathbf{n}^{\varepsilon,N} = \sum_{i=1}^{N} \mathbf{b}_i(t) g_i(x)$,

where \mathbf{a}_i and \mathbf{b}_i are \mathbb{R}^3 -valued vectors.

Multiplying each scalar of the first equation (12) by f_i and the second part by g_i , and integrating over the domain D, leads to a system of ordinary differential equations involving the unknowns $(\alpha_i(t),\beta_i(t)), i=1,2,...,N$. Standard ordinary differential equations theory allows us to demonstrate the existence of local solutions to the problem, which can be extended to the interval [0,T] using a priori estimates. For this, we multiply the first equation of (12) by $\mathbf{m}_t^{\varepsilon,N}$ and the second by $\mathbf{n}_t^{\varepsilon,N}$ integrating in D, we obtain

$$\begin{cases} \int_{D} |\mathbf{m}_{t}^{\varepsilon,N}|^{2} dx + \int_{D} a(x)\mu(x)\Lambda^{2\alpha}\mathbf{m}^{\varepsilon,N} \cdot \mathbf{m}_{t}^{\varepsilon,N} dx \\ + \int_{D} \mu(x)\ell(\mathbf{m}^{\varepsilon,N}, \mathbf{n}^{\varepsilon,N}) \cdot \mathbf{m}_{t}^{\varepsilon,N} dx \\ + \frac{1}{4\varepsilon} \frac{d}{dt} \int_{D} (|\mathbf{m}^{\varepsilon,N}|^{2} - 1)^{2} dx = 0 \\ \frac{1}{2} \frac{d}{dt} \int_{D} \rho(x)|\mathbf{n}_{t}^{\varepsilon,N}|^{2} dx \\ - \int_{\partial D} \left(S(\mathbf{n}^{\varepsilon,N}) + \frac{1}{2}\mathcal{L}(\mathbf{m}^{\varepsilon,N}) \right) \Upsilon \cdot \mathbf{n}_{t}^{\varepsilon,N} dx \\ + \int_{D} \left(S(\mathbf{n}^{\varepsilon,N}) + \frac{1}{2}\mathcal{L}(\mathbf{m}^{\varepsilon,N}) \right) \cdot \nabla \mathbf{n}_{t}^{\varepsilon,N} dx \\ + \int_{D} \mathbf{h}^{N} \cdot \mathbf{n}_{t}^{\varepsilon,N} dx = 0 \end{cases}$$

where Υ is the outer unit normal at the boundary ∂D . On the other hand (note that $\lambda_{ijkl}(x) = \lambda_{jikl}(x)$)

$$\int_{D} \boldsymbol{\ell}(\mathbf{m}^{\varepsilon,N}, \mathbf{n}^{\varepsilon,N}) \cdot \mathbf{m}_{t}^{\varepsilon,N} \, dx$$

$$= \int_{D} \lambda_{ijkl}(x) m_{j}^{\varepsilon,N} \dot{m}_{i}^{\varepsilon,N} \epsilon_{kl}(\mathbf{n}^{\varepsilon,N}) \, dx$$

$$= \frac{1}{2} \int_{D} \lambda_{ijkl}(x) (m_{j}^{\varepsilon,N} \dot{m}_{i}^{\varepsilon,N} + m_{i}^{\varepsilon,N} \dot{m}_{j}^{\varepsilon,N}) \epsilon_{kl}(\mathbf{n}^{\varepsilon,N}) \, dx$$

$$= \frac{1}{2} \frac{d}{dt} \int_{D} \lambda_{ijkl}(x) m_{i}^{\varepsilon,N} m_{j}^{\varepsilon,N} \epsilon_{kl}(\mathbf{n}^{\varepsilon,N}) dx$$

$$= \frac{1}{2} \int_{D} \lambda_{ijkl}(x) m_{i}^{\varepsilon,N} m_{j}^{\varepsilon,N} \epsilon_{kl}(\mathbf{n}^{\varepsilon,N}) dx,$$

by symmetry of both tensor $\mathcal S$ and $\mathcal L$, we obtain

$$\begin{split} \int_D \left(\mathcal{S}(\mathbf{n}^{\varepsilon,N}) + \frac{1}{2} \mathcal{L}(\mathbf{m}^{\varepsilon,N}) \right) \cdot \epsilon(\mathbf{n}_t^{\varepsilon,N}) \, \, \mathrm{d}x \\ &= \int_D \left(\mathcal{S}(\mathbf{n}^{\varepsilon,N}) + \frac{1}{2} \mathcal{L}(\mathbf{m}^{\varepsilon,N}) \right) \cdot \nabla \mathbf{n}_t^{\varepsilon,N} \, \, \mathrm{d}x, \\ \text{and} \quad \int_D \sigma_{ijkl}(x) \epsilon_{ij}(\mathbf{n}^{\varepsilon,N}) \epsilon_{kl}(\mathbf{n}_t^{\varepsilon,N}) \, \, \mathrm{d}x \end{split}$$

$$= \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \int_{D} \sigma_{ijkl}(x) \epsilon_{ij}(\mathbf{n}^{\varepsilon,N}) \epsilon_{kl}(\mathbf{n}^{\varepsilon,N}) \, \mathrm{d}x.$$

By using the Lemma IV.4, we have

$$\begin{cases} \int_{D} |\mathbf{m}_{t}^{\varepsilon,N}|^{2} \, \mathrm{d}x + \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \int_{D} a(x)\mu(x) |\Lambda^{\alpha}\mathbf{m}^{\varepsilon,N}|^{2} \, \mathrm{d}x \\ + \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \int_{D} \mu(x) \lambda_{ijkl}(x) m_{i}^{\varepsilon,N} m_{j}^{\varepsilon,N} \epsilon_{kl}(\mathbf{n}^{\varepsilon,N}) \, \mathrm{d}x \\ - \frac{1}{2} \int_{D} \mu(x) \lambda_{ijkl}(x) m_{i}^{\varepsilon,N} m_{j}^{\varepsilon,N} \epsilon_{kl}(\mathbf{n}_{t}^{\varepsilon,N}) \, \mathrm{d}x \\ + \frac{1}{4\varepsilon} \frac{\mathrm{d}}{\mathrm{d}t} \int_{D} (|\mathbf{m}^{\varepsilon,N}|^{2} - 1)^{2} \, \mathrm{d}x = 0 \\ \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \int_{D} \rho(x) |\mathbf{n}_{t}^{\varepsilon,N}|^{2} \, \mathrm{d}x \\ + \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \int_{D} \sigma_{ijkl}(x) \epsilon_{ij}(\mathbf{n}^{\varepsilon,N}) \epsilon_{kl}(\mathbf{n}^{\varepsilon,N}) \, \mathrm{d}x \\ + \frac{1}{2} \int_{D} \lambda_{ijkl}(x) m_{i}^{\varepsilon,N} m_{j}^{\varepsilon,N} \epsilon_{kl}(\mathbf{n}_{t}^{\varepsilon,N}) \, \mathrm{d}x \\ + \int_{D} \mathbf{h}^{N} \cdot \mathbf{n}_{t}^{\varepsilon,N} \mathrm{d}x = 0 \end{cases}$$

