Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence

Multi-View Embedding Learning for Incompletely Labeled Data

Wei Zhang, Ke Zhang, Pan Gu, Xiangyang Xue
School of Computer Science, Fudan University, China
{weizh,k zhang,gupan,xyxue} @fudan.edu.cn

Abstract

In many applications, the data may be high dimen-
sional, represented by multiple features, and as-
sociated with more than one labels. Embedding
learning is an effective strategy for dimensional-
ity reduction and for nearest neighbor search in
massive datasets. We propose a novel method to
seek compact embedding that allows efficient re-
trieval with incompletely-labeled multi-view data.
Based on multi-graph Laplacian, we achieve the
optimal combination of heterogeneous features to
effectively describe data, which exploits the feature
correlations between different views. We learn the
embedding that preserves the neighborhood con-
text in the original spaces, and obtain the complete
labels simultaneously. Inter-label correlations are
sufficiently leveraged in the proposed framework.
Our goal is to find the maps from multiple input
spaces to the compact embedding space and to the
semantic concept space at the same time. There
is semantic gap between the input multi-view fea-
ture spaces and the semantic concept space; and
the compact embedding space can be looked on as
the bridge between the above spaces. Experimen-
tal evaluation on three real-world datasets demon-
strates the effectiveness of the proposed method.

1

Nowadays we are inundated with abundant data such as im-
ages, videos, documents, web pages, etc. The main charac-
teristics of these datasets are as follows. i) High-dimension
multi-view: For the low-level feature, the feature vector is
high-dimensional and often includes multiple kinds of fea-
tures, i.e., these features are in different spaces and thus het-
erogeneous; ii) Multi-concept incomplete-label: For the high-
level feature, one datum might be associated with more than
one semantic concept simultaneously, and semantic richness
requires multiple labels to sufficiently describe the datum;
however, it is difficult to label the data without missing any
concept, and generally the label information of each sam-
ple is incomplete. There is semantic gap between the input
multi-view feature spaces (low-level) and the semantic con-
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cept space (high-level); and it is of significance to learn the
bridge between the above spaces.

In real-world applications, there are many datasets with
multiple views, that is, one datum point may be represented in
several different feature spaces. For example, web images can
be described by heterogenous features such as color descrip-
tors, texture descriptors, shape descriptors, and the surround-
ing texts. Another example is the web categorization task
where the web can be described by either the words occurring
in web pages or the hyperlinks between web pages [Zhou and
Burges, 2007]. We should consider learning from data with
multiple views to effectively use multiple representations si-
multaneously, and such learning issue is usually called multi-
view learning. One approach to multi-view learning is co-
training [Kumar and Daume, 2011] where multiple learning
algorithms are trained for each view and the relationship be-
tween a pair of points should be consistent across different
views. [Zhou et al., 2007] takes advantage of the correlation
between the views using CCA(Canonical Correlation Analy-
sis) [Hotelling, 1936] and performs semi-supervised learning
with only one labeled training sample. In [Zhou and Burges,
2007; Fu et al., 2011], multi-view spectral clustering is per-
formed by generalizing Normalized Cut from the single view
to the multi-view case, but they ignore the feature correlations
between views. Other multi-view learning algorithms are in-
cluded in [Harel and Mannor, 2011; Quadrianto and Lam-
pert, 2011; Bronstein et al., 2010; Kumar and Udupa, 2011;
Kumar et al., 2011; Dhillon et al., 2011a]. However, these
methods do not take into account the correlation between con-
cepts which will affect the performance in the multi-label set-
ting.

