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Abstract

Principal Component Analysis (PCA) is one of
the most important methods to handle high-
dimensional data. However, the high computa-
tional complexity makes it hard to apply to the large
scale data with high dimensionality, and the used
�2-norm makes it sensitive to outliers. A recent
work proposed principal component analysis based
on �1-norm maximization, which is efficient and ro-
bust to outliers. In that work, a greedy strategy was
applied due to the difficulty of directly solving the
�1-norm maximization problem, which is easy to
get stuck in local solution. In this paper, we first
propose an efficient optimization algorithm to solve
a general �1-norm maximization problem, and then
propose a robust principal component analysis with
non-greedy �1-norm maximization. Experimental
results on real world datasets show that the non-
greedy method always obtains much better solution
than that of the greedy method.

1 Introduction

In many real-world applications such as face recognition
and text categorization, the dimensionality of data are usu-
ally very high. Directly handle the high-dimensional data
is computationally expensive and at the same time the per-
formance could be very poor because the number of avail-
able data is always limited and the noise in the data would
increase dramatically as the dimensionality increases. Di-
mensionality reduction or distance metric learning is one of
the most important and effective methods to handle high-
dimensional data [Xiang et al., 2008; Yang et al., 2009;
Nie et al., 2010b]. Among the dimensionality reduction
methods, Principal Component Analysis (PCA) is one of the
most widely applied methods due to its simplicity and effec-
tiveness. Given a dataset, PCA finds a projection matrix to
maximize the variance of the projected data points under this
projection matrix, and the structure of original data could be
effectively preserved under the projection.

∗This research was funded by US NSF CCF-0830780, 0939187,
0917274, NSF DMS-0915228, NSF CNS-0923494, 1035913.

In the past decades, the traditional PCA has been success-
fully applied in many problems. However, it has several
drawbacks. First, it has to perform Singular Vector Decompo-
sition (SVD) on input data matrix or eigen-decomposition on
covariance matrix, which is computationally expensive and
difficult to apply when both the number of data and the di-
mensionality are very high. Second, it is sensitive to out-
liers because it is intrinsically based on �2-norm and the out-
liers with large norm can be exaggerated by using the �2-
norm. Many works [Baccini et al., 1996; Aanas et al., 2002;
De La Torre and Black, 2003; Ke and Kanade, 2005; Ding et
al., 2006; Wright et al., 2009] have devoted effort to alleviate
this problem and improve the robustness to outliers. [Baccini
et al., 1996; Ke and Kanade, 2005] consider the problem of
finding a subspace such that the sum of �1-norm distances of
data points to the subspace is minimized. Although the ro-
bustness to outliers is improved by this method, it is compu-
tationally expensive and more importantly, the used �1-norm
is not invariant to rotation and the performance usually very
poor when applied to K-means clustering [Ding et al., 2006].
To solve this problem, R1-PCA was proposed which is in-
variant to rotation and demonstrated favorable performance
[Ding et al., 2006]. However, R1-PCA iteratively performs
the subspace iteration algorithm in the high-dimensional orig-
inal space, which is computationally expensive. The exten-
sion of R1-PCA to tensor version can be found in [Huang
and Ding, 2008].

Recently, a robust principal component analysis based on
�1-norm maximization is proposed in [Kwak, 2008], and a
similar work can be found in [Galpin and Hawkins, 1987].
This method is invariant to rotation and is also robust to out-
liers. In [Kwak, 2008], an efficient algorithm is proposed to
solve the �1-norm maximization problem. The algorithm only
need to perform matrix-vector multiplication, and thus can be
applied in the case that both the number of data and the di-
mensionality are very high. Some works on its tensor ver-
sion and supervised version can be found in [Li et al., 2010;
Liu et al., 2010; Pang et al., 2010]. Due to the difficulty of
directly solving the �1-norm maximization problem, all these
works use a greedy strategy to solve it. Specifically, the pro-
jection directions are sequentially optimized one by one. This
kind of greedy method is easy to get stuck in a local solution.

