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ABSTRACT
Law codes and regulations help organise societies for centuries, and
as AI systems gain more autonomy, we question how human-agent
systems can operate as peers under the same norms, especially
when resources are contended. We posit that agents must be ac-
countable and explainable by referring to which rules justify their
decisions. The need for explanations is associated with user accep-
tance and trust. This paper’s contribution is twofold: i) we propose
an argumentation-based human-agent architecture to map human
regulations into a culture for artificial agents with explainable be-
haviour. Our architecture leans on the notion of argumentative
dialogues and generates explanations from the history of such dia-
logues; and ii) we validate our architecture with a user study in the
context of human-agent path deconfliction. Our results show that
explanations provide a significantly higher improvement in human
performance when systems are more complex. Consequently, we
argue that the criteria defining the need of explanations should also
consider the complexity of a system. Qualitative findings show that
when rules are more complex, explanations significantly reduce
the perception of challenge for humans.
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Alex Raymond, Hatice Gunes, and Amanda Prorok. 2020. Culture-Based
Explainable Human-Agent Deconfliction. In Proc. of the 19th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2020),
Auckland, New Zealand, May 9–13, 2020, IFAAMAS, 9 pages.

1 INTRODUCTION
The Code of Ur-Nammu is the oldest known written law code,
inscribed around 2100 BC in ancient Mesopotamia [12]. Its structure
is a set of rules (carved in a stone tablet) designed to aid denizens
to settle potential conflicts. Conceptually, little has changed since
then, as humans historically and currently rely on sets of rules to
specify their own systems’ behaviours, expecting peers to abide
by those regulations when conflicts arise. Different regimens are
defined for several environments, be it traffic, competitive sports,
business, civil society, etc.

Inasmuch as robots and intelligent artificial agents progress in
sophistication, they obtain increasingly more autonomy and start
taking part in the same systems and societies that humans do, no
longer as tools, but rather as peers. It is therefore fundamental to
guarantee that agents embedded in those environments will also
observe and respect the same rules and regulations that humans do
in order to resolve conflicts and operate orderly [5]. The need for
rule-abiding behaviour goes beyond the debate of ethics and morals
[21], which is vast but out of the scope of this investigation. Instead,
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we are interested in ensuring that autonomous agents consider
their liability [3] and can express justification for their agency [18]
with regards to the present ruleset to be followed — preferably in a
human-understandable way.

Rizaldi and Althoff [22] tackle the liability and accountability
problem in the autonomous vehicle domain with a manual formali-
sation of specific traffic rules, using automated theorem proving
techniques. Their approach is formally rigorous but is specialised
for a specific set of traffic rules only and does not generalise beyond.
Cranefield et al. [9] propose that ideal accountable agents must: i)
understand what is expected from them (from rules/obligations);
ii) answer queries about their decision-making (being explainable);
iii) carry out argumentative dialogues in which beliefs and plans
are challenged and justified; iv) adapt their reasoning apparatuses
or update their plans as a result of accountability dialogues; and v)
take human values into account when reasoning.

The quest for understanding and explaining the decisions made
by artificially intelligent systems and agents motivated the materi-
alisation of the eXplainable AI (XAI) [13] research field. The onset
of machine learning systems and the popularity of methods such
as support vector machines and artificial neural networks have led
to AI solutions that are efficient but indecipherable regarding their
rationale behind a conclusion. For that reason, the XAI community
is interested in systems that are not only clear regarding ‘how’, but
also as to ‘why’ certain decisions were made [2, 24].

In order to achieve more realistic explainability for humans, we
spur the necessity for more realistic models of reasoning. Expressly,
classical logic does not provide an authentic representation of com-
mon sense reasoning, as under a scenario of incomplete information
a human may draw conclusions that can be withdrawn later, when
new information is presented [1]. Argumentation-based approaches
attempt to fill in this gap by providing a framework for defeasible
reasoning [10], which grants systems clear decision-making mech-
anisms that provide not only resolutions, but also the reasons that
may support it [27].

Argumentation approaches walk hand in hand with the desider-
ata proposed by Cranefield et al. [9], as they allow us to: i) enable
norm-aware reasoning [4]; ii) generate explanations [11, 25]; iii)
carry argumentative dialogues to support their positions [1, 23]; iv)
perform meta-reasoning [26]; and v) consider human values [16].
Consequently, we regard argumentation frameworks as a strong
mechanism for providing accountable and explainable agency.

Rosenfeld and Richardson [24] postulate that the necessity for
explainability in human-agent systems follows a taxonomy of three
types of explanations: not helpful, beneficial, and critical. They posit
that if humans will not accept a system without an explanation,
then the need for explainability is critical. Likewise, explanations
can range in significance depending on their ability to engender
trust in human users.We aim to introduce another dimension to this
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analysis, by empirically observing that the complexity of the rules
governing a system may also affect the usefulness of explanations
where human performance is concerned.

In this work, we address environments where humans and agents
act with independent agency and are subjected to the same rules and
conditions. Most explainable approaches in human-agent systems
are classified with regards to their human-centric or agent-centric
[24] approaches, but relatively few are interested in emulating
human-agent societies [7]. Can agents and humans with individ-
ual goals coexist as peers in a norm-aware environment where
resources are limited? Can such peers resolve conflicts and provide
accountability to their decisions, to both humans and other agents
alike? Namely, given a multi-agent environment with resource con-
tention, can we define a mechanism that allows us to facilitate
human-agent integration by providing: i) an equivalence between
human-readable rulesets and agent policies and ii) in a way that is
explainable and allows humans to interact successfully with agents
to resolve conflicts?

This paper offers the following contributions:

• We propose an argumentation-based architecture for de-
signing explainable human-agent systems for deconfliction
environments.
• We present an empirical study to investigate the effect of
explanations in this architecture in varying levels of com-
plexity.

We exemplify our architecture with a multi-agent resource con-
tention application in the context of the problem of multi-agent
path deconfliction. We show how humans and agents can deconflict
trajectories whilst respecting externally-defined “rules of way.”