Multi-label learning deals with the data associated with
more than one concepts simultaneously and is often applied to
image/video annotation, text categorization, web page classi-
fication, and so on. Multi-label learning has received many at-
tentions in the field of machine learning recently, such as Tag-
Prop [Guillaumin et al., 20091, MBRM [Feng et al., 20041,
ML-GRF [Zha et al., 2009], AFSVM [Chen er al., 2010],
RankSVM [Elisseeff and Weston, 2002], RML [Petterson and
Caetano, 2010] and references therein. In multi-label classifi-
cation, the correlations between labels can be captured to im-
prove the performance of classifiers. For example, the con-
cepts camel and desert often co-occur in the same image,
while panda and desert may seldom co-occur. Among var-



ious studies on multi-label learning, it is still unclear how to
learn from multi-view data and how to capture inter-label cor-
relations for embedding learning at the same time. In [Sun ef
al., 2011], some extensions of CCA(Canonical Correlation
Analysis) are proposed for multi-view multi-label learning.
One assumption in many multi-label learning algorithms is
that for each training sample, all of its associated labels are
provided completely, which may not hold in real applications
however. In practice, it is hard to get all the proper labels,
and usually the label information of samples is incomplete.
For example, given one image containing the concepts bird,
sky, cloud and tree, one may only label the image with bird
and sky while missing cloud and tree. In this case, only
an incomplete label set is available, and therefore, for some
label which has not been assigned to the sample, the con-
clusion can not be drawn that this label is not proper for the
sample. The existing methods on incompletely labeled data
include [Lee and Liu, 2003; Sun et al., 2010; Lu et al., 2012;
Liu et al., 2010a; Chen et al., 2010; Wang et al., 2007]; above
methods only allows for inter-label correlations but not for
inter-feature correlations because they are not developed for
multi-view data.

Embedding learning is a popular approach to deal with
high-dimensional data, which assumes that all data points
reside on an intrinsic manifold and find its embedding in
a low-dimensional space. In the past years many algo-
rithms on embedding learning have been proposed [Roweis
and Saul, 2000; Belkin and Niyogi, 2001; He et al., 2005;
Chen et al., 2005], but they are not designed for multi-view
multi-label learning. In [Dhillon ef al., 2011b], a learning
method is presented to estimate low dimensional context-
specific word representations from unlabeled data using a
spectral method; [Zhang and Zhou, 2010] performs multi-
label dimensionality reduction by maximizing the depen-
dence between the original feature description and the asso-
ciated class labels; however, it is not clear how to exploit the
weak supervised information in the incomplete label prob-
lem.

In this paper we propose a novel method to learn com-
pact embedding that captures inter-feature correlations, inter-
label correlations, and feature-label associations simultane-
ously from multi-view incompletely-labeled data. Each data-
point is represented by heterogeneous features in different
spaces, so multi-view learning is performed to obtain the opti-
mal combined features which exploit the feature correlations
across different views. We assume that data are in three kinds
of spaces: i) multiple input feature spaces, ii) compact em-
bedding space, and iii) a semantic concept space. By map-
ping data from multiple input feature spaces to the embedding
space and to the concept space, we seek the embedding which
preserves the neighborhood context in the original spaces,
and complete the labels at the same time. There is seman-
tic gap between the input multi-view feature space and the
semantic concept space; and the compact embedding space
can be looked on as the bridge between the above spaces.
Each data-point is associated with more than one semantic
concepts, so inter-label relations are exploited for embedding
learning. The proposed method is weakly supervised because
the label information available is incomplete.
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The rest of this paper is organized as follows: In Section
2 we formulate the proposed model for embedding learning
from multi-view incompletely-labeled data. Our experimen-
tal results on real datasets are given in Section 3. Finally, we
conclude this paper in Section 4.

2 The Proposed Method

Suppose that there are n incompletely labeled samples: X =
[X1,X2, ..., X,], among which each is represented by multi-
ple heterogeneous features; Y = [y1,...,yn] € {0,1}¢*",
where y,, € {0,1}€ is the label vector of the incompletely la-
beled sample x,,, (u = 1, ...,n) and ¢ is the number of labels
considered. y!, = 1(I = 1, ..., c) indicates that the I-th label
is a proper label for x,,, while y!, = 0 tells us nothing (i.e., the
absence of a label does not mean that it is not appropriate for
the sample). In the multi-label scenario, one datum may be
associated with multiple concepts simultaneously, thus there
may be more than one positive elements in the c-dimensional
binary vector y,. Let H = [hy,...,h,] € R™*"™ denote the
embedding for all n samples in the r-dimensional space, and
the u-th column h,, corresponds to the embedding code for
the sample x,,. We try to seek the compact embedding and to
complete the labels of all data-points represented by hetero-
geneous features in a unified framework. Intuitively, assume
that data points lie on a r-dimensional manifold embedded
in multiple input feature spaces, our goal is to find the maps
from multiple input spaces to the compact embedding space
and to the semantic concept space at the same time. It is wor-
thy to note that the multiple input feature spaces are hetero-
geneous; there is semantic gap between the input multi-view
feature space and the semantic concept space; and the com-
pact embedding space can be looked on as the bridge between
the above spaces.