In this paper, we focus on solving the �1-norm maximiza-
tion problem. We first propose an efficient optimization al-
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gorithm to solve a general �1-norm maximization problem.
Theoretical analysis guarantees the algorithm will converge
and usually converge to a local solution. The �1-norm max-
imization problem in [Kwak, 2008] is a special case of the
general problem, and thus the proposed optimization algo-
rithm can be used to solve it directly in a non-greedy strategy.
That is, all the projection directions can be optimized simul-
taneously. Experimental results on real datasets show that the
non-greedy method always obtains much better solution than
that of the greedy method.

The rest of this paper is organized as follows: We give a
brief review of the work [Kwak, 2008] in §2. In §3, we pro-
pose an efficient algorithm to solve a general �1-norm maxi-
mization problem and give theoretical analysis on it. Based
on the algorithm, we solve the problem for the principal com-
ponent analysis with greedy �1-norm maximization in §4 and
propose a principal component analysis with non-greedy �1-
norm maximization in §5. In §6, we present experiments to
verify the effectiveness of the proposed method. Finally, we
draw the conclusions in §7.

2 Related work

Suppose the given data are X = [x1, x2, · · · , xn] ∈ R
d×n,

where n and d are the number and the dimensionality of
data points respectively. Without loss of generality, the data
{xi}

n
i=1 are assumed to be centralized, i.e.,

∑n

i=1
xi = 0.

Denote the projection matrix W = [w1, w2, · · · , wm] ∈
R

d×m. Traditional PCA method maximizes the variance of
data in the projected subspace, and to solve the following op-
timization problem:

max
WT W=I

Tr(WTStW ), (1)

where St =
1

n
XXT is the covariance matrix, I is the identity

matrix and Tr(·) is the trace operator of a matrix. Denote the
�1-norm and �2-norm of a vector by ‖·‖

1
and ‖·‖

2
, respec-

tively. The problem (1) can be reformulated as the following
problem:

max
WT W=I

1

n

n∑

i=1

∥∥WTxi

∥∥2

2
. (2)

Motivated by this reformulation, a recent work [Kwak, 2008]

proposed to maximize the �1-norm instead of the �2-norm in
PCA, and thus the robustness to outliers is improved. Then
the problem becomes:

max
WT W=I

1

n

n∑

i=1

∥∥WTxi

∥∥
1

(3)

Directly solving this problem is difficult, thus the author use
a greedy strategy to solve it. Specifically, the m projection di-
rections {w1, w2, ..., wm} are optimized one by one. The first
projection direction w1 is optimized by solving the following
problem:

max
wT

1
w1=1

n∑

i=1

∣∣wT
1 xi

∣∣ (4)

After the (k − 1)-th projection direction wk−1 has been ob-
tained, the data matrix X is transformed to X = X −

wk−1(wk−1)
TX , and then the k-th projection direction wk

is optimized by solving the following problem:

max
wT

k
wk=1

n∑

i=1

∣∣wT
k xi

∣∣ (5)

In this greedy method, the only problem needed to solve
is the problem (5) for each k. The work in [Kwak, 2008]

proposed an iterative algorithm to solve this problem. The
detailed procedure is:
1) t = 1. Initialize wt

k ∈ R
d such that ‖(wt

k)‖2 = 1.

2) For each i, if (wt
k)

Txi < 0, αi = −1 otherwise αi = 1.

3) Let v =
n∑

i=1

αixi, and wt+1

k
= v/‖v‖2, t = t+ 1.

4) Iteratively perform steps 2 and 3 until converges.
In order to guarantee the algorithm converges to a local

maximum, the algorithm adds an additional judgement after
convergence. If there exists i such that (wt

k)
Txi = 0, then

let wt
k = (wt

k +�w)/‖wt
k +�w‖2 and go to step 2, where

�w is a small nonzero random vector. However, such op-
eration might make the algorithm interminable (for example,
suppose there is a data point x that exactly locates on the
mean of the data set, then x will be zero after centralization,
and thus (wt)Tx is always zero for any wt). Moreover, it
is possible that there exists i such that (wt

k)
Txi = 0 at the

global maximum. In this case, the algorithm can not have the
chance to find the global maximum.

Subsequently, we will first propose an efficient algorithm
to solve a general �1-norm maximization problem. Based on
it, we also solve the problem (5) for the principal component
analysis with greedy �1-norm maximization and propose the
principal component analysis with non-greedy �1-norm max-
imization by directly solve the problem (3). The additional
judgement is not required in the new algorithms to obtain a lo-
cal solution, and the non-greedy method always obtains much
better solution than that of the greedy method in practice.