By summing the both equations, we obtain

$$\int_{D} |\mathbf{m}_{t}^{\varepsilon,N}|^{2} dx + \frac{1}{2} \frac{d}{dt} \int_{D} a(x) |\Lambda^{\alpha} \mathbf{m}^{\varepsilon,N}|^{2} dx$$

$$+ \frac{1}{4\varepsilon} \frac{d}{dt} \int_{D} (|\mathbf{m}^{\varepsilon,N}|^{2} - 1)^{2} dx + \frac{1}{2} \frac{d}{dt} \int_{D} \rho(x) |\mathbf{n}_{t}^{\varepsilon,N}|^{2} dx$$

$$+ \frac{1}{2} \frac{d}{dt} \int_{D} \sigma_{ijkl}(x) \epsilon_{ij}(\mathbf{n}^{\varepsilon,N}) \epsilon_{kl}(\mathbf{n}^{\varepsilon,N}) dx$$

$$+ \frac{1}{2} \frac{d}{dt} \int_{D} \lambda_{ijkl}(x) m_{i}^{\varepsilon,N} m_{j}^{\varepsilon,N} \epsilon_{kl}(\mathbf{n}^{\varepsilon,N}) dx + \int_{D} \mathbf{h}^{N} \cdot \mathbf{n}_{t}^{\varepsilon,N} dx$$

$$+ \frac{1}{2} \int_{D} (1 - \mu(x)) \lambda_{ijkl}(x) m_{i}^{\varepsilon,N} m_{j}^{\varepsilon,N} \epsilon_{kl}(\mathbf{n}^{\varepsilon,N}) dx = 0.$$
Now integrating in time

Now integrating in time

$$\int_{Q} |\mathbf{m}_{t}^{\varepsilon,N}|^{2} \, \mathrm{d}x \mathrm{d}t + \frac{1}{2} \int_{D} a(x) |\Lambda^{\alpha} \mathbf{m}^{\varepsilon,N}(T)|^{2} \, \mathrm{d}x \\
+ \frac{1}{4\varepsilon} \int_{D} (|\mathbf{m}^{\varepsilon,N}(T)|^{2} - 1)^{2} \, \mathrm{d}x + \frac{1}{2} \int_{D} \rho(x) |\mathbf{n}_{t}^{\varepsilon,N}(T)|^{2} \, \mathrm{d}x \\
+ \frac{1}{2} \int_{D} \sigma_{ijkl}(x) \epsilon_{ij}(\mathbf{n}^{\varepsilon,N}) \epsilon_{kl}(\mathbf{n}^{\varepsilon,N})(T) \, \mathrm{d}x \\
+ \frac{1}{2} \int_{D} \lambda_{ijkl}(x) m_{i}^{\varepsilon,N} m_{j}^{\varepsilon,N} \epsilon_{kl}(\mathbf{n}^{\varepsilon,N})(T) \, \mathrm{d}x \\
+ \frac{1}{2} \int_{Q} (1 - \mu(x)) \lambda_{ijkl}(x) m_{i}^{\varepsilon,N} m_{j}^{\varepsilon,N} \epsilon_{kl}(\mathbf{n}^{\varepsilon,N}) \, \mathrm{d}x \mathrm{d}t \\
= - \int_{Q} \mathbf{h}^{N} \cdot \mathbf{n}_{t}^{\varepsilon,N} \, \mathrm{d}x + \frac{1}{2} \int_{D} |a(x) \Lambda^{\alpha} \mathbf{m}^{N}(0)|^{2} \, \mathrm{d}x \\
+ \frac{1}{4\varepsilon} \int_{D} (|\mathbf{m}^{N}(0)|^{2} - 1)^{2} \, \mathrm{d}x + \frac{1}{2} \int_{D} \rho(x) |\mathbf{n}_{t}^{N}(0)|^{2} \, \mathrm{d}x \\
+ \frac{1}{2} \int_{D} \sigma_{ijkl}(x) \epsilon_{ij}(\mathbf{n}^{N}) \epsilon_{kl}(\mathbf{n}^{N})(0) \, \mathrm{d}x \\
+ \frac{1}{2} \int_{D} \lambda_{ijkl}(x) m_{i}^{N} m_{j}^{N} \epsilon_{kl}(\mathbf{n}^{N})(0) \, \mathrm{d}x. \tag{13}$$

We call $\mathcal{B}^{\varepsilon,N}(T)$ the left hand side of (13) and $\mathcal{B}^N(0)$ its right hand side.

Now for a positive parameter λ such that $\frac{2\lambda}{9} > \sup_{ijkl} |\lambda_{ijkl}(x)|$ we have by Young's inequality, omitting superscripts,

$$|\lambda_{ijkl}(x)m_im_j\epsilon_{kl}(\mathbf{n}_t)| \leq \frac{2\lambda}{9}|m_i||m_j||\epsilon_{kl}(\mathbf{n}_t)|$$

$$\leq \frac{2\lambda}{9} \left(\frac{\lambda}{\beta}|m_i|^2|m_j|^2 + \frac{\beta}{4\lambda}|\epsilon_{kl}(\mathbf{n}_t)|^2\right).$$

From where

$$\sum_{ijkl} |\lambda_{ijkl}(x) m_i m_j \epsilon_{kl}(\mathbf{n}_t)|$$

$$\leq \frac{2\lambda}{9} \left(\frac{9\lambda}{\beta} \sum_i |m_i|^2 \sum_j |m_j|^2 + \frac{9\beta}{4\lambda} \sum_{kl} |\epsilon_{kl}(\mathbf{n}_t)|^2 \right)$$

$$= 2\lambda \left(\frac{\lambda}{\beta} \left(\sum_i |m_i|^2 \right)^2 + \frac{\beta}{4\lambda} \sum_{kl} |\epsilon_{kl}(\mathbf{n}_t)|^2 \right)$$

$$= \frac{2\lambda^2}{\beta} |\mathbf{m}|^4 + \frac{\beta}{2} \sum_{kl} |\epsilon_{kl}(\mathbf{n}_t)|^2.$$