Towards this end, we design a computer game implementing the
proposed architecture and conduct a user study to evaluate it. Hu-
mans are given path deconfliction rulesets with different amounts of
rules each and are asked to navigate in a multi-agent environment
and avoid collisions with agents. In our setting, we define complex-
ity as the number of rules that govern the deconfliction of resources.
We observe how humans perform in terms of ruleset complexity
and the presence/absence of explanations. Our results show that
the benefit of explanations is correlated with the complexity of the
underlying system. Qualitative results show that human experience
in systems with explanations is superior when such systems are
sufficiently complex.

2 BACKGROUND
In this section, we introduce definitions and concepts that are used
in the construction of our architecture. Section 2.1 introduces es-
sential definitions for Abstract Argumentation frameworks, the
principal deliberation tool in our framework. Section 2.2 presents
a mechanism for dialogical exchanges between agents in Abstract
Argumentation, followed by an argumentation-based formalism of
explanations in Section 2.3.

2.1 Abstract Argumentation
A seminal paper from Dung [10] introduces the concept of an
argumentation framework, also called abstract argumentation (AA).
His framework considers arguments as purely abstract entities,

with no special attention paid to their internal structure. Modelling
occurs at the level of relationships between those abstract entities.

The main concept behind AA is that a statement is acceptable if
it can be defended successfully against attacking arguments. As put
by Bentahar et al. [6], ‘the beliefs of a rational agent are characterised
by the relations between its “internal arguments” supporting its beliefs
and the “external arguments” supporting contrary beliefs.’

We will use and adapt some definitions from Dung’s work and
other authors [8, 19, 20], as follows.

Definition 2.1. An argumentation framework is a directed graph
𝐴𝐹 = (A,R),whereA is a set of arguments (vertices) and R is a set
of directed, binary attack relationships between arguments (arcs),
i.e., R ⊆ A ×A. We say attacks(𝑎, 𝑏) holds iff (𝑎, 𝑏) ∈ R. Likewise,
a set 𝑆 of arguments attacks another set of arguments 𝑇 (or 𝑇 is
attacked by 𝑆) if any argument in 𝑆 attacks an argument in 𝑇 .

Definition 2.2. An argument 𝑎 ∈ A is acceptable with respect
to a set 𝑆 of arguments iff for each argument 𝑏 ∈ A that attacks 𝑎
there is a 𝑐 ∈ 𝑆 that attacks 𝑏. In that case, 𝑐 is said to defend 𝑎.

Definition 2.3. A set of arguments 𝑆 is said to be conflict-free if
there is no attack within its arguments, i.e. there are no arguments
𝑎, 𝑏 ∈ 𝑆 s.t. 𝑎 attacks𝑏. Likewise, a 𝑆 ⊆ A of arguments is admissible
iff it is conflict-free and each argument in 𝑆 is acceptable with
respect to 𝑆 .

2.2 Dialogue Game Rules
The extension semantics introduced by Dung are powerful in as-
serting global properties of the argumentation framework, but their
output is static and monological in nature.

In pursuance of a more dialogical approach [17], one must con-
sider the dynamics of dialogue and the assumptions therewithin.
Using Jakobovits and Vermeir’s position framework formalism [15],
‘the combination of a set of rules that govern the game, and the deter-
mination of winning criteria, constitute a dialectic semantics for the
“theory” that underlies the player’s arguments.’ We will adapt some
of the definitions from [15], as follows.

Definition 2.4. Let 𝑃𝐹 = (P,R∗) be a position framework paired
with an argumentation framework 𝐴𝐹 = (A,R), where P con-
sists of conflict-free subsets of A, and R∗ denotes the set of finite
sequences of elements from 𝑅. Elements of P are called positions.

Definition 2.5. A player 𝑐 can be the proponent (𝑝) or opponent
(𝑜). The adversary of 𝑝 is denoted 𝑝 = 𝑜 . Conversely, 𝑜 = 𝑝 .

Definition 2.6. Let a player 𝑐 ∈ {𝑝, 𝑜} and a position 𝑋 ∈ P. A
move in P is a pair (𝑐, 𝑋 ). For a move𝑚 = (𝑐, 𝑋 ), we use player(𝑚)
to denote 𝑐 and pos(𝑚) to denote 𝑋 .

Definition 2.7. A dialogue type is a tuple (P,R∗, 𝜙), where (P,R∗)
is a position framework and 𝜙 : P∗ −→ 2P is a legal-move function.
A dialogue 𝐷 in (P,R∗, 𝜙) is any countable sequence 𝑑0, 𝑑1, . . . , 𝑑𝑛
of moves in P that satisfies:

(1) player(𝑑𝑖+1) = player(𝑑𝑖 ), i.e. the players take turns.
(2) pos(𝑑𝑖+1) ∈ 𝜙 (pos(𝑑0) . . . pos(𝑑𝑖 )), i.e. the next move is legal.
(3) 𝑑𝑖+1 ∉ {𝑑0, 𝑑1, . . . , 𝑑𝑖 }, i.e. a move cannot be repeated twice.
(4) attacks(pos(𝑑𝑖+1), pos(𝑑𝑖 )), it attacks the adversary’s lastmove
(5) player(𝑑0) = 𝑝 , i.e. the proponent makes the first move.
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The dialogue 𝐷 is said to be about the position pos(𝑑0).

Definition 2.8. Let 𝑋← and 𝑋→ denote the sets of positions that
attack and are attacked by 𝑋 ∈ P, respectively. A player 𝑐 is said
to win the dialogue 𝐷 if 𝐷 is finite and ends with a move (𝑐, 𝑋 ) s.t.
𝑋← ∩ 𝜙 (𝐷) = ∅, i.e., the dialogue cannot be continued.

