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Global Existence of Weak Solutions to a
Three-dimensional Fractional Model in
Magneto-Elastic Interactions

Mohamed EL IDRISSI, El-Hassan ESSOUFI

Abstract—This paper delves into the global existence of weak
solutions for a three-dimensional magnetoelastic interaction
model. This model combines a fractional harmonic map heat
flow with an evolution equation for displacement. By using the
Faedo-Galerkin method, we successfully establish the global
existence of weak solutions for this coupled system.

Index Terms—Fractional derivative, Landau-Lifshitz equa-
tion, ferromagnets, elasticity, weak solution.

I. INTRODUCTION
WE consider the following problem [23]:

m; = vm X Hep — pm x (m x Heg). (D
1
p g — div (S(n) + 5ﬁ(m)) = 0. 2)

The first equation, denoted as equation (1), is the famous
Landau-Lifschitz equation, extensively studied in references
[9] and [12]. This equation was originally introduced to
characterize the dynamics of micro-magnetic processes. The
evolution equation for the displacement field is given by (2).
The magnetization vector, m, is a map from D to S2 (the
unit sphere of R®) and m, is its derivative with respect to
time. The symbol X represents the vector cross product in
R3. We denote by m;,i = 1,2, 3 the components of m. Hg
symbolizes the effective field and in this research we assume

Her = —A’*m — £(m, n) 3)

A = (—A)z designate the square root of the Laplacian
which could be explained through Fourier transformation
[21]. In this approach, we use the Einstein summation
convention for repeated indices and we are more concerned
in the case o € (1, 3).

The components of the vector £(m,n) and the tensors
S(n), L£L(m) are represented by

b; = )\ijkl(aﬁ)mjekl(n), 1=1,2,3.

Skl = Uijkl(x)eij(n) and »Ckl = )\ijkl(ac)mimj.

Here €;;(n) = 1(0;n; + 0;n;) represents the components
of the Inearized strain tensorc €, A;jri(x) = A\ (2)dijm +
X2 (2)0;50k1+A3(2) (0i051+0:10 k), Oijri(x) = T1(x) (Oijpr—
5ij6kl+6ik5jl)+7'2(33)5ij5kl whith §;;, =1sit=j=k=1
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and d;;, = 0 otherwise. o(z) = (oi;m(x)), the elasticity
tensor is expected to fulfill the following symmetry property

Tijkt(T) = ki (¥) = 0jira ()

and moreover the inequality

(oim(@)ezen) > B lejil? )

holds for some 3 > 0.

Our investigation is focused on the existence of solutions
for the non-linear integro-differential problem described by
equations (1)and (2).In this context, we refer to the work pre-
sented in paper [7], which establishes the existence theorem
for the general three-dimensional magnetoelastic problem.
We aim to investigate the existence of global weak solutions
for a three-dimensional fractional problem in the case where
the parameters v, and p are considered as variables bounded
coefficients.

We quote some references on the subjects of magnetoelas-
ticity ([1],[5],[6], [10], [11]) and viscoelasticity ([3], [4], [8],
[9], [13], [15], [16]) that inspired this paper.

The following notation will be used consistently through-
out this work: For D an open bounded domain of R3, we
denote by LP(D) = (L?(D))? and H'(D) = (HY(D))?
the classical Hilbert spaces equipped with the usual norm
denoted by ||.||[Lr(p) and ||.||g1(py (in general, the product
functional spaces (X )? are all simplified to X). For all s > 0,
W#:P denotes the usual Sobolev space consisting all f such
that

1flwer == IF L+ -2 (FLOllw < 00

where F denotes the Fourier transform and F~! its inverse.
Let W*? denote the corresponding homogeneous Sobolev
space. When p = 2, W#P corresponds to the usual Sobolev
space H® and we have

1l iz = [1A° Fll 2

We proceed as follows: In the following section, we present
the model on which we will work and we give a preliminary
result. In section 3 we we recall some lemmas. In section 4,
we present the main result that we will subsequently prove
in section 5.