Inspired by the work of Valente [23], we have

$$\frac{1}{2} \left| \int_{Q} (1 - \mu(x)) \lambda_{ijkl}(x) m_{i} m_{j} \epsilon_{kl}(\mathbf{n}_{t}) dx dt \right|
= \frac{1}{2} \left| \int_{Q} (1 - \mu(x)) \sum_{ijkl} \lambda_{ijkl}(x) m_{i} m_{j} \epsilon_{kl}(\mathbf{n}_{t}) dx dt \right|
\leq \frac{1}{2} \int_{Q} \sum_{ijkl} |\lambda_{ijkl}(x) m_{i} m_{j} \epsilon_{kl}(\mathbf{n}_{t})| dx dt
\leq \frac{\lambda^{2}}{\beta} \int_{Q} |\mathbf{m}|^{4} dx dt + \frac{\beta}{4} \int_{Q} \sum_{kl} |\epsilon_{kl}(\mathbf{n}_{t})|^{2} dx dt
= \frac{\lambda^{2}}{\beta} \int_{Q} \left(|\mathbf{m}|^{2} - 1 + 1 \right)^{2} dx dt
+ \frac{\beta}{4} \int_{Q} \sum_{kl} |\epsilon_{kl}(\mathbf{n}_{t})|^{2} dx dt
\leq \frac{2\lambda^{2}}{\beta} \int_{Q} \left(|\mathbf{m}|^{2} - 1 \right)^{2} dx dt + \frac{2\lambda^{2}T}{\beta} vol(D)
+ \frac{\beta}{4} \int_{Q} \sum_{kl} |\epsilon_{kl}(\mathbf{n}_{t})|^{2} dx dt
\leq \frac{2\lambda^{2}}{\beta} \int_{Q} \left(|\mathbf{m}|^{2} - 1 \right)^{2} dx dt + \frac{2\lambda^{2}T}{\beta} vol(Q)
+ \frac{1}{4} \int_{Q} \sigma_{ijkl}(x) \epsilon_{ij}(\mathbf{n}) \epsilon_{kl}(\mathbf{n}_{t}) dx dt.$$
sinc (4) Now for $\epsilon \in \beta$, we have

by using (4). Now, for $\varepsilon < \frac{\beta}{16\lambda^2}$ we have

$$\frac{1}{2} \left| \int_{Q} (1 - \mu(x)) \lambda_{ijkl}(x) m_{i} m_{j} \epsilon_{kl}(\mathbf{n}) dx dt \right|$$

$$\leq \frac{1}{8\varepsilon} \int_{Q} \left(|\mathbf{m}|^{2} - 1 \right)^{2} dx dt + \frac{2\lambda^{2} T}{\beta} vol(D)$$

$$+ \frac{1}{4} \int_{Q} \sigma_{ijkl}(x) \epsilon_{ij}(\mathbf{n}_{t}) \epsilon_{kl}(\mathbf{n}) dx dt.$$

Which implies

$$-\frac{1}{8\varepsilon} \int_{Q} \left(|\mathbf{m}^{\varepsilon,N}|^{2} - 1 \right)^{2} \mathrm{d}x \mathrm{d}t - \frac{2\lambda^{2}T}{\beta} vol(D)$$

$$-\frac{1}{4} \int_{Q} \sigma_{ijkl}(x))\epsilon_{ij}(\mathbf{n}^{\varepsilon,N}) \epsilon_{kl}(\mathbf{n}_{t}^{\varepsilon,N}) \mathrm{d}x \mathrm{d}t$$

$$\leq \frac{1}{2} \int_{Q} (1 - \mu(x)) \lambda_{ijkl}(x))m_{i}^{\varepsilon,N} m_{j}^{\varepsilon,N} \epsilon_{kl}(\mathbf{n}_{t}^{\varepsilon,N}) \mathrm{d}x \mathrm{d}t.$$

also, we have

$$\frac{1}{2} \int_{D} \lambda_{ijkl}(x) m_{i}^{N} m_{j}^{N} \epsilon_{kl}(\mathbf{n}^{N})(0) dx$$

$$\leq \frac{1}{8\varepsilon} \int_{D} \left(|\mathbf{m}^{N}(0)|^{2} - 1 \right)^{2} dx + \frac{2\lambda^{2}}{\beta} vol(D)$$

$$+ \frac{1}{4} \int_{D} \sigma_{ijkl}(x) \epsilon_{ij}(\mathbf{n}^{N}) \epsilon_{kl}(\mathbf{n}^{N})(0) dx,$$

and

$$-\frac{1}{8\varepsilon} \int_{D} \left(|\mathbf{m}^{\varepsilon,N}(T)|^{2} - 1 \right)^{2} dx - \frac{2\lambda^{2}}{\beta} vol(D)$$

$$-\frac{1}{4} \int_{D} \sigma_{ijkl}(x) \epsilon_{ij}(\mathbf{n}^{\varepsilon,N}) \epsilon_{kl}(\mathbf{n}^{\varepsilon,N}) (T) dx$$

$$\leq \frac{1}{2} \int_{D} \lambda_{ijkl}(x) m_{i}^{\varepsilon,N} m_{j}^{\varepsilon,N} \epsilon_{kl}(\mathbf{n}^{\varepsilon,N}) (T) dx.$$

According to the definition of $\mathcal{B}^{\varepsilon,N}(T)$ and $\mathcal{B}^N(0)$ we can write

$$\int_{Q} |\mathbf{m}_{t}^{\varepsilon,N}|^{2} dxdt + \frac{a_{0}}{2} \int_{D} |\Lambda^{\alpha} \mathbf{m}^{\varepsilon,N}(T)|^{2} dx
+ \frac{1}{8\varepsilon} \int_{D} (|\mathbf{m}^{\varepsilon,N}(T)|^{2} - 1)^{2} dx + \frac{\rho_{0}}{2} \int_{D} |\mathbf{n}_{t}^{\varepsilon,N}(T)|^{2} dx
+ \frac{1}{4} \int_{D} \sigma_{ijkl}(x) \epsilon_{ij} (\mathbf{n}^{\varepsilon,N}) \epsilon_{kl} (\mathbf{n}^{\varepsilon,N}) (T) dx
- \frac{2\lambda^{2}(T+1)}{\beta} vol(D) - \frac{1}{8\varepsilon} \int_{Q} (|\mathbf{m}^{\varepsilon,N}|^{2} - 1)^{2} dxdt
- \frac{1}{4} \int_{Q} \sigma_{ijkl}(x) \epsilon_{ij} (\mathbf{n}^{\varepsilon,N}) \epsilon_{kl} (\mathbf{n}_{t}^{\varepsilon,N}) dxdt \leq \mathcal{B}^{\varepsilon,N}(T),$$

and

$$\mathcal{B}^{N}(0) \leq -\int_{Q} \mathbf{h}^{N} \cdot \mathbf{n}_{t}^{\varepsilon,N} dx + \frac{a_{1}}{2} \int_{D} |\Lambda^{\alpha} \mathbf{m}^{N}(0)|^{2} dx + \frac{3}{8\varepsilon} \int_{D} (|\mathbf{m}^{N}(0)|^{2} - 1)^{2} dx + \frac{\rho_{1}}{2} \int_{D} |\mathbf{n}_{t}^{N}(0)|^{2} dx + \frac{3}{4} \int_{D} \sigma_{ijkl}(x) \epsilon_{ij}(\mathbf{n}^{N}) \epsilon_{kl}(\mathbf{n}^{N})(0) dx + \frac{2\lambda^{2}}{\beta} vol(D).$$