3 An efficient algorithm to solve a general

�1-norm maximization problem

Consider a general �1-norm maximization problem as follows
(we assume that the objective has an upper bound) :

max
v∈C

f(v) +
∑

i

|gi(v)|. (6)

where f(v) and gi(v) for each i are arbitrary functions,
and v ∈ C is an arbitrary constraint. Although there are
many methods to solve the �1-norm minimization problem
in compressed sensing and sparse learning [Donoho, 2006;
Nie et al., 2010a], these methods can not be used to solve the
�1-norm maximization problem.

Rewriting the problem (6) as the following problem:

max
v∈C

f(v) +
∑

i

αigi(v), (7)

where αi = sgn(gi(v)), and sgn(·) is the sign function de-
fined as follows: sgn(x) = 1 if x > 0, sgn(x) = −1 if
x < 0, and sgn(x) = 0 if x = 0. Note that αi depends on
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v and thus is also a unknown variable. We propose an iter-
ative algorithm to solve the problem (6), and prove that the
proposed iterative algorithm will monotonically increase the
objective of the problem (6) in each iteration, and will usually
converge to a local solution.

The algorithm is described in Algorithm 1. In each itera-
tion, αi is calculated by current solution v, and the solution
v is updated with the current αi. The iterative procedure is
repeated until the algorithm converges.

Initialize v1 ∈ C, t = 1 ;
while not converge do

1. For each i, calculate αt
i = sgn(gi(v

t)) ;

2. vt+1 = argmax
v∈C

f(v) +
∑
i

αt
igi(v) ;

3. t = t+ 1 ;

end

Output: vt.

Algorithm 1: An efficient algorithm to solve a general
�1-norm maximization problem (6).

3.1 Theoretical analysis of the optimization
algorithm

The convergence of the Algorithm 1 is demonstrated in the
following theorem:

Theorem 1 The Algorithm 1 will monotonically increase the
objective of the problem (6) in each iteration.

Proof: According to the step 2 in Algorithm 1, for each iter-
ation t we have

f(vt+1) +
∑

i

αt
igi(v

t+1) ≥ f(vt) +
∑

i

αt
igi(v

t) (8)

For each i, note that αt
i = sgn(gi(v

t)), so we

have that
∣∣gi(vt+1)

∣∣ = sgn(gi(v
t+1))gi(v

t+1) ≥

sgn(gi(v
t))gi(v

t+1) = αt
igi(v

t+1). Then
∣∣gi(vt+1)

∣∣ ≥

αt
igi(v

t+1) and note that |gi(v
t)| − αt

igi(v
t) = 0, we have:

∣∣gi(vt+1)
∣∣ ≥ αt

igi(v
t+1)

⇒
∣∣gi(vt+1)

∣∣− αt
igi(v

t+1) ≥ 0

⇒
∣∣gi(vt+1)

∣∣− αt
igi(v

t+1) ≥
∣∣gi(vt)

∣∣− αt
igi(v

t) (9)

Eq. (9) holds for every i, thus we have
∑

i

(
∣∣gi(vt+1)

∣∣− αt
igi(v

t+1)) ≥
∑

i

(
∣∣gi(vt)

∣∣− αt
igi(v

t))

(10)
Combining Eq. (8) and Eq. (10), we arrive at

f(vt+1) +
∑

i

∣∣gi(vt+1)
∣∣ ≥ f(vt) +

∑

i

∣∣gi(vt)
∣∣ (11)

Thus the Algorithm 1 will monotonically increase the objec-
tive of the problem (6) in each iteration t. �

As the objective of the problem (6) has an upper bound,
Theorem 1 indicates that the Algorithm 1 will converge. The
following theorem shows that the solution in the convergence
will satisfy the KKT condition.

Theorem 2 The solution of the Algorithm 1 in the conver-
gence will satisfy the KKT condition of the problem (6).

Proof: The Lagrangian function of the problem (6) is

L(v, λ) = f(v) +
∑

i

|gi(v)| − h(v, λ), (12)

where h(λ, v) is the Lagrangian term to encode the constraint
v ∈ C in problem (6).