II. THE MODEL AND PRELIMINARY RESULTS

This paper delves into the global existence of weak so-
lutions in the spatial domain D = (0,2)<, with periodic
boundary conditions for the magnetization vector. We con-
sider d = 3 and assume that v =0, po < p(x) < pg, ag <
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a() < a1, po < p@) < prand Ao < Ajjr(z) < A1
The generic point of D is denoted by x = (x1, z2,x3). The
system under consideration is as follows:

m; = —pu(z)m x (m X He)

. 5)
p(x) ny — div (S(n) + 5c(m)) +h=0,

where h is a given external force. We impose the following
initial conditions:

n(-,0) =ng, n(-,0) =n;, m(-,0) =mgy, |my|=11in D,
(6)

with as a boundary condition for the displacement vector

n=0 on X:=09D x (0,7). @)
The double vector product in the first equation(5)presents
the main obstacle to straightforward analysis. To overcome

this challenge, we introduce an equivalent equation

m X m; = p(x)m X Heg.

®)

Following a well-established approach (see [4]), we re-
place the first equation in system (5) with a quasilinear
parabolic equation of the Ginzburg-Landau type.

me[? — 1

3

m® = 0.

€))
Here ¢ is a positive parameter and m® : D x Rt — R3.
The e-penalization in (9) replaces the magnitude constraint
|m| = 1.

m; + a(x)p(x)A**m® + pu(x)€(m®, nc) +

III. MAIN RESULT

Now we define the solution in the weak sense of the
problem (5)-(6)-(7).

Definition IIL1. Ler mg € H*(D),|lmg| = 1 ae, n €
H{(D), n; € L*(D) and h € L*(Q). We say that the pair
(m,n) is a weak solution of the problem (5)-(6)-(7) if:

o for al T > 0, m € L*(0,T;H*D)),m, €
L2(0,T;L*(D)), lm| = 1 a.e, n € L*(0,T; H{(D))
and n; € L*(0,T;L*(D));

e for all p € C*(Q) and v € H}(Q), we have:

/(mtxm)-go dmdt+/ a(z)p(z)A“m-A® (mx ) dedt
Q Q

4 /Q(Iu(x)e(m, n) xm)- ¢ dedt =0
= [ o dravs | (S5 £m) () ara

+/h-1/}dxdt:0;
Q

e m(0,2) = moy(x) and n(0,x) = ng(z) in the trace
sense;

o for all T > 0, we have:
%/D\Aam(T)F da
+ [ |me|* dadt +5 [, [0,(T)]* dz
+2 [, V(D) da— £ [, |Va; ™ | dadt
< %/D|A“mo|2 dx+%/D|n1‘2 da

+3 [ |Vnp|? dz + C(D, 8, \, h),

where C(D, 3, h) is a positive constant which de-
pends only on D, 5, \ and h.

(10)

The principal outcome of this paper can be summarized
as follows.

Theorem IIL2. Let o € (1,3), mg € HY(D) such that
lmg| = 1 a.e, ng € H}(D), n; € L3(D) and h € L?*(Q).
Then a weak solution for the problem, as defined in I111.1,
is guaranteed to exist.

A detailed proof of Theorem III.2 will be presented in
Section 5.

IV. SOME TECHNICAL LEMMAS

This section introduces several key lemmas that will play
a crucial role in subsequent analyses throughout the paper.
To get started, we need a handy result from Lions ([16], p.
57)

Lemma IV.1. Assume XY et Z are three Banach spaces
and satisfy X CY C Z where the injections are continuous
with compact embedding X — Y and X, Z are reflexive.
Denote

d
D= {v|v € LP(0,T; X),vs = d—j € Lpl(O,T;Z)}

where T is finite and 1 < p; < oo, 1 =0, 1.
Then D, equipped with the norm

[[v]]ro (0,7:x) + |[vel | Ler 0,7:2) 5

is a Banach space and the embedding D — LP°(0,T;Y) is
compact.