Since $\mathcal{B}^{\varepsilon,N}(T) = \mathcal{B}^N(0)$, we have

$$\int_{Q} |\mathbf{m}_{t}^{\varepsilon,N}|^{2} dxdt + \frac{a_{0}}{2} \int_{D} |\Lambda^{\alpha} \mathbf{m}^{\varepsilon,N}(T)|^{2} dx$$

$$+ \frac{1}{8\varepsilon} \int_{D} (|\mathbf{m}^{\varepsilon,N}(T)|^{2} - 1)^{2} dx + \frac{\rho_{0}}{2} \int_{D} |\mathbf{n}_{t}^{\varepsilon,N}(T)|^{2} dx$$

$$+ \frac{1}{4} \int_{D} \sigma_{ijkl}(x)) \epsilon_{ij}(\mathbf{n}^{\varepsilon,N}) \epsilon_{kl}(\mathbf{n}^{\varepsilon,N})(T) dx \beta vol(D)$$

$$- \frac{2\lambda^{2}T}{\beta} vol(D) - \frac{1}{8\varepsilon} \int_{Q} (|\mathbf{m}^{\varepsilon,N}|^{2} - 1)^{2} dxdt$$

$$-\frac{1}{4} \int_{Q} \sigma_{ijkl}(x) \epsilon_{ij}(\mathbf{n}^{\varepsilon,N}) \epsilon_{kl}(\mathbf{n}_{t}^{\varepsilon,N}) dx dt$$

$$\leq -\int_{Q} \mathbf{h}^{N} \cdot \mathbf{n}_{t}^{\varepsilon,N} dx + \frac{a_{1}}{2} \int_{D} |\Lambda^{\alpha} \mathbf{m}^{N}(0)|^{2} dx$$

$$+\frac{3}{8\varepsilon} \int_{D} (|\mathbf{m}^{N}(0)|^{2} - 1)^{2} dx + \frac{\rho_{1}}{2} \int_{D} |\mathbf{n}_{t}^{N}(0)|^{2} dx$$
$$+\frac{3}{4} \int_{D} \sigma_{ijkl}(x) \epsilon_{ij}(\mathbf{n}^{N}) \epsilon_{kl}(\mathbf{n}^{N})(0) dx + \frac{4\lambda^{2}}{\beta} vol(D).$$

At this point, we introduce the functional:

$$\begin{split} &\mathcal{F}^{\varepsilon,N}(T) \\ &= \int_{Q} |\mathbf{m}_{t}^{\varepsilon,N}|^{2} \, \mathrm{d}x \mathrm{d}t + \frac{a_{0}}{2} \int_{D} |\Lambda^{\alpha} \mathbf{m}^{\varepsilon,N}(T)|^{2} \, \mathrm{d}x \\ &+ \frac{1}{8\varepsilon} \int_{D} (|\mathbf{m}^{\varepsilon,N}(T)|^{2} - 1)^{2} \, \mathrm{d}x \\ &- \frac{1}{8\varepsilon} \int_{Q} \left(|\mathbf{m}^{\varepsilon,N}|^{2} - 1 \right)^{2} \mathrm{d}x \mathrm{d}t + \frac{\rho_{0}}{2} \int_{D} |\mathbf{n}_{t}^{\varepsilon,N}(T)|^{2} \, \mathrm{d}x \\ &+ \frac{\beta}{4} \int_{D} |\nabla \mathbf{n}^{\varepsilon,N}|^{2}(T) \, \, \mathrm{d}x - \frac{\beta}{4} \int_{D} |\nabla \mathbf{n}_{t}^{\varepsilon,N}|^{2} \, \mathrm{d}x \\ &- \frac{2\lambda^{2}T}{s^{2}} vol(D), \end{split}$$

then

$$\begin{split} &\mathcal{F}^{\varepsilon,N}(0) \\ &= \frac{a_1}{2} \int_D |\Lambda^{\alpha} \mathbf{m}^{\varepsilon,N}(0)|^2 \, \mathrm{d}x + \frac{1}{8\varepsilon} \int_D (|\mathbf{m}^{\varepsilon,N}(0)|^2 - 1)^2 \, \mathrm{d}x \\ &+ \frac{\rho_1}{2} \int_D |\mathbf{n}_t^{\varepsilon,N}(0)|^2 \, \mathrm{d}x + \frac{\beta}{4} \int_D |\nabla \mathbf{n}^{\varepsilon,N}|^2(0) \, \mathrm{d}x. \end{split}$$

In addition

$$\begin{split} &-\int_{Q} \mathbf{h}^{N} \cdot \mathbf{n}_{t}^{\varepsilon,N} \mathrm{d}x \leq \frac{\rho_{1}}{2} ||u_{t}^{\varepsilon,N}||_{\mathbf{L}^{2}(Q)}^{2} + \frac{1}{2\rho_{1}} ||\mathbf{h}^{N}||_{\mathbf{L}^{2}(Q)}^{2}, \\ &\int_{D} |\nabla \mathbf{n}^{\varepsilon,N}(T)|^{2} \; \mathrm{d}x \leq \int_{D} \sum_{l,l} |\epsilon_{kl}(\mathbf{n}^{\varepsilon,N}(T))|^{2} \mathrm{d}x, \end{split}$$

and under the assumption $\sigma_{ijkl}(x)\epsilon_{ij}(\mathbf{n})\epsilon_{kl}(\mathbf{n}) \leq \tau |\nabla \mathbf{n}|^2$ (for a positive constant τ), we have