Taking the derivative1 of L(v, λ) w.r.t v, and setting the
derivative to zero, we have:

∂L(v, λ)

∂v
= f ′(v) +

∑

i

αig
′
i(v)−

∂h(v, λ)

∂v
= 0, (13)

where αi = sgn(gi(v)).
Suppose the Algorithm 1 converges to a solution v∗, from

step 2 in Algorithm 1 we have

v∗ = argmax
v∈C

f(v∗) +
∑

i

α∗
i gi(v

∗), (14)

where α∗
i = sgn(gi(v

∗)). According to the KKT condition
[Boyd and Vandenberghe, 2004] of the problem in Eq. (14),
we know that the solution v∗ satisfies Eq. (13), which is the
KKT condition of the problem (6). �

In general, satisfying the KKT condition usually indicates
that the solution is a local optimum solution. Theorem 2 in-
dicates that the Algorithm 1 will usually converge to a local
solution.

We can see that both the problem (5) and the problem (3)
are the special cases of the problem (6), so we can use the
proposed Algorithm 1 to solve these two problems. The key
step of the Algorithm 1 is to solve the problem in step 2. In the
next two sections, we give detailed derivation and algorithm
to solve the problem (5) and the problem (3), respectively.

4 Principal component analysis with greedy

�1-norm maximization revisited

Recall that the principal component analysis with greedy �1-
norm maximization only need to solve the following problem:

max
wT w=1

n∑

i=1

∣∣wTxi

∣∣. (15)

As described in Section 2, an algorithm proposed in [Kwak,
2008] can solve it. In this section, we solve it based on the
Algorithm 1, and compare the differences between these two
algorithms. According to the Algorithm 1, the key step to
solve the problem (15) is to solve the following problem:

max
wT w=1

n∑

i=1

αiw
Txi, (16)

where αi = sgn((wt)Txi). Denote m =
n∑

i=1

αixi, then we

can rewrite the problem (16) as

max
wT w=1

wTm, (17)

1When x = 0, 0 is a subgradient of function |x|, so sgn(x) is
the gradient or a subgradient of the function |x| in all the cases.
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The Lagrangian function of the above problem is

L(w, λ) = wTm− λ(wTw − 1), (18)

Taking the derivative of L(w, λ) w.r.t w, and setting the
derivative to zero, we have w = m/λ. Then λ = ‖m‖2 ac-
cording to the constraint wTw = 1. So the optimal solution
to the problem (16) is w = m/‖m‖2.

Based on the Algorithm 1, the algorithm to solve the prin-
cipal component analysis with greedy �1-norm maximization
is described in Algorithm 2. We can see that the Algorithm
2 is almost the same as the one described in Section 2, ex-
cept that the values of αi are different when (wt

k)
Txi = 0

and the Algorithm 2 does not have the additional judgement
when the algorithm converges. When (wt

k)
Txi = 0, αi = 0

in Algorithm 2 while αi = 1 in the algorithm proposed in
[Kwak, 2008]. Using the Algorithm 2 without the additional
judgement, we can also obtain a local solution according to
Theorem 2.

From Algorithm 2 we can see that the algorithm is efficient
and only involves matrix-vector multiplication. The compu-
tational complexity is O(ndmt), where n, d,m is the num-
ber of data, dimension of original data and the dimension of
the projected data respectively, and t is the iterative number.
In practice, the algorithm usually converges in ten iterations.
Therefore, the computational complexity of the algorithm is
linear w.r.t both data number and data dimension, which in-
dicates the algorithm is applicable in the case that both data
number and data dimension are very high. If the data are
sparse, the computational complexity is further reduced to
O(nsmt), where s is the averaged number of non-zeros el-
ements in a data point.

Input: X , m, where X is centralized
Initialize W = [w1, w2, ..., wm] ∈ R

d×m such that
WTW = I ;
for k = 1 to m do

Let w1
k = wk , t = 1 ;

while not converge do

1. αi = sgn((wt
k)

Txi) ;

2. m =
n∑

i=1

αixi, and wt+1

k = m/‖m‖2 ;

3. t = t+ 1 ;

end

Let X = X − wt
k(w

t
k)

TX and wk = wt
k ;

end

Output: W ∈ R
d×m.