We’ll also need another handy lemma from Lions ([16],
p- 12).

Lemma IV.2. Let © be a bounded open set of R% x Ry,
hy and h in LY(©),1 < q < oo such that || fi||p.@) <
C, fr = f a.e. in ©, then fi, — f weakly in L1(O).

Here is another Lemma “fractional calculus” whose proof

can be found in [21].

Lemma IV.3. Suppose that p > q > 1 and % + 5 = %
Assume that A°h € L9, then f € LP and there is a constant
C > 0 such that

1Pllze < ClAR L4

We conclude with this lemma (the proof can be found in

[12]).

Lemma IVd4. If u and v belong to
L?(D)/A**u € L?(D)}, then

/AQO‘u-vdm:/Ao‘u-Ao‘vdx.
D D

H22 (D) :=

per

{u €
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V. PROOF OF THEOREM III.2
A. The penalty problem
We consider for € > 0 fixed parameter the following

problem

m; + a(x)p(z)A?*m® + pu(z)€(me, n)

+|m5|2 -1
£

m° =0 (11)

p(z) 05, — div (S(nf) + %L(ms)) +h=0,
with the initial and boundary conditions:
n°(-,0) = ng, n;(-,0) =ny,
m°(-,0) =my, |mg|=1 a.e. in D,
n°=0 on .

We apply the Faedo-Galerkin method: for {f;};en an or-
thonormal basis of L?(D) consisting of all the eigenfunctions
for the operator A2* (the existence of such a basis can be
proved as in [22], Ch.IT)

A2afi = Oéifi,i = 172,

under periodic boundary conditions, and {g;};cn be an or-
thonormal basis of L2(D) consisting of all the eigenfunctions
for the operator —A

—Ag; = Bigi, i =1,2, ...

gi=0 on 0D.

and we consider the following penalized system
in@=Dx(0,T)

mSY + a(z)p(z)A22meY + p(z)e(m=N n=N)

mE,N 2 _ 1
+| | mE,N:()

€

1
p(z) 05N — div(S(nf»N) + §£(mE’N)) +hV =0,
(12)
where the vector hV satisfies

[ W) do = [ hetg(a) de.

D
as well as the corresponding initial and boundary conditions:

nE’N('aO) = nN('aO)v n?N(‘?O) = nl{/v('70)7
m>Y(-,0) =m"(.,0), in D,

s,N:O

n on X =0Dx(0,T).

and

[ 0¥ @00 do = [ mo(a)aia) da

D

[ ¥ 0g(0) do = [ m(ehgta) de.

D

| w0 @) dr = [ @) o

We are seeking for approximate solutions
(ms,N ns,N )
)
to (12) under the form
N

m*N = 37 a;(t) fi(x)

i=1

N
. oY =3 bi(t)gi(x),
i=1

where a; and b; are R3-valued vectors.

Multiplying each scalar of the first equation (12) by f; and
the second part by g;, and integrating over the domain D,
leads to a system of ordinary differential equations involving
the unknowns («;(t), Bi(t)),7 = 1,2,..., N. Standard ordi-
nary differential equations theory allows us to demonstrate
the existence of local solutions to the problem, which can be
extended to the interval [0, 7] using a priori estimates. For
this, we multiply the first equation of (12) by mj A and the
second by nf’N integrating in D, we obtain

/|mf’N\2dx —|—/a(x)u(x)A2amE’N mS N dz
D D

+[ (@) €(m=N n= Ny mS Y dz

+ [N niNdz =0

where Y is the outer unit normal at the boundary dD. On
the other hand (note that \;;xi(x) = ik (2))