2.1 Multi-View Learning with Heterogeneous
Features

For multi-view data , it is of significance how to identify the
similarity between samples represented by multiple features.
Suppose that each datum is represented by J heterogeneous
features, and we define .J? directed graphs Gij = (V,Wy;),
1,7 = 1,...,J over the dataset, where V is the set of nodes
and each node represents one sample; W;; = [w;;(w, v)]nxn
is the weight matrix and w;; (u, v) measures the similarity be-
tween samples x,, and x,, from the i-th and the j-th views, re-
spectively. It should be pointed out that these graphs share the
same set of nodes while having different similarity matrices
for different pair of views. With respect to the view pair (i, ),
the volume of graph G; is voli;V = 7, oy ey Wij(u,v).
The natural random walk on G;; can be defined as follows.
That is, given a node u, we try to walk from u to v, and
the transition probability on G;; is p(u — v|Gij,u) =
wij(u,v)/> ey wij(u,v) and the probability of u on G';
is p(u|Gij) = Y, ey wij(u,v)/voli;V. Let p(Gy;) denote
the prior probabilities of the random walker choosing the
graph G;;(1 < 4,5 < J), and we have p(G;;) > 0 and
>i; P(Gij) = 1. Then the probability of node u on multiple

graphs is computed as p(u) = >, p(u|Gy;)p(Gij).



According to Bayes’ theorem, the posterior probabil-
ity to choose the graph G;; at node u is p(Gjjlu) =
p(u|Gi;)p(Gij)
2 P(ulGij)p(Gij)°
ability of v — v on multiple graphs can be computed as
p(u— vlu) =32, p(u — v|Gyj, u)p(Gyj|u). Observe that

Thus, for any node u, the transition prob-

p(u — v|u)p(u)
- Zp(u — v|Gij, w)p(Gijlu)p(u)

= p(u— v|Gij, u)p(u|Gi;)p(Gij)

ij

_ Wi (u’ U) ZUEV Wi (u’ U)p(Gz'j) (D)
7 Z’UGV Wi (’u,7 v) ’UOlijV
Z wlj u, 'U )
o i vol”V
wi; (u, v) wz_] u,v)

=2 gy MO+ 2 Giy)

vol”V vole

where wy; (u, v) = exp{—v|x\) —x”||2} measures the sim-
ilarity between samples represented by the features in the
same view, and w;;(u, v)(i # j) measures the similarity be-
tween samples across different views. We use CCA technique
to define w;; (u, v) (i # j) which captures the correlations be-
tween heterogeneous feature spaces.

Let X = [x(z) ng)] and X [ng) ng)]
denote the dataset from the i-th and the j-th views, re-
spectively. Assume that they are firstly centered such that

Y1 X x) = 0 and S IXSB ) — 0. The covariance ma-
trices are denoted as follows: Cj;; = X(L)X(l)T, Cj; =
XOXOT, ¢y = XOXO T, and ¢j; = XOXO,