Definition 2.9. Let (P,R∗) be a position framework. The legal-
move function𝜓 (P,R∗) : P∗ −→ 2P which allows non-self-defeating
nor useless moves in (P,R∗) is defined as follows: ∀𝑌0, . . . , 𝑌𝑖 ∈ P∗:

𝜙 (P,R∗) (𝑌0, . . . , 𝑌𝑖 ) = P \ ({𝑋 |

self-defeating︷          ︸︸          ︷
attacks(𝑋,𝑋 )} ∪

useless︷  ︸︸  ︷
𝑖⋃
𝑗=𝑜

𝑌→𝑗 )

We now have sufficient tools to formalise types of dialogues that
encompass the previously chosen rules, with single or multiple
arguments per move:

Definition 2.10. Let 𝐴𝐹 = (A,R) be an argumentation frame-
work. A useful-single-argument dialogue in 𝐴𝐹 is a dialogue in the
dialogue type (A ′,R∗,𝜓 (A′,R∗) ), where A ′ = {{𝑎} | 𝑎 ∈ A} and
𝜓 (A′,R∗) designates moves that are not self-defeating nor useless.
(P,R∗,𝜓 (P,R∗) ) is called the useful-multiple-argument dialogue
type, where P is the set of conflict-free subsets of A.

2.3 Explanations
Fan and Toni [11] propose an argumentation semantics aimed at
generating explanations. This formalism promotes the notion of
explanations as sets of arguments, taking into consideration which
arguments contribute to the justification (or r-defence) of a specific
premise (argument). We utilise some of their definitions, as follows.

Definition 2.11. Given an AA framework 𝐴𝐹 = (A,R), let 𝑎, 𝑏 ∈
A. 𝑎 r-defends 𝑏 iff:

(1) 𝑎 = 𝑏; or
(2) ∃𝑧 ∈ A, s.t. 𝑎 attacks 𝑧 and 𝑧 attacks 𝑏; or
(3) ∃𝑧 ∈ A, s.t. 𝑎 r-defends 𝑧 and 𝑧 r-defends 𝑏.

𝑆 ⊆ A r-defends 𝑎 ∈ A iff ∀𝑏 ∈ 𝑆 : 𝑏 r-defends 𝑎.

Definition 2.12. A set of arguments 𝑆 ⊆ A is related admissible
iff ∃𝑎 ∈ 𝑆 s.t. 𝑆 r-defends 𝑎 and 𝑆 is admissible. 𝑎 is said to be a topic
of 𝑆 . For any argument 𝑎 ∈ A, an explanation of 𝑎 is 𝑆 ⊆ A s.t. 𝑆 is
a related admissible set and 𝑎 is a topic of 𝑆 .

Their definition of explanations is further characterised by a
classification with regards to cardinality and set inclusion:

Definition 2.13. Let 𝑎 ∈ A and 𝐸𝑎 be the set of all possible
explanations of 𝑎. For every 𝑆 ∈ 𝐸𝑎 , we say 𝑆 is a minimal or
maximal explanation iff 𝑆 is the smallest or largest subset of 𝐸𝑎
with regards to cardinality, respectively. Similarly, 𝑆 is a compact
or a verbose explanation iff 𝑆 is the smallest or largest subset of 𝐸𝑎
with regards to set inclusion, respectively.

3 PROPOSED ARCHITECTURE
We introduce an architecture for explainable conflict resolution (X-
CORE) as a mechanism that provides explainable deliberation capa-
bilities for dialectic interactions between agents. Below, we elabo-
rate on definitions and concepts that were created for the purpose
of this application.

Example 3.1. Suppose the following situation: vehicle 𝐴 crosses
a green light in a junction and is about to collide with vehicle 𝐵,
who ran a red light. In most highway codes, the rule ‘a vehicle shall
not cross the stop line on a red light’ can be ignored if rule ‘a vehicle
may cross the stop line on a red light if it is an emergency vehicle’ also
applies to that situation. Therefore, in this specific situation, the
right of way can be determined by 𝐵’s status: if it is an emergency
vehicle, then it could refer to the aforementioned rule and argue
in favour of its right of way. Likewise, if 𝐵 is not an emergency
vehicle, then it would not be able to defeat 𝐴’s claim of the first
rule and 𝐵 would find itself at fault.

Consequently, what would happen if either 𝐴 or 𝐵 is an arti-
ficial autonomous agent? Would the human counterpart benefit
more from being explicitly told which rules are being used, or is
having an implicit knowledge sufficient? We can rather evidently
demonstrate that there is no challenge in having autonomous agents
follow rule-based systems. Instead, our architecture aims to create
a direct mapping between rulesets in human-readable form and
corresponding argumentation frameworks.

For our problem domain, we assume a setting where agents
perform localised decision-making. When acting, we are interested
in ensuring that each agent’s behaviour is compliant with an overall
culture (represented by an argumentation framework 𝐴𝐹 ) shared
amongst all participants in the system. In order to check which rules
apply in a specific event of a conflict, we introduce a mechanism of
argument verification (Section 3.3). Finally, after agents and humans
share a common model and can provide evidence for their rule-
compliant justification, we demonstrate how to build explanations
from this framework in Section 3.4.

3.1 Culture
Orderly behaviour can only happen if all agents share common
guidelines and understand the same rules. We define the notion
of culture as a collective agreement of norms and priorities, repre-
sented by an argumentation framework.

Definition 3.2. Let any two players 𝑝, 𝑜 be the proponent and
opponent in a dialogue game. We say a proposition is any argument
𝑎 ∈ A that may be used by proponent 𝑝 to request a contended
resource from opponent 𝑜 .

Definition 3.3. Let K ⊆ A be the set of all propositions in A.
We say a system has a culture 𝐶 = (A,R,K) iff |K | > 0 and all
agents share 𝐶 as their culture.

Example 3.4. A simple example would be: suppose a culture that
contains three arguments, A = {𝜇, 𝛼, 𝛽}, K = {𝜇}, where 𝜇 rep-
resents the proposition ‘I have right of way’, 𝛼 represents ‘I am
an ambulance‘ and 𝛽 represents ‘I am a fire rescue truck‘. Defining
R𝑎 = {(𝛼, 𝜇), (𝛽, 𝜇), (𝛼, 𝛽)} is akin to defining that, in this applica-
tion, ambulances have priority over fire trucks. Conversely, defining
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R𝑏 = {(𝛼, 𝜇), (𝛽, 𝜇), (𝛽, 𝛼)} would mean the opposite. Despite hav-
ing the same argument setA,𝐶𝑎 = (A,R𝑎,K) is a different culture
from 𝐶𝑏 = (A,R𝑏 ,K).