$$\begin{split} \int_{Q} |\mathbf{m}_{t}^{\varepsilon,N}|^{2} \, \mathrm{d}x \mathrm{d}t + \frac{a_{0}}{2} \int_{D} |\Lambda^{\alpha} \mathbf{m}^{\varepsilon,N}(T)|^{2} \, \mathrm{d}x \\ + \frac{1}{8\varepsilon} \int_{D} (|\mathbf{m}^{\varepsilon,N}(T)|^{2} - 1)^{2} \, \mathrm{d}x \\ - \frac{1}{8\varepsilon} \int_{Q} \left(|\mathbf{m}^{\varepsilon,N}|^{2} - 1 \right)^{2} \mathrm{d}x \mathrm{d}t \\ - \frac{\beta}{4} \int_{Q} |\nabla \mathbf{n}_{t}^{\varepsilon,N}|^{2} \, \mathrm{d}x - \frac{2\lambda^{2}T}{\beta} vol(D) \\ + \frac{\rho_{0}}{2} \int_{D} |\mathbf{n}_{t}^{\varepsilon,N}(T)|^{2} \, \mathrm{d}x + \frac{\beta}{4} \int_{D} |\nabla \mathbf{n}^{\varepsilon,N}|^{2} (T) \, \mathrm{d}x \leq \quad (14) \\ \frac{a_{1}}{2} \int_{D} |\Lambda^{\alpha} \mathbf{m}^{N}(0)|^{2} \, \mathrm{d}x + \frac{3}{8\varepsilon} \int_{D} (|\mathbf{m}^{N}(0)|^{2} - 1)^{2} \, \mathrm{d}x \\ + \frac{\rho_{1}}{2} \int_{D} |\mathbf{n}_{t}^{N}(0)|^{2} \, \mathrm{d}x + \frac{1}{2\rho_{1}} ||\mathbf{h}^{N}||_{\mathbf{L}^{2}(Q)}^{2} \\ + \frac{3\tau}{4} \int_{D} |\nabla \mathbf{n}^{N}(0)|^{2} \, \mathrm{d}x + \frac{4\lambda^{2}}{\beta} vol(D), \end{split}$$

which implies

$$\mathcal{F}^{\varepsilon,N}(T) \le \int_0^T \mathcal{F}^{\varepsilon,N}(t) \, dt + 3\mathcal{F}^{\varepsilon,N}(0)$$
$$+ \frac{1}{2\rho_1} ||\mathbf{h}^N||_{\mathbf{L}^2(Q)}^2 + \frac{4\lambda^2}{\beta} vol(D),$$

and from the Gronwall lemma, we have

$$\mathcal{F}^{\varepsilon,N}(T) \leq e^T \left(3\mathcal{F}^{\varepsilon,N}(0) + \frac{1}{2\rho_1} ||\mathbf{h}^N||_{\mathbf{L}^2(Q)}^2 + \frac{4\lambda^2}{\beta} vol(D) \right).$$

Since $\mathbf{n}_0 \in \mathbf{H}_0^1(D)$, $\mathbf{n}_1 \in \mathbf{L}^2(D)$ and $\mathbf{m}_0 \in \mathbf{H}^{\alpha}(D)$ which is embedded into $\mathbf{L}^4(D)$ for $1 < \alpha < \frac{3}{2}$ the right hand side is uniformly bounded. Indeed, for constants C_1 , C_2 , C_3 , C_4 and $C(\mathbf{h})$ independent of N

$$\int_{D} (|\mathbf{m}^{N}(0)|^{2} - 1)^{2} dx$$

$$= \int_{D} |\mathbf{m}^{N}(0)|^{4} dx - 2 \int_{D} |\mathbf{m}^{N}(0)|^{2} dx + vol(D)$$

$$\leq ||\mathbf{m}^{N}(0)||_{\mathbf{L}^{4}(D)}^{4} + vol(D)$$

$$\leq C_{1}||\mathbf{m}^{N}(0)||_{\mathbf{H}^{\alpha}(D)}^{4} + C_{2}$$

$$\leq C_{3},$$

$$\int_{D} |\nabla \mathbf{n}^{N}(0)|^{2} dx$$

$$= \int_{D} |\nabla \mathbf{n}^{N}(0) - \nabla \mathbf{n}_{0} + \nabla \mathbf{n}_{0}|^{2} dx$$

$$\leq 2 \int_{D} |\nabla \mathbf{n}^{N}(0) - \nabla \mathbf{n}_{0}|^{2} dx + 2 \int_{D} |\nabla \mathbf{n}_{0}|^{2} dx$$

$$\leq 2 \int_{D} |\nabla \mathbf{n}^{N}(0) - \nabla \mathbf{n}_{0}|^{2} dx + 2 \int_{D} |\nabla \mathbf{n}_{0}|^{2} dx$$

$$\leq 2 \int_{D} |\nabla \mathbf{n}^{N}(0) - \nabla \mathbf{n}_{0}|^{2} dx + 2 \int_{D} |\nabla \mathbf{n}_{0}|^{2} dx$$

$$\leq 2 ||\mathbf{n}^{N}(0) - \mathbf{n}_{0}||_{\mathbf{H}_{0}^{1}(D)}^{2} + 2||\mathbf{n}_{0}||_{\mathbf{H}_{0}^{1}(D)}^{2}$$

$$\leq C_{4},$$

and

$$\begin{split} ||\mathbf{h}^N||_{\mathbf{L}^2(Q)}^2 &= ||\mathbf{h}^N - \mathbf{h} + \mathbf{h}||_{\mathbf{L}^2(Q)}^2 \\ &\leq 2||\mathbf{h}^N - \mathbf{h}||_{\mathbf{L}^2(Q)}^2 + 2||\mathbf{h}||_{\mathbf{L}^2(Q)}^2 \\ &\leq C(\mathbf{h}), \end{split}$$

Due to the strong convergences $\mathbf{m}^N(.,0) \to \mathbf{m}_0$ in $\mathbf{H}^{\alpha}(D)$, $\mathbf{n}^N(.,0) \to \mathbf{n}_0$ in $\mathbf{H}^1_0(D)$ and $\mathbf{h}^N(x) \to \mathbf{h}(x)$ in $\mathbf{L}^2(Q)$. For the other term $(\mathbf{n}^N_t(0))$, the estimate can be carried out in an analogous way using the strong convergence $\mathbf{n}^N_t(.,0) \to \mathbf{n}_1$ in $\mathbf{L}^2(D)$. Moreover, noting that (for a constant C independent of ε and N)

$$\int_{D} |\mathbf{m}^{\varepsilon,N}|^{2} dx = \int_{D} (|\mathbf{m}^{\varepsilon,N}|^{2} - 1 + 1) dx$$

$$\leq \frac{1}{2} \int_{D} (|\mathbf{m}^{\varepsilon,N}|^{2} - 1)^{2} dx + C.$$

Therefore, for a fixed parameter $\varepsilon > 0$ we have

$$\begin{split} &(\mathbf{m}^{\varepsilon,N})_N \ \text{ is bounded in } \ L^\infty(0,T;\mathbf{H}^\alpha(D)), \\ &(\mathbf{m}^{\varepsilon,N}_t)_N \ \text{ is bounded in } \ L^2(0,T;\mathbf{L}^2(D)), \\ &(|\mathbf{m}^{\varepsilon,N}|^2-1)_N \ \text{ is bounded in } \ L^\infty(0,T;L^2(D)), \\ &(\mathbf{n}^{\varepsilon,N})_N \ \text{ is bounded in } \ L^2(0,T;\mathbf{H}^1_0(D)), \end{split}$$

$$(\mathbf{n}_t^{\varepsilon,N})_N$$
 is bounded in $L^2(0,T;\mathbf{L}^2(D))$.