Canonical Correlation Analysis (CCA) is employed to learn
the common space to compute the similarity between sam-
ples from multi-view spaces. More specifically, the projec-
tion directions where samples are most correlated are firstly
¢’ Ciye?
S Vo Caviol Oyl
lent to seeking the eigenvectors w.r.t. largest eigenvalues of
Cii_lC’ijij_lei and ij_leiCii_lCij, respectively.
Denote T' = C’Z-f%CZ-jijfé. TTT and T'T are both
symmetric positive semi-definite and share 7 positive eigen-
values A1, ..., \z, herein 7 = rank(TT") = rank(T'T).
Cyi 'Ci; 04710y Cii 2TTTCy;%
and C’jjflCﬁC’iflC’ij ijiéTTTij%,
Cl-flC’ijijlei and ijfleiCiflCij are similar
to TTT and T'T respectively. Thus, Ci;~'Cy;C;; ' Cji
and C;;7'C;;C;; ' C;; also share the above 7 positive
eigenvalues A1,..,Az. Denote A = diag(Ay,..., A7),
o’ [ Zi,...,qbf:],‘and ij [ Jl,...,qﬁ]. Because
Cyi 100yt Cji®" = 'A and Cj; cﬂczflc”qﬂ =
(I)JA so TTTCy; 1P = C”MIﬂA and TTTCj; 3
Cjj TQIA. Suppose that ¥ and W are the sets of orthonormal

learned by maxygi ¢ , which is equiva-
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1912

eigenvectors with respect to r positive eigenvalues for 77
and T 7T respectively. Then we can easily calculate the
transformation matrix ®* = C;;~ 20 and &7 = C’Mfﬂll
The transformed data &' X® and &/ 'X() are in a
common 7-dim feature space, where the correlation matrix
is Az. Thus the similarity between samples across differ-
ent views w;;(u,v)(i # j) in Eq. (1) can be defined as
wij(u,v) = exp{— ol @ %) — 1 "x|2}. Note that
wii (U, v) = wy; (v, uw), while wU (u,v) # wu(v u), (i # j).
w;j(u,v) wji (u,v)
However, Zz#] vol;; V p(G ) Z]#z volj; V p<G )
, thus we have p(u)p(u — v|u) = p(v)p(v — ulv) =:
w(u, v), which can be defined as the similarity measurement
for the data points in multiple views.

2.2 Embedding Learning for Incompletely
Labeled Data

Based on the above random walk process among multiple
graphs, we can seek the compact embedding of multi-view
data and predict the labels in a unified framework. Let
Y = [¥1,--,¥n] € {—1,1}*" denote the label prediction
matrix for all the samples where y, = —1 means that the [-
th label is not a correct label for x,,. Y can be investigated
from different perspectives: i)column view: Each column of
Y corresponds to the estimated label vector for one data, and
can be viewed as the high-level feature vector of the u-th sam-
ple in the semantic label space, which differs from the low-
level feature vectors in the visual feature spaces; ii)row view:
Each row of Y can be viewed as the voting scores from all
the samples for each concept, and can also be viewed as the
feature vector of the concept. By leveraging the information
from above two perspectives, we can sufficiently capture the
semantic context, and the neighborhood consistency between
input spaces and embedding space in the proposed framework
formulated as follows:

T (yu —col(Y,u)) + 6 Z w(u,v)||hu — hUHQ

u, eV

p(s,t)||[row(¥, s) — row (Y, 1)||?
s,teC

st.H e R™"Y e {—1,1}"
(2)

where col(Y, 1) denotes the u-th column of the matrix Y,
which is the estimated multi-label vector for the sample x,,;
row(Y, s) denotes the s-th row of the matrix Y, which in-
dicates for the s-th concept which samples are positive while
the others are negative. Solving Eq. (2) is difficult and we can
relax the domain of Y from {—1,1}*" to [—1,1]°%™. p(s, )
is defined to capture the correlations between concepts s and
t. 6, and 0, are the tradeoff parameters.

Intuitively, the first term in the objective function Eq. (2)
forces the label prediction to fit the given labels as much as
possible. Since y,, € {0,1}¢, the penalty occurs only when

yfl =1, and yg(yu - col(Y,u)) Zl 1yu(l — ) > 0.



The second term constrains that the difference of embedding
codes between samples should be as small as possible when
they are strongly connected(i.e., with high transition proba-
bility). It is reasonable to preserve the neighborhood contexts
when mapping from the input feature spaces to the embed-
ding space. The third term achieves that strongly correlated
concepts should have similar voting scores from all the sam-
ples. The correlation between concepts p(s,t) can be ini-
tialized as the harmonic mean of the empirical conditional

probabilities: p(s, t) = % where the empirical con-

T v
2>, (v3)
the labeled samples and measure the co-occurrence of con-
cept pair on the given data. (y3 = 1(s = 1,...,c) means
that the s-th concept is associated with the u-th sample, while

y. = 0O tells nothing.)