3.2 Propositional Dialogues
When agents are presented with conflicts that require a compliant
resolution (with regards to the ruleset), a dialogue game starts
from the proponent 𝑝 . Each agent then takes turns in choosing
arguments that are potentially able to defeat the previous, as shown
in Definition 2.7. Agents can use one or multiple arguments at each
turn depending on whether it is a useful-single or useful-multiple-
argument dialogue type. The game ends when one agent provides
an argument that cannot be defeated by any of the other agent’s
possible arguments and thus has to concede or reject the initial
proposition, depending on the result.

We extend the set of requisites for a dialogue seen in Defini-
tion 2.7 and propose the idea of a propositional dialogue:

Definition 3.5. Let 𝐷 = {𝑑0, . . . , 𝑑𝑖 } be a dialogue in a position
framework 𝑃𝐹 = (P,R∗, 𝜙) paired with a culture 𝐶 = (A,R,K).
We say𝐷 is a propositional dialogue iff𝐷 is about a position 𝑝𝑜𝑠 (𝑑0)
where ∃𝑎 ∈ 𝑝𝑜𝑠 (𝑑0) s.t. 𝑎 is a proposition.

Definition 3.6. Let 𝐷 = {𝑑0, . . . , 𝑑𝑖 } be a propositional dialogue.
We denote 𝑑0 as the motion of the dialogue.

The player who wins 𝐷 then takes priority or ownership with
regards to the contended resource disputed in the proposition. How-
ever, as cultures may be constant, they need to cater to most cir-
cumstances in the environment. In Example 3.4, the ability of an
agent-player 𝑐 using 𝛼 as an argument to defeat 𝜇 depends exclu-
sively on the fact of 𝑐 being, in fact, an ambulance. We introduce
the concept of argument verification to deal with this matter.

3.3 Argument Verification
Most applications of argumentation frameworks consider frame-
works as static, i.e., the combination of all the arguments may
generate an extension or labelling that represents an insight about
which arguments should or should not be admitted. In our case, the
culture denotes a ruleset that does not account for a specific happen-
stance, but rather a more comprehensive model that encompasses
different future scenarios that pertain to an agent’s perspective, or
notion of ‘self.’ For that purpose, every agent has to verify which
arguments are valid at a particular moment. We propose the ar-
chitecture of argument verification to address the issue of factual
correctness and validity of a specific argument given the context
of its proponent.

The verification of arguments is modelled as decision problems:

Definition 3.7. Let 𝛼 ∈ A and 𝑐 ∈ {𝑝, 𝑜} be an argument and a
player, respectively. We denote 𝛼 as demonstrable by agent-player
𝑐 iff checking the correctness of that argument admits a finite and
computable decision procedure.

We can naturally extend this definition to encompass the com-
plexity of argument verification. For example, P-demonstrable ar-
guments represent arguments whose associated decision problem
is in P.

Figure 1: Example diagram of X-CORE: i) Ruleset; ii) Map-
ping rules into pairs of arguments and verifier functions; iii)
Defining attacks between arguments.

This decision procedure can be represented by a predicate func-
tion that evaluates, in the current context, whether a specific argu-
ment may be used or not.

Definition 3.8. Let 𝜁 denote the set of all possible contexts in the
environment. ∀𝛼 ∈ A, 𝛼 admits a predicate function 𝑓𝛼 : 𝑐, 𝑧 →
{True, False}, where 𝑐 represents the player and 𝑧 ∈ 𝜁 is a context.
We say 𝑓𝛼 is the verifier function of argument 𝛼 . A special case
applies for propositions, as they are hypothetical and their verifier
functions always return True.

Definition 3.9. Let 𝛼 ∈ A be an argument. Let 𝑐 ∈ {𝑝, 𝑜} be a
player and 𝑧 ∈ 𝜁 a context. We say argument 𝛼 is demonstrably true
by player 𝑐 iff 𝑓𝛼 (𝑐, 𝑧) = True.

Definition 3.10. Let 𝐷 = {𝑑0, . . . , 𝑑𝑖 } be a dialogue. Let 𝑐 ∈ {𝑝, 𝑜}
be a player and 𝑋 ∈ P be a position. We say 𝑑𝑖+1 = (𝑐, 𝑋 ) is a
verified move iff ∀𝑎 ∈ 𝑝𝑜𝑠 (𝑑𝑖+1), 𝑓𝑎 (𝑐) = True.

Note that demonstrably true arguments do not mean that they
are universally true – not even that they are true at all. All it means
is that an agent will be able to compute a procedure to check if that
statement stands against its own knowledge in the current context.
The notion of demonstrably true is, in fact, a local definition of
truth, as it only requires the perception of a single agent, even if the
agent is mistaken/uneducated about the world (such as in systems
with imperfect/incomplete information.)

All deliberation in this system is delegated into the specifics
of the predicate functions that accompany each argument in the
system. Hence, the design of a system in X-CORE is divided in two
phases (see Figure 1):
• Mapping rules into pairs of arguments and verifier predicate
functions;
• Establishing attack relationships between generated argu-
ments.

As every rule is represented by an argument, tracing the history
of exchanged arguments in this manner provides an insight on each
agent’s attempt to justify their prioritisation based on the ruleset
provided. We facilitate the interaction with humans by providing
explanations to justify the results of the dialogue game.

3.4 Explanation Generation
X-CORE does not bind agents into a specific strategy for choosing
moves in a dialogue game. The justification is that humans cannot
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be bound to a unique way of thinking, or be programmable as an
artificial agent can. Therefore, we allow agents to freely choose
their (verified) moves and focus on generating post-hoc explanations
derived from the history of a dialogue 𝐷 . For that purpose, we
propose some mechanisms for generating explanations in X-CORE,
based on the definitions seen in [11].