Algorithm 2: Principal component analysis with greedy
�1-norm maximization.

5 Principal component analysis with

non-greedy �1-norm maximization

The original problem in [Kwak, 2008] is to solve the follow-
ing problem:

max
WT W=I

n∑

i=1

∥∥WTxi

∥∥
1
. (19)

Input: X , m, where X is centralized
Initialize W 1 ∈ R

d×m such that WTW = I , t = 1 ;
while not converge do

1. αi = sgn((W t)Txi), M =
n∑

i=1

xiα
T
i ;

2. Calculate the SVD of M as M = UΛV T , Let
W t+1 = UV T ;
3. t = t+ 1 ;

end

Output: W t ∈ R
d×m.

Algorithm 3: Principal component analysis with non-
greedy �1-norm maximization.

Since directly solving this problem is difficult, [Kwak, 2008]

turns to solve it by a greedy method. In this paper, we propose
a non-greedy method to directly solve the problem (19).

Based on the Algorithm 1, the key step to solve the problem
(19) is to solve the following problem:

max
WT W=I

n∑

i=1

αT
i W

Txi (20)

where the vectors αi = sgn((W t)Txi). Denote M =
n∑

i=1

xiα
T
i , then we can rewrite the problem (20) as

max
WT W=I

Tr(WTM) (21)

Suppose the SVD of M is M = UΛV T , then Tr(WTM)
can be rewritten as:

Tr(WTM) = Tr(WTUΛV T )

= Tr(ΛV TWTU)

= Tr(ΛZ) =
∑

i

λiizii (22)

where Z = V TWTU , λii and zii are the (i, i)-th element of
matrix λ and Z respectively.

Note that Z is an orthonormal matrix, i.e. ZTZ = I , so
zii ≤ 1. On the other hand, λii ≥ 0 since λii is singular
value of M . Therefore, Tr(WTM) =

∑
i

λiizii ≤
∑
i

λii,

and when zii = 1(1 ≤ i ≤ c), the equality holds. That is to
say, Tr(W TM) reaches the maximum when Z = I . Recall
that Z = V TWTU , thus the optimal solution to the problem
Eq. (21) is

W = UZTV T = UV T . (23)

Based on the Algorithm 1, the algorithm to solve the princi-
pal component analysis with non-greedy �1-norm maximiza-
tion is described in Algorithm 3. According to Theorem 2,
we can usually obtain a local solution.

From Algorithm 2 we can see that the algorithm is also ef-
ficient. Note that n 	 m in practice, thus the computational
complexity of the algorithm is O(ndmt), which is the same
as that of the greedy method. Similarly, the algorithm usually
converges in ten iterations in practice. Therefore, the compu-
tational complexity of the algorithm is also linear w.r.t both
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Table 1: Dataset Descriptions.

Data set Size Dimensions Classes

Jaffe 213 1024 10

Umist 575 644 20

Yale 165 3456 15

Coil20 1440 1024 20

Palm 2000 256 100

USPS 9298 256 10

data number and data dimension, which indicates the algo-
rithm is applicable in the case that both data number and data
dimension are very high. If the data are sparse, the computa-
tional complexity is further reduced to O(nsmt).

5.1 Extensions to kernel and tensor cases

Similar to traditional PCA, the robust principal component
analysis with �1-norm maximization is also a linear method,
and is difficult to handle data well with non-Gaussian dis-
tribution. A popular technique to deal with this problem is
extending the linear method to kernel method. Obviously, the
robust principal component analysis with �1-norm maximiza-
tion is invariant to rotation and shift, so this linear method
satisfies the conditions in a generalized kernel framework in
[Zhang et al., 2010], and thus can be kernelized using the
framework. Specifically, the given data are transformed by
KPCA [Schölkopf et al., 1998], and then perform Algorithm
3 using the transformed data as input.

Another problem of the principal component analysis is
that the method can only handle vector data. For 2D tensor
or higher order tensor data, we have to vectorize the data to
very high-dimensional vectors in order to apply this method.
This approach will destroy the structural information of ten-
sor data and also make the computational burden very heavy.
A popular technique to deal with this problem is extending
the vector method to tensor method. As the problem (19) of
the principal component analysis with �1-norm maximization
only includes linear operator WTxi, it can be easily extended
to the tensor method to handle tensor data directly. For sim-
plicity, we only briefly discuss the case of 2D tensor, high or-
der tensor cases can be readily extended by replacing the lin-
ear operator WTxi with tensor operator [Lathauwer, 1997].