Note that, (15) is due to the Poincaré lemma. classical compactness results imply the existence of two subsequences still denoted by $(\mathbf{m}^{\varepsilon,N})$ and $(\mathbf{n}^{\varepsilon,N})$ such that for fixed $\varepsilon>0$

$$\begin{split} \mathbf{m}^{\varepsilon,N} &\rightharpoonup \mathbf{m}^{\varepsilon} \quad \text{weakly in} \quad L^{2}(0,T;\mathbf{H}^{\alpha}(D)), \\ \mathbf{m}^{\varepsilon,N}_{t} &\rightharpoonup \mathbf{m}^{\varepsilon}_{t} \quad \text{weakly in} \quad \mathbf{L}^{2}(Q), \\ \mathbf{m}^{\varepsilon,N} &\to \mathbf{m}^{\varepsilon} \quad \text{strongly in} \quad L^{2}(0,T;\mathbf{H}^{\beta}(D)) \end{split} \tag{16} \\ \quad \text{and a.e. for} \quad 0 \leq \beta < \alpha \\ |\mathbf{m}^{\varepsilon,N}|^{2} - 1 &\rightharpoonup \zeta \quad \text{weakly in} \quad L^{2}(Q), \\ \mathbf{n}^{\varepsilon,N} &\rightharpoonup \mathbf{n}^{\varepsilon} \quad \text{weakly in} \quad L^{2}(0,T;\mathbf{H}^{1}_{0}(D)), \\ \mathbf{n}^{\varepsilon,N}_{t} &\rightharpoonup \mathbf{n}^{\varepsilon}_{t} \quad \text{weakly in} \quad \mathbf{L}^{2}(Q), \\ \mathbf{n}^{\varepsilon,N} &\to \mathbf{n}^{\varepsilon} \quad \text{strongly in} \quad \mathbf{L}^{2}(Q). \end{split}$$

The convergence (16) is due to Lemma IV.1 and thanks to Lemma IV.2 it can be shown that $\zeta = |\mathbf{m}^{\varepsilon}|^2 - 1$. based on the Sobolev embedding $H^{\alpha}(Q) \hookrightarrow L^4(Q)$, since $1 < \alpha < \frac{3}{2}$, the subsequent compactness result ensues

$$m_i^{\varepsilon,N} m_j^{\varepsilon,N} \to m_i^\varepsilon m_j^\varepsilon \ \ {\rm strongly \ in} \ \ L^2(Q), \eqno(17)$$

and

$$m_i^{\varepsilon,N}\phi_i \to m_i^\varepsilon\phi_i$$
 strongly in $L^2(Q)$.

Therefore, we consider the variational formulation of (12).

$$\begin{cases}
\int_{Q} \mathbf{m}_{t}^{\varepsilon,N} \cdot \boldsymbol{\phi} \, dx dt + \int_{Q} a(x)\mu(x)\Lambda^{\alpha} \mathbf{m}^{\varepsilon,N} \cdot \Lambda^{\alpha} \boldsymbol{\phi} \, dx dt \\
- \int_{Q} \mu(x)\lambda_{ijkl}(x)m_{i}^{\varepsilon,N}m_{j}^{\varepsilon,N}\epsilon_{kl}(\mathbf{n}_{t}^{\varepsilon,N})\boldsymbol{\phi}_{i} \, dx dt \\
+ \int_{Q} \mu(x)\lambda_{ijkl}m_{i}^{\varepsilon,N}m_{j}^{\varepsilon,N}\epsilon_{kl}(\mathbf{n}^{\varepsilon,N})\boldsymbol{\phi}_{i} \, dx dt \\
+ \int_{Q} \frac{|\mathbf{m}^{\varepsilon,N}|^{2} - 1}{\varepsilon} \mathbf{m}^{\varepsilon,N} \cdot \boldsymbol{\phi} \, dx dt = 0 \\
- \int_{Q} \rho(x)\mathbf{n}_{t}^{\varepsilon,N} \cdot \boldsymbol{\psi}_{t} \, dx dt \\
+ \int_{Q} \sigma_{ijkl}(x)\epsilon_{ij}(\mathbf{n}^{\varepsilon,N})\epsilon_{kl}(\boldsymbol{\psi}) \, dx dt \\
+ \frac{1}{2} \int_{Q} \lambda_{ijkl}(x)m_{i}^{\varepsilon,N}m_{j}^{\varepsilon,N}\epsilon_{kl}(\boldsymbol{\psi}) \, dx dt \\
+ \int_{Q} \mathbf{h}^{N} \cdot \boldsymbol{\psi} \, dx dt = 0,
\end{cases} \tag{18}$$

for any $\phi \in L^2(0,T;\mathbf{H}^{\alpha}(D))$ and $\psi \in \mathbf{H}^1_0(Q)$. Taking the limit $N \to \infty$ in (18), we obtain

$$\begin{cases}
\int_{Q} \mathbf{m}_{t}^{\varepsilon} \cdot \boldsymbol{\phi} \, dx dt + \int_{Q} a(x)\mu(x)\Lambda^{\alpha}\mathbf{m}^{\varepsilon} \cdot \Lambda^{\alpha}\boldsymbol{\phi} \, dx dt \\
-\int_{Q} \mu(x)\lambda_{ijkl}(x)m_{i}^{\varepsilon,N}m_{j}^{\varepsilon,N}\epsilon_{kl}(\mathbf{n}_{t}^{\varepsilon,N})\boldsymbol{\phi}_{i} \, dx dt \\
+\int_{Q} \mu(x)\lambda_{ijkl}m_{i}^{\varepsilon}m_{j}^{\varepsilon}\epsilon_{kl}(\mathbf{n}^{\varepsilon})\boldsymbol{\phi}_{i} \, dx dt \\
+\int_{Q} \frac{|\mathbf{m}^{\varepsilon}|^{2} - 1}{\varepsilon}\mathbf{m}^{\varepsilon} \cdot \boldsymbol{\phi} \, dx dt = 0 \\
-\int_{Q} \rho(x)\mathbf{n}_{t}^{\varepsilon} \cdot \boldsymbol{\psi}_{t} \, dx dt + \int_{Q} \sigma_{ijkl}(x)\epsilon_{ij}(\mathbf{n}^{\varepsilon})\epsilon_{kl}(\boldsymbol{\psi}) \, dx dt \\
+\frac{1}{2}\int_{Q} \lambda_{ijkl}(x)m_{i}^{\varepsilon}m_{j}^{\varepsilon}\epsilon_{kl}(\boldsymbol{\psi}) \, dx dt + \int_{Q} \mathbf{h} \cdot \boldsymbol{\psi} \, dx dt = 0,
\end{cases} \tag{19}$$

for any $\phi \in L^2(0,T; \mathbf{H}^{\alpha}(D))$ and $\psi \in \mathbf{H}^1_0(Q)$. We proved the following result.