Suppose that each datum x,, represented by multiple fea-
tures is firstly nonlinearly mapped to the r-dimensional em-
bedding space h, = ¢(x,), and then the label vector can
be estimated by mapping h,, to the c-dimensional semantic
concept space using the discriminant function y,, = Qh,,,
where Q € R®*" is the linear transformation matrix. De-
note Y = QH = Q[hq, ..., hy,], which is the label prediction
matrix for all the samples. Above maps from heterogeneous
feature spaces to embedding space and to concept space over
multiple graphs can be learned in Eq. (2) as

ditional probability p(t|s) = is derived from

mmZyu (Yu = Qha) + 01 D> w(u,v)||hy — by

u,veV
5,1)|| (row(Q, s) — row(Q, t)) H||”

u=1

+ 02 Z p(

s,teC

3

where row(Q, s) denotes the s-th row of the matrix (). By
introducing the Laplacian matrices we can rewrite Eq. (3) as

min f = — T’I‘(YTQH) + 91TT(HLWHT)
Q.H 4)
+0:.Tr(H'Q"L,QH)

where the matrices L, and L,, are two different graph Lapla-
cians. More specifically, L, D — F, where F
[p(5,1)]exe and D is a diagonal matrix with D(s,s) =
> p(s,t). Let G ({s}5_;, F) denote the semantic
context graph with the vertex set corresponding to the con-
cepts {s}¢_; and the weight matrix F' measuring the cor-
relations between concepts, thus L, is the graph Laplacians
over G’ = ({s}{_1, F') modeling the semantic context. Like-

wise, let G = (V, W) denote the multi-graph with the edge
weight matrix W = [w(u, v)],xn derived by natural random
walk over multiple graphs and let A be a diagonal matrix with
A(u,u) =3, w(u,v), thus L,, = A — W is the multi-graph
Laplacian modeling the consistency between neighborhoods
in the embedding space and those in multi-view input feature
space.

As pointed out before, p(s,t) can be initialized by the
empirical conditional probabilities using the given labeled
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dataset, then L, is estimated initially as well. The correla-
tions between concepts derived by the empirical conditional
probabilities is simple and effective if the samples are com-
pletely labeled. For incompletely labeled dataset, the empiri-
cal conditional probabilities might not be estimated correctly,
thus p(s,t) and L, are not expected to capture the semantic
context relationship well. To address this problem, we can
learn semantic context, embedding codes, and the label con-
fidence vectors simultaneously by modifying the framework
Eq. (4) as ming,g,z, f, and we can obtain the solutions in
an iterative way. We minimize the cost function Eq. (4) by
updating H, @, and L, alternatively. We derive the gradi-
ents of the above cost function with respect to H, @, and L,,,
respectively:

% = 7QTY + 201HL11) + 202QTLPQH

of

5 = ~YHT +20,L,QHH " ®)
of TAT

8Lp =20oQHH ' Q

Then the optimal H, @, and L, can be iteratively learned in
an alternating updating way as follows:

Ht — Ht—l 8f (Ht 1 Qt 1 Lt 1)
Qt —_ Qt—l _ ﬁ af (Ht 1 Qt 1 Lt 1) 6
LZ — Ltp—l 8f (Ht 1 Qt 1 Lt 1)

8L

where o, § and v (0 < «, 8,7 < 1) are all the step sizes for
gradient search. Based on the available incomplete label ma-
trix Y = [y1,...,¥n) € {0,1}°*", we employ the technique
called Non-negative Matrix Factorization(NMF)[Lee and Se-
ung, 1999] to initialize H and Q: Y = Q" H". Once the opti-
mal H and @ are learned, the optimal label prediction matrix
for all the samples is computed straightforward Y = QH,
and we can predict the label vectors easily by choosing a
threshold for each row of Y.