Definition 3.11. Let𝐷 = {𝑑0, . . . , 𝑑𝑖 } be a completed dialogue and
𝑑𝑖 be the winner move. We say a set𝑊 ⊆ 𝐷 is the set of winning
moves where𝑊 = {𝑑𝑘 ∈ 𝐷 | 𝑝𝑙𝑎𝑦𝑒𝑟 (𝑑𝑘 ) = 𝑝𝑙𝑎𝑦𝑒𝑟 (𝑑𝑖 )}. The set of
losing moves is denoted by 𝐿 = 𝐷 \𝑊 .

Definition 3.12. Let 𝑑𝑖 be the winner move in 𝐷 . An explanation
𝐸𝐷 of𝐷 is defined as 𝐸𝐷 ⊆ 𝐷 s.t.𝑑𝑖 ∈ 𝐸𝐷 , i.e., it always contains the
winner move. We denote E𝐷 as the set of all possible explanations
of a dialogue 𝐷 .

We can create a notion of contrastive explanations to include
losingmoves. The idea behind contrastive explanations is to provide
extra justification as to why a specific argument was not accepted.
We denote explanations without losing moves as plain explanations.

Definition 3.13. Let 𝑑𝑖 be the winning move in 𝐷 . A contrastive
explanation𝐶𝐸𝐷 of 𝐷 is defined as𝐶𝐸𝐷 ∈ E𝐷 s.t. ∃𝑋 = 𝑑𝑖 , ∃𝑌 ∈ 𝐿,
and 𝑋,𝑌 ∈ 𝐶𝐸𝐷 . A plain explanation 𝑃𝐸𝐷 of 𝐷 is defined as 𝑃𝐸𝐷 ∈
E𝐷 s.t. 𝑃𝐸𝐷 ⊆𝑊 .

Definition 3.14. Adapted from Definition 2.13. Let E𝐷 be the set
of all possible explanations of 𝐷 . We therefore say that, for any
𝑆 ∈ E𝐷 , 𝑆 is a: minimal or maximal explanation iff 𝑆 is a smallest
or largest subset of E𝐷 with regards to cardinality, respectively. 𝑆
is a compact or a verbose explanation iff 𝑆 is a smallest or largest
subset of E𝐷 with regards to set inclusion, respectively.

One could observe the entire footprint of uttered arguments and
generate an explanation by writing all their natural language repre-
sentations, but this approach is too verbose and unwieldy in most
cases (especially if agents operate under useful-single-argument
dialogue rules). We can attempt to specify a bound on the number
of positions chosen to support an explanation.

Definition 3.15. 𝐸 ′ ∈ E𝐷 is an 𝑛-reason explanation iff |𝐸 ′ | = 𝑛.

We will now apply these definitions to do a proof of concept
implementation using X-CORE for the purposes of our user study.

4 PROOF OF CONCEPT STUDY
In order to investigate the usefulness and efficiency of explanations
in human-agent deconfliction settings, we designed a user study by
instantiating a multi-agent resource contention environment. The
problem of multi-agent path deconfliction lends itself naturally to
our objectives: it is a sufficiently intuitive problem, requires minimal
prior knowledge, and disputed resources are obvious (space).

Our hypotheses are:
H1: Explanations provide a higher improvement for human per-

formance in more complex systems than in simpler systems.
H2: Explanations provide a higher decrease in time spent by a

human in a task in more complex systems than in simpler
systems.

H3: User perception of explainable systems is more positive in
more complex systems than in simpler systems.

Next, we introduce our definition of a path deconfliction envi-
ronment and our application: the Busy Barracks game.

4.1 Path Deconfliction Environment
We define the path deconfliction environment in the form of a 2D
discrete time and discrete space grid, represented by a DAG.

Let 𝐿 = (𝑉 , 𝐸) be a finite directed acyclic graph (DAG) whose
vertices are contained within the points in Z3, representing a bi-
dimensional discrete space as 𝑥,𝑦 coordinates and time as 𝑡 . Let
𝑢 = (𝑥1, 𝑦1, 𝑡1) and 𝑣 = (𝑥2, 𝑦2, 𝑡2) be any two points in this space.

We denote (𝑢, 𝑣) ∈ 𝐸 ⇐⇒ (𝑑 (𝑢, 𝑣) ≤ 𝑑max and 𝑡2 − 𝑡1 = 1),
where 𝑑max is the maximum distance achievable by any agent on a
single time step, expressed as the Manhattan distance 𝑑𝑀 (𝑢, 𝑣) =
|𝑥1 − 𝑥2 | + |𝑦1 − 𝑦2 | between two points in a 𝐺𝑥×𝑦 grid graph.

A set of 𝐾 obstacles Υ = {𝜐1, . . . , 𝜐𝐾 } is given as input, where
Υ ⊂ 𝑉 . The resulting traversable graph 𝐺 is defined as 𝐺 = 𝐿 − Υ.

A set of 𝑁 agents Q = {𝑞1, . . . , 𝑞𝑁 } is placed over 𝑉 (𝐺). Each
agent can traverse one edge per time step. This edge may traverse
longer distances in (𝑥,𝑦) space, depending on the value of 𝑑max
given as input. A goal 𝑔𝑖 ∈ 𝑉 (𝐺) is defined for every agent 𝑞𝑖 ∈ Q.

Plans to reach goal vertices are represented in the form of path
subgraphs of𝐺 . Given an agent 𝑞𝑖 and its corresponding goal 𝑔𝑖 , the
agent’s plan is represented in the form 𝑃 (𝑞𝑖 ) = {𝑣0, . . . , 𝑣𝑖 }, where
𝑣0 is 𝑞𝑖 ’s current position and 𝑣𝑖 = 𝑔𝑖 . The length of plan 𝑃 (𝑎𝑖 ) is
equal to |𝑃 (𝑎𝑖 ) |.

