UNIFORM — A LANGUAGE BASED UPON UNIFICATION WHICH UNIFIES (MUCH OF) LISP, PROLOG, AND ACT 1*

Kenneth M. Kahn

UPMAIL, Uppsala Programming Methodology and Artificial Intelligence Laboratory
Department of Computing Science, University of Uppsala
Uppsala Sweden
ABSTRACT descriptions. It is implemented as a process that
Uniform is an Al programming language under returns a "unifier" which if applied to any of the
development based upon augmented unification. It original descriptions produces the sought after
is an attempt to combine, in a simple coherent- instance. In the most common case, the unifier is
framework, the most important features of Lisp, simply an environment describing variable bindings
actor languages such as Act 1 and SmallTalk, and and it is applied to a description by substituting
logic programming languages such as Prolog. Among its values for the variables in the description.
the unusual abilities of the language is its As an example,*
ability to use the same program as a function, an (unifier-of (foo x 'a r)
inverse function, a predicate, a pattern, or a (foo o y r))
generator. All of these uses can be performed upon produces "(unifier (x 'b) (y 'a))" which if
concrete, symbolic, and ©partially instantiated substituted into either description produces the
data. Uniform features automatic inheritance from instance "(foo 'b 'a r)". Unification is defined
multiple 3uper classes, facilities for manipulation to produce the most general instance which means
of programs, a limited ability to determine program that the instance produced must unify with all
equivalence, and a unification-oriented database. other possible instances.

I A LANGUAGE BASED UPON UNIFICATION
Uniform is based upon the idea of an extensible
unification procedure. All programs are extensions

to the unification process. Unification plays the
roles of pattern matching, evaluation, message
passing, inheritance, and symbolic evaluation. In

the process of unifying the factorial of 3 with an
integer n, n is unified with 6. The concatenation

of x and the list (¢ d) unifies with the list (a b
c d), resulting in x being unified with the list (a
b). Unifying the nth element of the Ilist of all
prime numbers with 5 results in n unified with 3.
Unifying the reverse of a list of variables x and y
with a list z, wunifies z with a list of y and
x. Unifying a member of set x with a member of set
y vyields a member of the intersection of x and
y. Unifying a description of red chairs with a

description of big chairs produces a description of

big red chairs. And so on.
A. Unification What it is
Unification was invented for wuse in resolution

theorem provers <1> and has since been used in a
few programming languages. Two well-known examples
are Prolog which is a programming language based
upon resolution theorem proving <2> and Qlisp <3>.
In these languages unification is only one facility
among others. In Uniform unification is augmented
so that no other mechanism such as resolution,
automatic-backtracking, or evaluation is needed.

the
of

is the of

common

Unification
most general

process
instance

generating
of a set

*The research reported herein
the Swedish Board for Technical

was supported by
Development (STU).

Pattern matching,
role in most Al languages,
unification of two descriptions. The pattern is a
description containing variables which is matched
against a description without any variables. If
the match succeeds, the unifier produced is a set
of match bindings which when substituted into the
pattern produces the other description.

which has played such a large
is a special case of the

Unification has
matching. There

many advantages over pattern
is no distinction between patterns
which bind variables and patterns which use the
value of variables. This allows the meaning of a
pattern to be determined dynamically and is crucial
in using programs in multiple ways and directions.
This

Patterns can be matched against patterns.

is important for dealing with partial information.
It is also useful in determining if one pattern is
a special case of another. Uniform uses
unification this way so that by default more
specific knowledge is used first.

The order in which sub-problems (recursive calls
to unify) are made does not affect the outcome.
This gives the implementation a freedom of

optimization not possible in most pattern matchers.
Parallel implementations of unification which could
take advantage of the parallel hardware of the
future are also possible.

Uniform follows the convention that
are quoted and variables

*As in Lisp,
constants are numbers or
are unquoted symbols.

B. How Unification is Augmented In Uniform
Unification is a syntactic process. Its
concern is that forms have the same "head",
arguments unify, constants are equal and
recursively that bindings unify. It cannot unify
the sum of x and 3 with 7 by unifying x with 4.
Uniform's augmented unification leaves it up to the
forms involved to unify as they see fit where the
traditional syntactic unification process is used
only as a default. Except for a small set of
primitive types this augmentation is described in
Uniform by the user.

only
their

The only constraint upon augmentations to the
unification of two descriptions is that the
resulting unifier produce equivalent descriptions
when applied. For example, the unifier describing
x as 4 produces 7 and the sum of 4 and 3 when
applied to 7 and the sum of x and 3. Either the
sum of 4 and 3 is considered equivalent to 7 or
else the augmentation that produced the unifier is
invalid.