/E(mE’N,nE’N)~mf’N dx
D

:/ )\ijkl(x)mj’Nmf’Nekl(na’N) do
D

/ ik () (m5 N g™ 4 mE NS e (n™N) da
D

N =

1 d £ 1>
= / )\ijkl(:r)mi’ij’N

e,N
= —-— ) d
2dt/, € (7 )dz

1
-2/ )\ijkl(m)mf’ij’Nekl(n?N)dx,
D

by symmetry of both tensor S and £ , we obtain

/D (S0Y) 4+ L£mN)) (i) da

:/ (S(nE’N) + 1E(mE’N)) -vnS de,
D 2

and

/mmw%wﬂmwﬂmx
D
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1d
-3 /D (@) (0N e (0N da

By using the Lemma IV.4, we have

1d
/ i do 55 [ au@)|ATme YR da
. 2dl
d
"‘%&/D ,U(HC))\ijkz(x)mf’ij’Nekl(nE’N) dz

]. € € £
2 /D p(@)Aijwa(@)ms N ms N e (nF ) de

L1d
4e dt

1d )
337 [, i P da

+3 Jp oigri(@)ei; (N e (V) dz

(Im=N > = 1) dz =0
D

1
+§/D)\ijkl(l')m?Nm?NEkl(ni’N) dx

N
nydr =0

+ [t

By summing the both equations, we obtain

1d
2
/|m |“ dx +2dt
1d e,N |2
+4£dt/(|m | ) dx+§&/ p(z)n; " |° da

1d e
537 [, sm@es o) o

a(x)|A°m=N|? dz

]‘ d g g, g
+f—/ )\ijkl(x)mi’Nm‘ Newm>) dz + /hN SN dz
2dt/, J D

1

T3 /D(l — (@) Nijrr(x)m; ng NepmsN) da = 0.

Now integrating in time

1
/ ImS |2 dxdtJrf/ a(z)|A%m
Q 2Jp

1 c
4 Jp (N (TP =17 do+ 5 [ plolni (D da
+35 [p oijr(@)ei; (05N e (05N)(T) da

1

+§/ Aijki (z)my ij New (>N (T) da
D

MT)]? do

+% / (1= pl@)) N (@)ms N m5 N ey (nf ) dadt
_ thN

bz [ m¥OF <17 do 5 [ ol O)F da
+5 [ sn@es @)eun®)(0) dr

1
3 /D)‘z‘jkl(x)mfvmévekl(“N)(O) da.

nyVda + 1 [ Ja(z)A°mMN (0)[? da

13)

We call B5Y(T) the left hand side of (13) and BY(0) its
right hand side. \
2
Now for a positive parameter A such that — > sup|A;jxi ()|
ijkl
we have by Young’s inequality, omitting superscripts,

2\
[ Aigrr(@)mimjen (ng)]| < §|mz‘\|mj\|6kl(ﬂt)\
2\
< —
- 9

From where

(Gl 2 +

AN \le(nt)|2)-

> ijr(

ijkl

2X 79X 9
< S (G Em + el
=~ (3 () + S et
- ,8 - % ) — ki\1t
2
=l D e

Inspired by the work of Valente [23], we have

1
[0 n

— %| /Q(l — () Niji(z

ikl

/ ZP\UM mlm]ekl(nt)|dxdt

Jmim;eg(ng)]

ijkr(@)mimjer (ng)dzdt|

ymimjeg (ng)dade]

Uk:l
< )\2/ |m|4dmdﬁ+6/ Z|e (ny)[2dxdt
< — - k1 (Mg
B o 4Ja %
2
/23 (|m|2 -1+ 1) dzdt
6 Zlﬁkl nt 2d$dt
Q
272 2 2\2T
<5, (\m\2 - 1) dadt + === vol(D)
/ Z'ekl n; | dzdt
Q ki
272 , \2 22T
<5 (|m| _1) dadt + ol (Q)
Q

1
+Z /Q Oijki (x)eij (n)ekl (nt)dxdt.