Suppose the given data are X = [X1, X2, ..., Xn] ∈
R

r×c×n, where each data Xi ∈ R
r×c is a 2D tensor, n is the

number of data points. Similarly, we assume that {Xi}
n
i=1

are centered, i.e.,
∑n

i=1
Xi = 0.

In the 2D tensor case, linear operator WTxi is replaced by
UTXiV , where U ∈ R

r×r1 and V ∈ R
c×c1 are two projec-

tion matrices. Correspondingly, the problem (19) becomes:

max
UT U=Ir1

,V T V =Ic1

n∑

i=1

∥∥UTXiV
∥∥

1
(24)

As in other tensor method, problem (24) can be solved by
alternative optimization technique (also named block coordi-
nate descent). Specifically, when fixing U , the problem (24)
reduced to the problem (19), and thus the V can be optimized
by Algorithm 3. Similarly, U can also be optimized by Al-
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Figure 1: Objective values in Eq. (3) with different dimen-
sions obtained by PCA-�1greedy and PCA-�1nongreedy, re-
spectively.

gorithm 3 when fixing V . The procedure is iteratively per-
formed until converges.

6 Experiments

In this section, we present experiments to demonstrate the
effectiveness of the proposed principal component analysis
with non-greedy �1-norm maximization (denoted by PCA-
�1nongreedy) compared to the greedy method (denoted by
PCA-�1greedy).

We use six image datasets from different domains to per-
form the experiments. A brief description of the datasets are
shown in Table 1. In this experiment, we study the greedy and
non-greedy optimization methods, and compare the objective
values in Eq.(3) obtained by these two optimization methods.

In the first experiment, we run the greedy method and the
non-greedy method with different projected dimensions m
and the same initialization on each dataset. The projected
dimensions varies from 5 to 100 with the interval 5. The re-
sults are shown in Figure 1. In the second experiment, we run
the greedy method and the non-greedy method 50 times with
the projected dimensions m = 50 on each dataset. In each
time, the two methods use the same initialization. The results
are shown in Table 2.

From Figure 1 and Table 2 we can see, the proposed non-
greedy method obtains much higher objective values than that
of the greedy method in all the cases. The results indicate that
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Table 2: Objective values in Eq.(3) with dimension 50 obtained by PCA-�1greedy and PCA-�1nongreedy, respectively. The
number of initialization is 50.

Data set PCA-�1greedy PCA-�1nongreedy
Min Max Min/Max Mean Min Max Min/Max Mean

Jaffe 4722.86 4815.28 0.9808 4770.50 7349.87 7409.23 0.9920 7377.96
Umist 4649.03 4673.87 0.9947 4661.83 6316.97 6359.19 0.9934 6340.59

Yale 16058.68 16261.68 0.9875 16144.79 20964.16 21217.98 0.9880 21064.38

Coil20 8753.97 8793.97 0.9955 8778.63 12860.50 12935.98 0.9942 12891.44
Palm 4497.48 4518.04 0.9954 4507.50 5702.38 5724.27 0.9962 5712.15

USPS 34.44 34.47 0.9992 34.45 50.26 50.49 0.9954 50.39

the proposed non-greedy method always obtains much better
solution to the �1-norm maximization problem (3) than the
pervious greedy method.

7 Conclusions

A robust principal component analysis with non-greedy �1-
norm maximization is proposed in this paper. We first pro-
pose an efficient optimization algorithm to solve a general �1-
norm maximization problem, and the algorithm will usually
converge to a local solution by theoretical analysis. Based on
the algorithm, we directly solve the �1-norm maximization
problem where the projection directions are optimized simul-
taneously. Similarly to the previous greedy method, the ro-
bust principal component analysis with non-greedy �1-norm
maximization is also efficient, and is easy to extend to its
kernel version or tensor version. Experimental results on six
real world image datasets show that the proposed non-greedy
method always obtains much better solution than that of the
greedy method.
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