Proposition V.1. Let $\mathbf{m}_0 \in \mathbf{H}^{\alpha}(D)$ such that $|\mathbf{m}_0| = 1$ a.e., $\mathbf{n}_0 \in \mathbf{H}_0^1(D)$ and $\mathbf{n}_1 \in \mathbf{L}^2(D)$. Then, for any positive ε small enough and any fixed time T, There exists a solution \mathbf{m}^{ε} , to the problem (11) in the sense of distributions. Moreover, we have the following energy estimate

$$\int_{Q} |\mathbf{m}_{t}^{\varepsilon}|^{2} dx dt + \frac{a_{0}}{2} \int_{D} |\Lambda^{\alpha} \mathbf{m}^{\varepsilon}(T)|^{2} dx
+ \frac{1}{8\varepsilon} \int_{D} (|\mathbf{m}^{\varepsilon}(T)|^{2} - 1)^{2} dx + \frac{\rho_{0}}{2} \int_{D} |\mathbf{n}_{t}^{\varepsilon}(T)|^{2} dx
+ \frac{\beta}{4} \int_{D} |\nabla \mathbf{n}^{\varepsilon}|^{2} (T) dx - \frac{\beta}{4} \int_{Q} |\nabla \mathbf{n}_{t}^{\varepsilon, N}|^{2} dx dt (20)
- \frac{2\lambda^{2}T}{\beta} vol(D) \leq \frac{a_{1}}{2} \int_{D} |\Lambda^{\alpha} \mathbf{m}_{0}|^{2} dx
+ \frac{\rho_{1}}{2} \int_{D} |\mathbf{n}_{1}|^{2} dx + \frac{3\tau}{4} \int_{D} |\nabla \mathbf{n}_{0}|^{2} dx
+ \frac{4\lambda^{2}}{\beta} vol(D) + C(\mathbf{h}).$$

Remark V.2. By taking the lower semicontinuous limit in (14), We can deduce (20)

B. Convergence of approximate solutions

Our aim here is to take the limit as $\varepsilon \to 0$. Based on the estimate given in (20), we can conclude that the following quantities are uniformly bounded.

$$\begin{split} &(\mathbf{m}^{\varepsilon})_{\varepsilon} \ \text{ is bounded in } L^{\infty}(0,T;\mathbf{H}^{\alpha}(D)),\\ &(\mathbf{m}^{\varepsilon}_{t})_{\varepsilon} \ \text{ is bounded in } L^{2}(0,T;\mathbf{L}^{2}(D)),\\ &(|\mathbf{m}^{\varepsilon}|^{2}-1)_{\varepsilon} \ \text{ is bounded in } L^{\infty}(0,T;L^{2}(D)),\\ &(\mathbf{n}^{\varepsilon})_{\varepsilon} \ \text{ is bounded in } L^{2}(0,T;\mathbf{H}^{1}_{0}(D)),\\ &(\mathbf{n}^{\varepsilon}_{t})_{\varepsilon} \ \text{ is bounded in } L^{2}(0,T;\mathbf{L}^{2}(D)). \end{split}$$

Subsequently, there are two subsequences that we continue to denote as $(\mathbf{m}^{\varepsilon})$ and $(\mathbf{n}^{\varepsilon})$ such that

$$\mathbf{m}^{\varepsilon} \rightharpoonup \mathbf{m}$$
 weakly in $L^{2}(0, T; \mathbf{H}^{\alpha}(D)),$
 $\mathbf{m}_{t}^{\varepsilon} \rightharpoonup \mathbf{m}_{t}$ weakly in $L^{2}(0, T; \mathbf{L}^{2}(D)),$

$$\begin{split} \boldsymbol{m}^{\varepsilon} &\to \mathbf{m} \quad \text{strongly in} \quad L^{2}(0,T,\mathbf{H}^{\beta}(D)) \\ &\quad \text{and a.e. for} \quad 0 \leq \beta < \alpha \\ |\mathbf{m}^{\varepsilon}|^{2} - 1 \to 0 \quad \text{strongly in} \quad L^{2}(Q) \quad \text{and a.e.} \end{split} \tag{21} \\ &\quad \mathbf{n}^{\varepsilon} &\rightharpoonup \mathbf{n} \quad \text{weakly in} \quad L^{2}(0,T;\mathbf{H}^{1}_{0}(D)), \\ &\quad \mathbf{n}^{\varepsilon}_{t} &\rightharpoonup \mathbf{n}_{t} \quad \text{weakly in} \quad \mathbf{L}^{2}(Q), \\ &\quad \mathbf{n}^{\varepsilon} \to \mathbf{n} \quad \text{strongly in} \quad \mathbf{L}^{2}(Q). \end{split}$$

We can deduce that $|\mathbf{m}| = 1$ a.e.,by using the convergence (21)

To take the limit as ε approaches 0 in equation (19), let $\phi = \mathbf{m}^{\varepsilon} \times \varphi$ where $\varphi \in \mathbf{C}^{\infty}(\overline{Q})$. Since ϕ belongs to $L^{2}(0,T;\mathbf{H}^{\alpha}(D))$, the following holds:

$$\begin{cases}
\int_{Q} \mathbf{m}_{t}^{\varepsilon} \cdot (\mathbf{m}^{\varepsilon} \times \boldsymbol{\varphi}) \, dxdt \\
+ \int_{Q} a(x)\mu(x)\Lambda^{\alpha}\mathbf{m}^{\varepsilon} \cdot \Lambda^{\alpha}(\mathbf{m}^{\varepsilon} \times \boldsymbol{\varphi}) \, dxdt \\
- \int_{Q} \mu(x)\lambda_{ijkl}(x)m_{i}^{\varepsilon}m_{j}^{\varepsilon}\epsilon_{kl}(\mathbf{n}_{t}^{\varepsilon})\boldsymbol{\phi}_{i} \, dxdt \\
+ \int_{Q} \mu(x)\lambda_{ijkl}(x)m_{j}^{\varepsilon}\epsilon_{kl}(\mathbf{n}^{\varepsilon})(\mathbf{m}^{\varepsilon} \times \boldsymbol{\varphi})_{i} \, dxdt = 0 \\
- \int_{Q} \rho(x)\mathbf{n}_{t}^{\varepsilon} \cdot \boldsymbol{\psi}_{t} \, dxdt + \int_{Q} \sigma_{ijkl}(x)\epsilon_{ij}(\mathbf{n}^{\varepsilon})\epsilon_{kl}(\boldsymbol{\psi}) \, dxdt \\
+ \frac{1}{2} \int_{Q} \lambda_{ijkl}(x)m_{i}^{\varepsilon}m_{j}^{\varepsilon}\epsilon_{kl}(\boldsymbol{\psi}) \, dxdt + \int_{Q} \mathbf{h} \cdot \boldsymbol{\psi} \, dxdt = 0.
\end{cases}$$
(22)