2.3 Discussion

It is worthy to note that the Laplacian matrix L,, in Eq. (4)
is n X n, and the complexity of Eq. (4) is high over large
dataset. For scalability, we can also learn an approximate
matrix for the Laplacian L,, like[Liu ef al., 2010b]. Spe-
cially, clustering is firstly performed on n data points to ob-
tain m(m >> n) anchor points. The weight between the
non-anchor point » and the neighboring anchor v is defined as

Zw = w(u,v) where (v) denotes the indices of near-

2 ey wiw)’

est anchors of pointv. Z,,, =0 if u ¢ (v), so the weight
matrix Z € R™*" is highly sparse. We only need to solve
the embedding codes associated with anchors which are put
in the matrix A € R"™ ™ in which each column vector ac-
counts for one anchor. Then the embedding for all data can
be computed easily by H = AZ. Substitute H with H = AZ

in Eq. (4), we can easily learn the optimal A in the iterative



way as before. It should be pointed out that the second item
in Eq. (4) becomes Tr(AZL,,Z"A"). Based on the ran-
dom walks across data points and anchors, the approximation
to the Laplacian matrix is derived as L,, = I — Z TA1Z,
where A diag(Z1) € R™*™. Thus, ZL,Z' =
77" — ZZVA"1ZZT | which is both memory-wise and
computationally tractable, and the second item in Eq. (4)
becomes Tr(AZZTAT — AZZ"A"*ZZTAT). Further-
more, learning the embedding for anchors enables efficient
out-of-sample extension. For any novel datum point, the em-
bedding can be computed as ¢(x) = Az(x) where z(x)

is m—dim weigh vector whose u—th element is z(u,x)
w(u,X)
ng(x> w(g,x)"

3 Experiments

We experimentally evaluate the performance of the proposed
method, denoted by ‘ours’, and compare it with WELL [Sun
et al., 2010] and PU WLR [Lee and Liu, 2003]. PU WLR
[Lee and Liu, 2003] is a method learning with Positive and
Unlabeled data using Weighted Logistic Regression; WELL
(WEak Label Learning) [Sun et al., 2010] is the method de-
signed for incompletely labeled dataset. Furthermore, we also
evaluate the degenerated version of our method denoted by
"ours—' where the multiple heterogeneous features are sim-
ply concatenated into a high-dimensional vector without cap-
turing inter-feature correlations. We conduct experimental
evaluations on three image datasets: MSRC [Shotton ef al.,
2006], LabelMe [Russell et al., 2008] and NUS-WIDE [Chua
et al., 2009].

3.1 Results on MSRC

MSRC image dataset [Shotton et al., 2006] is widely used in
multi-label learning for performance evaluation. It contains
591 photographs with 23 concepts in total. We ignore the
concepts horse and mountain since they have few instances.
Thus there are totally 21 concepts in our experiments. About
80% images are associated with multiple labels. There are
about 3 labels on average per image. Only one label per im-
age is used for models training in the experiments such that
MSRC can be employed as the incompletely labeled data. For
each image, we extract five kinds of features: 12-dim CLD
(Color Layout Descriptor), 64-dim SCD (Scalable Color De-
scriptor), 256-dim CSD (Color Structure Descriptor), 80-dim
EHD (Edge Histogram Descriptor), and 1024-dim SIFT fea-
ture.

Fig. 1 shows the experimental results of our method
in comparison with other related methods on MSRC image
dataset. We use four criterions to evaluate the performance:
Macro-F1, Micro-F1, Hamming Loss and Ave-AUROC (Av-
erage Area Under ROC). As for the criterions Macro-F1,
Micro-F1, and Ave-AUROC, the larger the value is, the bet-
ter the performance is; meanwhile, as for Hamming Loss, the
smaller, the better. It can be seen that our method consis-
tently performs better than other methods in terms of these
criterions. Our method sufficiently leverages inter-feature
correlation, inter-label correlation, and feature-label associ-
ation at the same time, which inherits all merits of the state-
of-the-art methods. Note that the degenerated version of our
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Figure 1: Performance of the proposed method in compar-
ison with the state-of-the-art on MSRC image dataset. The
dimension of the learned embedding is set r=64.
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Figure 2: Performance of the proposed method 'ours’ and
the degenerated version ‘ours—' vs. the dimensions of em-
bedding space on MSRC image dataset.

method 'ours—' still performs better than or comparable with
others because 'ours—' effectively captures the inter-label
correlation from the incompletely labeled data, even though
'ours—' simply concatenates into a high-dimensional vector
like WELL and PU_ WLR.