by using (4). Now, for ¢ < 166)\2 we have

,|/1_

) (|m|2 - 1) dadt +

YAijri(x))mime (m)dadt|

20T
< —
- 86

vol(D)

+i /Q Oijkl (.%'))Eij (nt)ekl (n)dxdt
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Which implies

1 (‘ms,NP _
8¢ Q

—i /Qaijkl(x))fij(nE7N)€kl( )dl’dt

2032T

2
1) dzdt — vol(D)

1

< 3 [ HaD A Vo0

also, we have

2

<L /D (\mN(o)|2 _ 1)2da: + %UOZ(D)

and

1 e, N 2 2 2)‘2
—a D<|m (T)| 71) dr — =Z-vol(D)

1 ]| smlaes 00 a1 )ds

1

<3 /D Nga(@))mE N mEN ey (0N (T)

According to the definition of B (T) and B (0)
we can write

/ mi 2 dedr + 2 / A“mEN ()2 da
b (e (@) - dx+”°/| TP do

+1 [poijr(x))ei; (0N e (=N
2
)~ &, (\mva\Q - 1) dadt
1

—Z/ 04k (T))€i; (nE’N)ek.l(nf’N)dosdt < Bg’N(T),
Q

2%(T+1) (§+1) vol(D

and

BN (0) g—/ Nz 4 ‘“/ 1A“m™ (0)? d

+%/D(\m (0)]? /Inf (0)* do

+%/D"w"fl@f))%<nN>em< )(0) do + Z-val(D),

Since BN (T) = BY(0), we have

/|m ddt+—/|Aa )2 da
7/ (jm=N(T)]? = 1)? da + % ng™(T)* da
D

+3 || sta)es (00X )aun ) (1) dasuol(D)

20T 1 N2 2
-5 vol(D)—SE/Q(m | —1) dadt

i/QUijkl(I))Eij(nE’N)le( )dxdt

g—/ ns N dz +a1/|Aa (0)[? dz
Q

3
g [ =12 e B [ )7 ao
8e D

+%/Daijkl(l‘))€ij(nlv)6kl( )(0) dz + %vol( ).

At this point, we introduce the functional:
FNT)

= [ jm{N 2 dedt + 2 [ (AmeN (7)) da
i 2
Q D

+3: [p(Im=N(T)? —1)* do

éfQ (|m€’N|2
+2 VN (T de — 8 [ vni N de

dxdt—i——/ SN (1) ? da

- 2)‘;Tvol(D),

then
FeN(0)

1
_ ﬂ/ Arm N ) do+ o= [ (O - 12 da
D

/| (O)2 da +B/|anN2()dx.

In addition

—/QhN-nf’Nde/;H 2. g +—HhNIIL2

/D|VnE’N(T)|2 dx</D§M:|ekz(nE’N(T))l2dx»

and under the assumption o;jx;(z)€;j(n)eg (n) < 7|Vn|?
(for a positive constant 7), we have

/|m€N2dxdt+—/ |A°m®=N(T)? dz

—/ (jm=N —1)? dz

dadt
86 Q<|m * - ) o
2)\2T
—g/ Vo2 dz — vol(D)
/| 7)) dz +6/ VN 2(T) de < (14)

/|Aa (O)2 d +7/ (m" (0)% — 1)? da

P1 N 2 N2
— 0)]“d —||h

2

4
+3l/ |vn? (0))* dz + ivol(D)7
4 Jp B
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which implies

T
FoNT) < [ FON(t) dt 4+ 3F5N(0)
0
L Nue 4\
+2T)1Hh L2 + 5

and from the Gronwall lemma, we have

vol(D),

2

%’UO[(D)).