Definition 4.1. Two paths 𝑃 (𝑎𝑖 ) and 𝑃 (𝑎 𝑗 ) are said to be conflict-
ing if 𝑃 (𝑎𝑖 ) ∩𝑃 (𝑎 𝑗 ) ≠ ∅ (they attempt to visit the same vertex at the
same time step) or if ∃𝑢 = (𝑥,𝑦, 𝑡), ∃𝑣 = (𝑥 ′, 𝑦′, 𝑡+1) s.t.𝑢, 𝑣 ∈ 𝑃 (𝑎𝑖 )
and ∃𝑢 ′ = (𝑥 ′, 𝑦′, 𝑡), ∃𝑣 ′ = (𝑥,𝑦, 𝑡 +1) s.t.𝑢 ′, 𝑣 ′ ∈ 𝑃 (𝑎 𝑗 ), e.g., agents
swap positions.

4.2 The Busy Barracks Game
We present the previously-defined Path Deconfliction Environment
to human participants as a computer game called Busy Barracks,
or BB (see Figure 2). In it, the human controls a military official
represented by an agent 𝑞ℎ ∈ Q. The human can choose one of
two actions: move towards a direction (north, south, west, east),
or choose to wait in place for a round. Agents move in lockstep,
i.e., once the human makes a decision, all the agents make their
planned move at the same time. The human is given 50 arbitrary
units of fuel and told to navigate towards a goal destination under
the following constraints:
• For every move or wait action, the human will lose 1 unit of
fuel.
• If a collision occurs (see Definition 4.1), the human loses 5
units of fuel.
• Every 10 seconds past the first move in the game (in clock
time), the human loses 1 unit of fuel.

The human is encouraged to reach their destination whilst max-
imising their remaining fuel. In practice, in order to achieve good
scores, players will need to make short, collision-free trajectories
with quick reaction times. The environment is composed of several
other autonomous agents, who have individual goals and will also
move towards their destinations concurrently with the player.

Humans are informed that agents will follow the rules and au-
tomatically reroute to clear the way if they understand that the
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Figure 2: The Busy Barracks game UI. Red player is hu-
man, followed by agents in green. The path to destination
of Agent 8 can be seen as a green line. The human must de-
cide whether to give way or to move towards the red cell.

human has priority in a specific conflict setting. Agents will remain
in their original trajectory and expect the human to clear the way if
they understand that they have priority according to the rules. It is
down to the human to make the decision to either remain in their
original trajectory (assuming that the agent will clear the way) or
make way (assuming that the agent will keep their trajectory and
will potentially collide if evasive action is not taken).

In order to explore the traits of a system with explicit rulesets,
the human is provided with a deconfliction ruleset, presented in
textual form on a sheet of paper. This document introduces arbitrary
and game-specific properties that each agent has, and how those
properties play out in generating a prioritisation when a spatial
conflict arises. In other terms, by observing the properties and the
rules correctly, every agent should unequivocally understand if
they have the right of way or if they should concede and grant
passage to the opponent.

Example 4.2. Suppose the following ruleset:

(1) You should have right of way if:
(a) Your rank is higher than the other agent’s rank.
(b) You are tasked and the other agent is not tasked, regardless

of their rank.

This ruleset implies the existence of two properties: rank and
tasked status; and two rules: (a) and (b), as seen above. Thus, if
we have agents 𝑞1 : {rank(𝑞1) : 2, tasked(𝑞1) : 𝑦𝑒𝑠} and 𝑞2 :
{rank(𝑞2) : 4, tasked(𝑞2) : 𝑛𝑜}, even though 𝑞2 might be able to
argue that it has a higher rank (rule (a)), it will be defeated when
𝑞1 invokes rule (b).

Following this textual ruleset, we devise an example culture
𝐶easy = (A,R,K).We instantiate the set of argumentsA = {𝜇, 𝑎, 𝑏},
where 𝜇 represents the proposition (1) ‘you should have right of
way’. and 𝑎, 𝑏 represent rules (a) and (b), respectively. Let 𝑐 be a
player and 𝑐 their immediate opponent. The verifier functions are
defined as follows:

𝑓𝑎 (𝑐, 𝑐) =
{
True if rank(𝑐) > rank(𝑐),
False otherwise.

𝑓𝑏 (𝑐, 𝑐) =
{
True if tasked(𝑐) = yes and tasked(𝑐) = no,
False otherwise.

Since we know that rule (b) supersedes rule (a), we define R =

{(𝑎, 𝜇), (𝑏, 𝜇), (𝑏, 𝑎)} to complete the specification of 𝐶easy.

Culture: For the BB game, we created three different rulesets,
ranging in different levels of complexity. We posit that cultures
become more complex as they grow in number of rules, hence our
nomenclature. We refer back to the taxonomy seen in Rosenfeld
and Richardson [24] (not useful, beneficial, and critical) to create
three cultures with different sizes: easy, medium, and hard. Each
culture was created from a textual ruleset that was handed over to
human players.
• 𝐶easy: 2 properties and 2 rules (described in Example 4.2.)
• 𝐶medium: 4 properties and 4 rules.
• 𝐶hard: 6 properties and 9 rules.

Dialogue Game: All players can publicly see the destination
and intended trajectory of their opponents. When any two agents
find themselves in conflict, they initiate a dialogue game and try to
persuade the other to give way to them based on the culture that is
being used in that instance of the game (𝐶easy,𝐶medium,𝐶hard .) In
the BB game, all exchanges are useful-single-argument dialogues.
Moves are chosen randomly among the subset of demonstrably
true arguments. The argumentative exchange happens in the back-
ground and is not visible to the human.

The decision reached by this dialogue game decides the next
action taken by the autonomous agent (to concede via rerouting or
to continue in their original trajectory). The human must observe
the rules and take action based on their belief of what the agent will
do next. Agents always play optimally and do not make mistakes.
A wrong decision from the human leads to two possible outcomes:
either a collision or an unnecessary diversion from both human
and agent, who both try to give way to each other (as the agent
assumes the human will also play optimally.) There are 8 agents
plus the human in every round, where exactly four of them will
have right of way against the human, regardless of difficulty level.

Difficulty level does not affect the map layout, agent behaviour
or any other factors that might influence scores or time other than
the rules involved in deciding who gives way. If a human played
with the same speed and the same success rate in every difficulty
level, their scores would always be identical. Differences in score
are uniquely determined by human performance.