Due to recent convergences we have established, and a result similar to the one in equation (17), and based on ([7]) We take the limit in (22) when $\varepsilon \to 0$

 $\int_{Q} \mathbf{m}_{t} \cdot (\mathbf{m} \times \boldsymbol{\varphi}) \, \, \mathrm{d}x \mathrm{d}t$

 $+ \int_{Q} a(x)\mu(x)\Lambda^{\alpha}\mathbf{m} \cdot \Lambda^{\alpha}(\mathbf{m} \times \boldsymbol{\varphi}) \, dxdt$ $- \int_{Q} \mu(x)\lambda_{ijkl}(x)m_{i}m_{j}\epsilon_{kl}(\mathbf{n}_{t})(\mathbf{m} \times \boldsymbol{\varphi})_{i} \, dxdt$ $+ \int_{Q} \mu(x)\lambda_{ijkl}(x)m_{i}m_{j}\epsilon_{kl}(\mathbf{n})(\mathbf{m} \times \boldsymbol{\varphi})_{i} \, dxdt = 0$ $- \int_{Q} \rho(x)\mathbf{n}_{t} \cdot \boldsymbol{\psi}_{t} \, dxdt + \int_{Q} \sigma_{ijkl}\epsilon_{ij}(\mathbf{n})\epsilon_{kl}(\boldsymbol{\psi}) \, dxdt$ $+ \frac{1}{2} \int_{Q} \lambda_{ijkl}m_{i}m_{j}\epsilon_{kl}(\boldsymbol{\psi}) \, dxdt + \int_{Q} \mathbf{h} \cdot \boldsymbol{\psi} \, dxdt = 0,$

for all $\varphi \in \mathbf{C}^{\infty}(\overline{Q})$ and $\psi \in \mathbf{H}_0^1(Q)$. It is worth noting that, from the estimate given in equation (20), one can readily obtain equation (10). Therefore, (\mathbf{m}, \mathbf{n}) is a solution to the problem (5)-(6)-(7) in the sense of the definition in III.1, thus completing the proof of Theorem III.2.

Remark V.3. If $\mu(x) = 1$, we can readily prove the existence of the global solutions of the problem defined by equations (5), (6), and (7).

REFERENCES

- [1] F. Alouges and A. Soyeur. On global weak solutions for Landau-Lifshitz equations: Existence and non uniqueness. Nonlinear Anal., 18:1071–1084, (1992)
- [2] Y. Chen. The weak solutions to the evolution problems of harmonic maps. Math. Z., 201(1):69–74, (1989)
- [3] M. Chipot, I. Shafrir, V. Valente, and G. Vergara Caffarelli. A nonlocal problem arising in the study of magneto-elastic interactions. Boll. Unione Mat. Ital. (9) 1, no. 1, 197–221, (2008)
- [4] M. Chipot, I. Shafrir, V. Valente, and G. Vergara Caffarelli. On a hyperbolic-parabolic system arising in magnetoelasticity. J. Math. Anal. Appl. 352, no. 1, 120–131, (2009)
- [5] R. R. Coifman and Y. Meyer. Nonlinear harmonic analysis, operator theory and P.D.E. Beijing Lectures in Harmonic Analysis, Princeton University Press, Ann. of Math. Stud. pp.3-45, (1986)
- [6] F. Demengel and G. Demengel. Espaces Fonctionnels, utilisation dans la résolution des équations aux dérivées partielles. EDP Sciences, Les Ulis; CNRS Éditions, Paris, (2007)
- [7] Mohamed EL IDRISSI, El-Hassan ESSOUFI, and Idriss ELLAHIANI, "On a Fractional Model in Magneto-Elastic Interactions," IAENG International Journal of Applied Mathematics, vol. 53, no. 4, pp1332-1340, 2023
- [8] I. Ellahiani, E.H. Essoufi and M. Tilioua. Global existence of weak solutions to a fractional model in magnetoelastic interactions. Abstract and Applied Analysis, Article ID 9238948 (2016)
- [9] I. Ellahiani, E.H. Essoufi and M. Tilioua. Global existence of weak solutions to a three-dimensional fractional model in magnetoviscoelastic interactions. Bound. Value Probl., Paper No. 122, 20 pp. (2017)
- [10] L. C. Evans. Partial differential equations, Grad. Stud. Math. vol 19, Amer. Soc. Providence, RI (1998).
- [11] B. Guo and M. Hong. The weak solutions to the evolution problems of harmonic maps. Calc. Var. Partial Differential Equations 1(3):311– 334, (1993)
- [12] B. Guo and M. Zeng. Solutions for the fractional Landau-Lifshitz equation. J. Math. Anal. Appl, 361(1): 131–138, (2010)
- [13] T. Kato. Liapunov Functions and Monotonicity in the Navier-Stokes Equations. Lecture Notes in Mathematics, 1450, Berlin: Springer-Verlag, (1990)
- [14] T. Kato and G. Ponce. Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math., 41:891–907, (1988)
- [15] J. L. Lions and E. Magenes. Problèmes aux limites non homogènes et applications. volume 1 Dunod (1968)
- [16] J. L. Lions. Quelques Méthodes de Résolution des Problèmes aux limites Non linéaires. Dunod, Paris (1969)
- [17] F. Lin and C. Wang. The analysis of harmonic maps and their heat flows. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, (2008)
- [18] X. Pu and B. Guo. The fractional Landau-Lifshitz-Gilbert equation and the heat flow of harmonic maps. Calc. Var., 42(1):1-19, (2011)
- [19] X. Pu and B. Guo. Well-posedness for the fractional Landau-Lifshitz equation without Gilbert damping. Calc. Var. Partial Differential Equations, 46(3-4): 441–460, (2013)
- [20] J. Simon. Compact sets in the space $L^p(0,T;B)$. Ann. Math. Pura. Appl., 146:65–96, (1987)
- [21] E. M. Stein. Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, NJ: Princeton University Press. (1970)
- [22] R. Temam. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences, 68. Springer-Verlag, New York, (1997)
- [23] V. Valente and G. Vergara Caffarelli. On the dynamics of magnetoelastic interactions: existence of solutions and limit behaviors. Asymptotic Analysis 51:319-333, (2007)
- [24] A. Visintin. On the Landau-Lifshitz equation for ferromagnetism. Japan J. Appl. Math., 2:69–84, (1985)