Since ny € Hy(D), n; € L*(D) and mo € H%(D) which
is embedded into L*(D) for 1 < a < 2 the right hand side
is uniformly bounded. Indeed, for constants C1, Cs, C3, Cy
and C'(h) independent of N

/ (Im™ ()2 — 1)* da

D

:/ im™ (0)* dx—2/ Im” (0)? dz + vol(D)
J D D

< [[m™ (O)] 4 + vol(D)
< Cyllm™ (0)] e

S 037

[ 1on o) @

/|vn
<2/ IV (
<2/ IV (

< 2[In"(0)

1
FeN(T) < e (3FN(0) + ﬂ|\hN||32(Q) +

)+C2

Vllo +Vn0‘2 dx
— Vny|? dx+2/ |Vng|? dx

— Vny|? dx+2/ |Vng|? dx

— 19|l oy + 2lI0] [ )
< Cy,
and
I0Y[f2g) = [IBY —h+h|[f2 o)
< 2[[0" — h|[2 ) + 2/hl[F2 g
< C(h),

Due to the strong convergences m™ (.,0) — mq in H*(D),
n"(.,0) = ng in Hy(D) and h" (z) — h(z) in L?(Q). For
the other term (n¥ (0)), the estimate can be carried out in an

analogous way using the strong convergence n.” (.,0) — n;

in L?(D). Moreover, noting that (for a constant C' indepen-
dent of € and V)

[ = [ (meE -1 1) o
D D

1
< f/ (jm=N 2 —1)2 dz + C.
2Jp
Therefore, for a fixed parameter € > 0 we have
is bounded in L°°(0,T;H*(D)),

E,N) )
is bounded in L2(0,T;L*(D)),
(
)

(m
(m;™)

E,N‘Z o 1)

(na,N>N

is bounded in L*>(0,T; L*(D)),
is bounded in L?(0,T;Hg(D)),

(|m

15)

5™y is bounded in L%(0,T;L3(D)).

Note that, (15) is due to the Poincaré lemma. classical
compactness results imply the existence of two subsequences
still denoted by (m**V) and (n*?) such that for fixed € > 0

m*Y —~m® weakly in L?*(0,7;H*(D)),
mSY —~m  weakly in  L3(Q),

N & m® strongly in  L2(0,T,H?(D)) (16)
and a.e. for 0 < (B <«
m*N 2 -1~ ¢ weaklyin L?*(Q),
n®Y —~n® weakly in L%(0,T;H}(D)),
Y —~nf  weakly in  L%(Q),
n>Y - n®  stongly in - L*(Q).

The convergence (16) is due to Lemma IV.1 and thanks to
Lemma V.2 it can be shown that ( = |m®|? — 1. based on
the Sobolev embedding H(Q) — L*(Q), since 1 < o < 2
,the subsequent compactness result ensues

NN
m; " myT = mim§

5 strongly in L*(Q),

a7

and

m; gf)] — m5¢; strongly in L*(Q).
Therefore, we consider the variational formulation of (12).
/ m . ¢ dedt +/ a(z)p(z)A*m=N - A%¢ dadt
Q Q
—/ (@) Aijr()ms N ms N e (np N ), dwdt
Q
-|-/Qu(x))\ijklm?ij’Nekl(nE’N)(ﬁi dxdt

|ms,N|2 _

+Jo m*N - ¢ dzdt =0

- /Q pl)n

+ Jo oijm(@)ei;(m

=N, dadt

=New () dadt

1 e,
+§/ /\ijkl( )m ij N6k1(¢) dxdt
Q

+ [o " -4 dedt =0,

(18)
for any ¢ € L?(0,T; H*(D)) and v € Hy(Q).
Taking the limit N — oo in (18), we obtain
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/ m; - ¢ dxdt +/ a(z)uw(x)A“m® - A%¢ dadt
Q Q
_/ ,u(x))\ijkl(m)mf’ij’Nekl( M, dadt
Q
+ [ naMigamimS i (n)e, dodt
Q

5‘2_1

— / p(m)nf . ’Q/Jt dl‘dt—‘r/ aijkl(x)eij(na)ekl(v,b) daxdt
Q Q

1
—|—§/ Aijrr(z)mimSer () dadt —I—/ h - dzdt =0,
Q Q
(19)

for any ¢ € L?(0,T;H*(D)) and v € H}(Q). We proved
the following result.