4.3 User Study
We recruited 35 participants (21 male, 14 female, ages 20-39) within
the university (students and staff). Participants were invited to
play the BB game in a quiet room. Every new participant would
be allocated to play one out of three versions of the game: either
𝐶easy, 𝐶medium, or 𝐶hard. Participants did not know that any other
versions of the game were available.

Our study is organised in a within-subject design in order to
measure how each individual participant’s performance is altered
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Figure 3: Example of information available to human. Left:
no explanation/hints, only data (𝑁 ). Right: data + explana-
tion/hint (𝑋 ).

in the presence or absence of explanations. Each participant played
two rounds of the game (within the same allocated culture): one ver-
sion containing the only properties and rules, and another version
containing properties, rules, and additional explanations generated
in the form of hints in the game UI (see Figure 3). Those explana-
tions were generated live based on the outcome of the background
dialogue game between the human-controlled agent and the au-
tonomous opponent. For brevity, we shall henceforth denote the
non-explainable round as 𝑁 and the explainable round as 𝑋 . We
alternated the starting order of the rounds (𝑋 or 𝑁 ) to minimise
familiarity bias.

An experience questionnaire (extracted and modified from GEQ
[14]) was given to each participant at the end of each round. We
clustered questions in three main groups (GEQ indices in brackets):
Competence (10, 15, 17, 21); Affect (9, 22, 24); and Challenge (23, 26,
33). We included four custom questions to evaluate game-specific
criteria, such as how often they consulted the text rules and if they
anticipated/agreed with agents’ actions. Answers were collected in
a 5-point Likert scale. We collected game performance data, such as:
score (represented by fuel units remaining at the end of the game),
number of collisions, and time taken until completion.

The non-explainable version allows the human to visualise their
opponent’s trajectory and their properties. Based on this available
information (and the rules’ knowledge present in the ruleset), the
human must then evaluate which rules apply and decide a course
of action. In the explainable case, we decide to provide a succinct,
or even partial explanation in the form of a hint.

Explanation Generation: For that reason, in every dialogue
game present in the game, X-CORE generates hints by selecting
a 2-reason contrastive explanation 𝐶𝐸 ′ (a minimal and compact
contrastive explanation) and presenting in a textual form (Figure
3). Our objective is not to compare two versions with different
information available, but instead to evaluate the impact of having
all the information required to make a decision (𝑁 ) versus having
all the information plus an explanation (𝑋 ) to assist the human.

We are interested in the differences in human performance be-
tween playing 𝑁 and 𝑋 , namely, how much human performance
improves or worsens between 𝑁 and 𝑋 in each difficulty level.

5 RESULTS
Due to the limited number of samples, we choose to not make
assumptions of parametrisation in the data. Every sample is grouped
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Figure 4: Scores (𝑆), Collisions (𝐶𝑜𝑙), andTime (𝑇 ). Results are
shown in the form of box plots (25th, 50th, 75th percentile,
and whiskers covering all data and outliers).

into a difficulty level (𝐸,𝑀 , and 𝐻 representing𝐶easy,𝐶medium, and
𝐶hard, respectively). Users play two rounds (𝑁 and 𝑋 , in alternated
order). Thus, a player allocated to𝑀 would play both𝑀𝑁 and𝑀𝑋
rounds, respectively. Sample sizes are Easy (n = 11), Medium (n =
12), and Hard (n = 12).

We define our measures as:
• Score (𝑆): normalised score (𝑆𝑋 −𝑆𝑁 )/(𝑆max−𝑆min). Positive
values of 𝑆 mean score improvement in 𝑋 .
• Collisions (𝐶𝑜𝑙): normalised number of collisions (𝐶𝑜𝑙𝑋 −
𝐶𝑜𝑙𝑁 )/(𝐶𝑜𝑙max − 𝐶𝑜𝑙min). Negative values mean reduced
number of collisions in 𝑋 .
• Time (𝑇 ): normalised time elapsed (𝑇𝑋 −𝑇𝑁 )/(𝑇max −𝑇min).
Negative values of 𝑇 mean reduction in time elapsed in 𝑋 .

5.1 Score
Given 3 sample sets: 𝑆𝐸 (𝐸 scores), 𝑆𝑀 (𝑀 scores), and 𝑆𝐻 (𝐻 scores)
(see Figure 4), we run a Kruskal-Wallis H-Test (KW) under the
alternative hypothesis that at least one of the distributions come
from a different population and confirm significant differences (H
= 11.63, p = 0.003**)1. We then perform a pairwise one-sided Mann-
Whitney U-Test (MW) under the alternative hypothesis that easier
categories have significantly smaller 𝑆 than harder ones, meaning
that the improvement in 𝑋 is less pronounced in easier rounds.

Results in Table 1 show that score improvement in 𝑀 is sig-
nificantly smaller than 𝐻 , whilst score improvement in 𝐸 is very
significantly smaller than 𝐻 , but not significantly smaller than𝑀 .

5.2 Collisions
Like the previous sets, we consider 𝐶𝑜𝑙 to isolate the number of
wrong decisions that specifically led to collisions (see Definition
4.1), and how did that differ within subjects between 𝑁 and 𝑋 . We
run a KW under the alternative hypothesis that at least one of
the distributions come from a different population, confirming the
hypothesis (H = 9.83, p = 0.007**).

Since the distributions are different, we perform a one-sided MW,
this time with the alternative hypothesis that easier categories have
1(*) p < 0.05; (**) p < 0.01; (***) p < 0.001.
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𝑆𝐸 𝑆𝑀 𝑆𝐻

𝑆𝐸 - U = 48.5
p = 0.1472

U = 11.5
p = 0.0004***

𝑆𝑀 - - U = 34.0
p = 0.015*

𝐶𝑜𝑙𝐸 𝐶𝑜𝑙𝑀 𝐶𝑜𝑙𝐻

𝐶𝑜𝑙𝐸 - U = 72.5
p = 0.346

U = 111.5
p = 0.002**

𝐶𝑜𝑙𝑀 - - U = 112.5
p = 0.008**

𝐶ℎ𝑎𝐸 𝐶ℎ𝑎𝑀 𝐶ℎ𝑎𝐻

𝐶ℎ𝑎𝐸 - U = 92.0
p = 0.056

U = 116.5
p = 0.001***

𝐶ℎ𝑎𝑀 - - U = 101.0
p = 0.047*

Table 1: Pairwise MW for 𝑆 , 𝐶𝑜𝑙 , and 𝐶ℎ𝑎.

significantly higher number of collisions, i.e., they do not improve
(and reduce) their number of collisions as well as harder levels.
The results in Table 1 show that collision improvement in 𝑀 is
significantly smaller than 𝐻 , whilst collision improvement in 𝐸 is
also significantly smaller than𝐻 , although not significantly smaller
than𝑀 . Both 𝑆 and 𝐶𝑜𝑙 results support H1.

