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ABSTRACT
A key technical challenge to make multiple robots work together
is software development how to specify the mission at the user
level and how to program each robot separately. In this paper, we
propose a novel software development framework in which a mis-
sion is specified with a novel scripting language and the individual
robot behavior with an extended dataflow model at the task level.
How to relate these two specifications and how to generate the
robot code automatically are also addressed in the proposed frame-
work. The viability of the proposed methodology is validated with
a preliminary experiment.
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1 INTRODUCTION
In the near future, it will be common for a user to make diverse
robots work together in various fields, including small mobile robots
with limited energy and weak computation power [1][2][13]. A
key technical challenge to realize this vision is how to specify the
mission at the user level and how to program each robot considering
the resource and/or energy constraints.

The traditional method to program a robot is to use the robot-
specific programming environment provided by the robot manufac-
turer [3][7][8][9]. To increase the reusability of the software on var-
ious robot hardware platforms, several robotic software platforms
have been developed recently for systematic software development.
The most prominent robot software platform is Robot Operating
System (ROS) [16], which is based on a component-based software
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Figure 1: Overview of the proposed framework

1 MasterTeam: Robot r … 

2 MasterTeam.Action.Move {

3 move(Seoul National Univ)  … } 

4 MasterTeam.A_MODE {

5 set(Action, Move) …} 

6 MasterTeam.main {

7 case (A_MODE):

8 catch(emergency): mode = RC_MODE

9 case (RC_MODE): …. }

Figure 2: Mission scripting language example

design methodology. However, it has several weaknesses. Its re-
source requirement may be too high for miniature robots since it
assumes a Unix-based operating system such as Linux. It is also not
easy to control and coordinate multiple robots [6].

In this paper, we propose a novel software development method-
ology that separates mission specification and robot behavior pro-
gramming. A new scripting language with dynamic mode changes
and multitasking is devised for mission specifications. For robot
behavior programming, on the other hand, we use an extended
dataflow model for task-level behavior specification of each ro-
bot. The actual robot software is automatically generated from the
extended dataflow model.

2 PROPOSED METHODOLOGY
The overall flow of the proposed software development methodol-
ogy is shown in Fig.1 which can be understood as the refinement
process among four levels of abstraction in software development.
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Figure 3: A task graph specification example for distributed
robot platforms

The first step is mission speci f ication at the highest level of
abstraction with a scripting language. It can express team config-
uration, service-oriented programming, dynamic mode change of
operation, and multi-tasking. To our best knowledge, no existent
script language has such expression capability [4][12][15][18]. Fig.2
shows a snippet of mission specification written in our proposed
script language. The function each robot can perform is abstracted
with a service in our framework, and a user requests a service by
its name. We also allow a user to define a composite service that
executes the primitive services sequentially. Multitasking is not
easy to express in popular script languages like python or lua. To
support multitasking, we adopt the notion of plan from [5]; multi-
tasking of a robot is represented by mapping one composite service
per plan. A robot may have multiple operating modes depending
on the environments and user requests. The generated event in the
composite service can trigger a mode transition. In Fig.2, the mode
conversion can be found on lines 7-9.

The second step is strateдy description that defines the second
level of abstraction. It provides more information on how to per-
form services. A service written in the mission can have different
algorithms depending on various conditions and requirements. For
service refinement, we describe the conditions and requirements for
selecting the appropriate algorithm for each service. Non-functional
requirements can be added at this step as well.

The next step is task graph specification that depicts the internal
behavior of each robot to perform the mission. Unlike mission
specification, we assume that the internal definition of a task is
developed by a professional programmer. It is abstracted as a service
function that a robot can perform. Recently compute-intensive
services such as vision and machine learning are getting popular
in robots. A compute-intensive service can be specified by a task
subgraph that can be mapped to multiple processors for parallel
processing.

To analyze the system behavior at compile-time, we apply a for-
mal task graph model, extended from synchronous dataflow (SDF)
[11] model for task graph specification. The SDF model that defines
formal semantics for inter-task communication and task execution
condition allows us to make the task scheduling decision at compile-
time and estimate the performance and resource requirements. Our
extended model uses finite state machine (FSM) to represent dy-
namic behavior [10] and a special type of task, called library task,
to manage shared resources [14] among multiple robots.

Fig.3 illustrates a task graph for an autonomous driving scenario
for a single robot. Distance sensor task is triggered periodically, and
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Figure 4: The number of lines in the robot software code and
memory usage comparisons between ROS and our proposed
framework for an autonomous driving scenario of a robot

the triggered value is transferred to the control task. The control
task is a special type of task, which plays the role of supervisor of
the internal operation of a robot. Besides, Fig.3 shows how multiple
robots share information. A library task supports shared resource
management and server-client interaction, which is good for ex-
pressing the cooperation of heterogeneous robots.

The final step is to automatically generate the target code that
runs on each processor from our extended dataflow model. This
feature increases software design productivity by minimizing the
possibility of human error in manual programming.

3 PRELIMINARY EXPERIMENTS
To prove the viability of the proposed methodology, a preliminary
experiment is conducted with a simple autonomous driving sce-
nario whose task graph is represented in Fig.3, running on a V-Rep
simulator [17] environment.

We compare our framework and ROS in two ways: the number
of lines in actual robot codes and memory requirement. As shown
in Fig.4, about 80% of the total code is automatically generated
from the model-based task graph specification. The reduced num-
ber of manually written codes can serve as an indicator of how
the productivity of software development is improved. Also, our
experiment reveals that the memory requirement of ROS-based
software is 5.82 times higher than the software designed by the
proposed framework as seen in Fig.4. This is because additional
processes such as rosmaster and rosout are executed to manage
additional nodes and messages when ROS is running.

4 CONCLUSIONS
In this paper, we propose a novel service-oriented robot software
development framework for distributed heterogeneous platforms.
The proposed framework includes the high-level mission specifica-
tion with an easy-to-learn scripting language and the model-based
task graph specification for algorithm-level behavior specification
of each robot. The proposed methodology is verified with an au-
tonomous driving scenario experiment.
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