Fig. 2 illustrates the performance variations on different
dimensions of the learned embedding space. As can be seen,
the performance increases rapidly with the embedding dimen-
sions are added at the first stage, and it tends to be stable af-
terward; it even turns to drop when longer codes are used.
Thus the longest embedding code can not guarantee the best
performance.

3.2 Results on LabelMe

LabelMe image dataset [Russell er al., 2008] is dynamic,
free to use, and open to public contribution. We choose a
subset of the LabelMe dataset containing the top 33 object
categories and totally 1,105 images. In this subset each im-
age has more than 5 labels, and the average number of la-
bels per image in this subset is 6.63. For the purpose of
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Figure 3: Performance of the proposed method in compari-
son with the state-of-the-art on LabelMe image dataset. The
dimension of the learned embedding is set r=64.

evaluation on incompletely labeled dataset, we present the
ground truth of the labels for images in a full label matrix
Y = [y1,.,¥n] € {—1,+1}°" where y!, = +1 indi-
cates the [-th label is a correct label while y, —1 in-
dicates the [-th label is not a proper label for the u-th im-
age. We vary the Incomplete Label Ratio ( ILR, defined as
the ratio of the available label number to the ground-truth
Syl = 14/, 1¢yl, = 1y) of each image from 20%
to 80% with 20% as interval to study the performance of our
method over various incompletely labeled data. For each im-
age, we also extract five kinds of features: CLD, SCD, CSD,
EHD, and SIFT. Fig. 3 shows the experimental results of
our method in comparison with other related methods on La-
belMe image dataset. Our method outperforms the state-of-
the-art methods in most cases.

3.3 Results on NUS-WIDE

NUS-WIDE dataset [Chua er al., 2009] is a challenging col-
lection of 269,648 images and the associated tags from Flickr,
with a total number of 5,018 unique tags. Like [Liu e al.,
2010a], we select a subset of NUS-WIDE dataset, focus-
ing on images containing at least 5 labels, containing 19,277
images with 81 labels in total. In the experiments, only k
(k=1,2,3) label per image are used for models training such
that this dataset can be employed as the incompletely labeled
data for evaluation. For each image, five types of low-level
features are extracted: 144-Dim color correlogram, 73-Dim
edge direction histogram, 128-Dim wavelet texture, 225-Dim
block-wise color moments, and 500-Dim bag of words based
on SIFT descriptions. All these features of NUS-WIDE im-
ages are available on web! and can be downloaded freely.
Fig. 4 gives the experimental results of our method in com-
parison with other methods on NUS-WIDE images. In the
case that only one label per image is available, the perfor-

"http://Ims.comp.nus.edu.sg/research/NUS-WIDE.htm
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Figure 4: Performance of the proposed method in comparison
with the state-of-the-art on NUS-WIDE image dataset. The
dimension of the learned embedding is set r=64.

mance of our method is comparable to that of the others on
Macro-F1 and Ave-AUROC, and is better on Hamming Loss
and Micro-F1. In the case that two or three labels per im-
age are available, the proposed method outperforms the oth-
ers consistently on these four criterions.

4 Conclusions

In this paper we propose a novel method to learn com-
pact embedding that captures inter-feature correlations, inter-
label correlations, and feature-label associations simultane-
ously from multi-view incompletely-labeled data. Multiple
directed graphs are constructed over the dataset to model dif-
ferent similarity matrices across views. We use CCA tech-
nique to capture the correlations between heterogeneous fea-
ture spaces. By mapping data from multiple feature spaces
to the embedding space and further to the concept space, we
learn the embedding which preserves the neighborhood con-
text in the original spaces, and complete the labels at the same
time. There exists semantic gap between the input multi-view
feature spaces and the semantic concept space; and the com-
pact embedding space can be looked on as the bridge over the
gap between the above spaces.
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