5.3 Times
Similarly to 𝐶𝑜𝑙 , 𝑇 represents the change in time elapsed to com-
plete each round from 𝑁 to 𝑋 . We run a KW in order to isolate the
distributions but did not find significant differences (H = 3.61, p =
0.16). However, a pairwise one-sided MW reveals a significant im-
provement in𝑇 between 𝐸 and𝐻 (U = 94.0, p = 0.04*), showing that
participants in 𝐻 have a superior reduction in time in 𝑋 compared
to those in 𝐸. This result supports H2.

5.4 User Experience
In order to evaluate the effect of ordering (whether users who played
their first round as 𝑁 or 𝑋 had a significantly different perception
of the game), we ran KWs for each cluster of questions, separat-
ing populations by their starting mode (𝑁 or 𝑋 ). The alternative
hypothesis for all cases was that there was a significant difference
in populations, which was not confirmed for any: Challenge (H =
0.24, p = 0.61); Competence (H = 0.48, p = 0.48); Affect (H = 0.13, p
= 0.71); and Game-Specific (H = 1.73, p = 0.18).

We then evaluate the populations based on the difficulty level.
To that end, we ran KWs under the alternative hypothesis that
the populations differ significantly depending on difficulty level.
We manage to validate this hypothesis for Challenge (𝐶ℎ𝑎) (H =
10.28, p = 0.005**), but not for Affect (𝐴𝑡 ) (H = 3.91, p = 0.14),
Competence (𝐶𝑜𝑚) (H = 4.98, p = 0.08) and Game-Specific (𝐺𝑎𝑚)
(H = 5.52, p = 0.06). We perform pairwise one-sided MWs under the
alternative hypothesis that easier categories have a significantly
smaller improvement in the perception of challenge from 𝑁 to 𝑋 .

The results in Table 1 show that the improvement of perception
of𝐶ℎ𝑎 in𝑀 is significantly smaller than𝐻 . The improvement in 𝐸 is
very significantly smaller than𝐻 , although not significantly smaller
than𝑀 . Despite populations being not isolated in the previous KW
for 𝐺𝑎𝑚, similar pairwise MW results are found: 𝐺𝑎𝑚𝐸 vs. 𝐺𝑎𝑚𝐻
(U = 56.5, p = 0.01*) and 𝐺𝑎𝑚𝑀 vs. 𝐺𝑎𝑚𝐻 (U = 42.5, p = 0.04*).

Additionally, user experience results in𝐴𝑡 and𝐶𝑜𝑚 clusters also
revealed significant improvements (𝐴𝑡 : U = 96.0, p = 0.03*; 𝐶𝑜𝑚:

U = 32.0, p = 0.02*) from 𝑁 to 𝑋 between between 𝐸 and 𝐻 levels.
These results support H3.

6 DISCUSSION AND CONCLUSION
We achieved significant results in demonstrating how the benefit of
explanations in human-agent deconfliction correlates to the com-
plexity of the underlying system. Our results demonstrated clear
differences between within-subject improvement when comparing
their performance in𝑁 against the performance in𝑋 , which demon-
strates that humans benefit from explanations – but mostly when
the system is sufficiently complex to warrant such explanations.

In fact, when the complexity is small, humans might actually
perform better without any explanations. We probe this claim by
running a one-sided MW considering the alternative hypothesis
that global (between-subjects) 𝐸𝑁 scores were higher than 𝐸𝑋
scores (U = 88.0, p = 0.03*), which was significant. Contrariwise, a
similar test under the alternative hypothesis that global 𝐻𝑁 scores
are lower than 𝐻𝑋 scores (U = 36.0, p = 0.019*) also proved signifi-
cant. Frequently,𝑀 populations were harder to distinguish between
𝐸 and 𝐻 in nondirectional tests, such as in 𝑇 , 𝐴𝑡 , and 𝐶𝑜𝑚 anal-
yses. Still, hypotheses H1, H2, and H3 are validated for all 𝐸 and
𝐻 within-subject results. A larger study and further refinement of
𝑀’s complexity might consolidate all populations more clearly.

Post-experiment interviews were conducted to discuss the user
experience. Participants were asked to self-report on how they
felt about the hints. Six out of 11 participants who played the 𝐸
version reported finding the hints not useful. At the 𝑀 level (n =
12), 4 participants found the hints not useful, and 5 expressed using
hints as a useful confirmation mechanism to check their mental
computation. Last, at 𝐻 (n = 12), 9 players reported that hints were
very useful and primarily relied on the hints to act. These findings
map well to the taxonomy of [24] (not useful, beneficial, and critical)
and suggest that the taxonomy of the need for explanations can be
considered under a new dimension: that of system complexity.

In this game, the deconfliction behaviour of the agents was en-
tirely dictated by the present culture. We believe that X-CORE can
find applications beyond human-agent deconfliction, and towards
multi-agent systems in general. For example, a decentralised multi-
agent system could be designed in terms of a culture, and perform-
ing individual implementations for each rule could prove easier
than writing a monolithic policy that tries to emulate a complex
ruleset (especially if coming from text/human regulations), with
the innate benefit of being explainable, as demonstrated by our ar-
chitecture and study. The deconfliction behaviour of agents can be
changed by adding or removing arguments individually, or chang-
ing their attack relationships. Future studies will demonstrate how
X-CORE can be used for modelling real-life rulesets in deployed
multi-agent/multi-robot applications.
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