Proposition V.1. Ler mg € HY(D) such that jmg| = 1 a.e.,
ng € H}(D) and ny € L?(D). Then, for any positive € small
enough and any fixed time T, There exists a solution m*®, to
the problem (11) in the sense of distributions. Moreover, we
have the following energy estimate

/ Ime|? dadt + %/ |Am* (T)|? dz
Q

1 . 2
+§/D(\m( 2 dz + /| n; (T)|* dx
+§/ |Vn© |3(T) d:c—f/ VSN2 dedt (20)

D
20T o 12
73 vol(D |A my|* dx

+’£/ Iny |2 dx+l/ |Vno? da
2 D 4 D

+4g2vol(D) + C(h).

Remark V.2. By taking the lower semicontinuous limit in
(14),We can deduce (20)

B. Convergence of approximate solutions

Our aim here is to take the limit as ¢ — 0. Based on the
estimate given in (20), we can conclude that the following
quantities are uniformly bounded.

(m®). is bounded in L*°(0,T;H*(D)),
(m§). is bounded in L*(0,T;L*(D)),
(jm?|? — 1), is bounded in L>°(0,T; L*(D)),
(n®). is bounded in L2(0,T;H} (D)),
(nf). is bounded in L*(0,T;L*(D)).

Subsequently, there are two subsequences that we continue
to denote as (m°) and (n°) such that

L*(0,T;H*(D)),
L*(0,T;L*(D)),

m® —m weakly in

m; —m;  weakly in

£

m® —m  strongly in  L%(0,T,H?(D))

and ae. for 0 < B < «
strongly in L?(Q) and a.e.

me|> -1 -0 (21)

n° —~n weakly in L*(0,T;H}(D)),
ni —n, weaklyin L*Q),
n° —n strongly in L*(Q).

We can deduce that |m| = 1 a.e.,by using the convergence
(21)

To take the limit as £ approaches O in equation (19), let
¢ = m® x ¢ where ¢ € C™(Q). Since ¢ belongs to
L?(0, T;H*(D)), the following holds:

/ m; - (m® X ¢) dzdt
Q

—|—fQ a(x)p(x)A*me - A*(m® x ) dzdt

= [ nlesueymimS c(n) g, dde
Q

—|—/ () Ak (T)m5eR (n) (m® x ); dedt =0
Q

- / pla)ns b, dadt + / oo ()i (0 ey () dadt
Q Q

/ Aijrr(x)msms e () dxdt—l—/ -1p dzdt = 0.
(22)

Due to recent convergences we have established, and a result
similar to the one in equation (17), and based on ([7]) We
take the limit in (22) when € — 0

Hence

/ m; - (m X ) dadt
Q

+Jg a(@)pu(z)A%m - A%(m x @) dzdt

—/Q,u(:c))\ijkl(J;)mimjekl(nt)(m>< p); dadt

+ [ i) Mmoo x ) dadt =0
Q

- / p(z)ng - Y, d:z:dt+/ oijki€i;(M)eg () dadt
Q Q

1
+§/ )\ijklmimjekl('l/)) dzxdt -I—/ h- dzdt =0,
Q

Q

for all ¢ € C™(Q) and ¥ € H}(Q). It is worth
noting that, from the estimate given in equation (20), one
can readily obtain equation (10).Therefore, (m,n) is a
solution to the problem (5)-(6)-(7) in the sense of the
definition in I11.1, thus completing the proof of Theorem
1I1.2.

Remark V.3. If u(z) = 1, we can readily prove the
existence of the global solutions of the problem defined by
equations (5), (6), and (7).
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