A few of the primitive forms stretch this view
of unification. For example, the primitive form
"(print)" will unify with anything and as a side
effect the other form will be printed. The
primitive "(ground)" will either unify with any
constant or will eventually fail if the other is a
variable or contains variables that are never
bound. There are primitives for dynamically
creating unification variables and forms,
primitives for escaping to Lisp's Eval (a
theoretically unnecessary, yet very useful,
primitive), forcing sequentiality (critical in
situations involving input-output or other side
effects), for determining if two things are the
exact same object (Lisp's EQ, critical when dealing
with circular structures and important for
efficiency), and for the logical connectors "and",
"or", and "not". Without this small set of
primitives, wunification would not be adequate as
the sole basis of a programming language.

for

Uniform's augmented unification not only has the

unusual features of delegating to the forms
involved but is based upon a new very parallel
algorithm. Sub-unifications of corresponding
arguments are computed independently and the
resulting unifiers are unified. A unifier is
either a set of bindings or a set of possible

unifiers whose members are computed only upon need.
This mechanism replaces the automatic backtracking

in Prolog and Qlisp. In addition, when the
descriptions cannot be unified the algorithm
produces failure descriptions which are used
internally and by the user for debugging.
Unification is also used to implement the occur

check and the "ground" primitive. The algorithm is

described further in <4>.

C. How Uniform uses Augmented Unification
The top level loop of Uniform is, analogous to
Lisp, a "read unify print" loop. The user types a
form which is unified with previous user
assertions. If the relation is either "=" (are
they unifiable?) or "unify" (what is the most
general common instance?) then the wunification
algorithm is applied to the arguments. If the
unification fails, it looks in the user's

934

between the two
in a shortest-

assertions for possible paths
descriptions and follows such paths

first manner.* The steps of a path are typically
described using the "=" relation which declares
that its arguments are unifiable. If an assertion
has constraints (a body) they are checked. If the
unification is successful the unifier produced is
applied to the wuser's problem and the resulting
instance is printed.

Here is a short sample session:

User: (unify (foo x) (foo 'a))
Uniform: (foo 'a)

User: (= (plus x 3) 7)

Uniform: (= (plus 4 3) 7)

User: (= (foo 3) (foo 4))

Uniform:

(or ;the problem is one of the following:

(failure 'arguments-do-not-unify (foo 3) (foo 4>>
(failure 'constants-do-not-unify 3 4))

The other action a user can take is to extend
unification by presenting assertions. For example,
the following is how unification can be extended to
handle factorial:

(assert (= (factorial 0) 1))
(- n 1NN

(assert (= (factorial n)
(* n (factorial

The first assertion extends unification so that
anything which unifies with factorial of 0 s
unifiable with anything which unifies with 1. The
second clause states that anything that unifies
with factorial of anything also unifies with
anything which unifies with the product of that
anything and factorial of one minus that anything.
The "n" in the second clause is universally
quantified.

This definition of factorial can be used in many
ways as illustrated below. How this is realized is

described in <4>. An example of its use as a
function is:
User: (= (factorial 3) (integer n))

Uniform: (= (factorial 3) (integer 6))
If we unified "(factorial 3)" with "n" in the
above example then "n" would have been unified with

"(factorial 3)" instead of 6. The use of "integer"
gives the user greater control of the unification
at the price of having to type variables. To
alleviate this the type "primitive" can be used
which unifies only with primitive types. Use of
the "primitive" type corresponds to evaluation in

Lisp.

Our description of factorial can be used as an
inverse function (or a pattern which matches only

integers which are factorials) by unifying
"(factorial n)" with ground forms. The value of
"n" or a failure description is computed reasonably

to some cleverness in the general
description of "«". Factorial of a constant can be
used as a pattern without necessarily being
evaluated. In unifying "(factorial 1000000)" with

efficiently due

*Shortest-first differs from breadth-first in
that the system maintains a data structure so that
it knows the minimum length of all possible paths
between two types of forms and tries the shortest
ones first.

17, a constraint that 1000000 be a divisor of 17 is
generated after 2 steps and causes immediate
failure.

D. What is interesting about Unification
I am developing Uniform both to produce a simple
yet powerful Al language and to explore
unification. Unification is interesting not only

as a basis for computation but as a source of
insight into questions about specialization,
generalization, object merging, inheritance and
multiple super classes.

Traditional unification is concerned with
creating the most general syntactic instance of a
set of descriptions. Class and instance is defined

terms of the form of the descriptions.
instantiated versions of a class are its
instances. From an Al point of view, the semantic,
not syntactic, instances are what is interesting.
A description of a particular equilateral triangle
is a semantic instance of the prototype equilateral
triangle, regular polygon, triangle, closed figure,
line drawing, geometrical figure and so on. The
semantic unification of regular polygons and
triangles should produce equilateral triangles.
Unification not only generates an instance of two
descriptions but produces a unifier, a description
of a viewpoint under which the two descriptions are
the same. For syntactic unification, the viewpoint
is an environment giving bindings and constraints
to the variables in the descriptions. A view of
polygons and triangles that makes them the same is

purely in
The more

a description of equal-sidedness and three-
sidedness. A viewpoint is not the same as the
instance. An equilateral triangle is more than
equal-sided and three-sided, it is also a closed
geometrical figure. Attaining this kind of
semantic unification is a direction this research
is headed.

As another example consider the unification of

two trivial Lisp programs: (cons head tail) with
(list first second). The instance of the two
programs can be described in two ways, as (cons
first (list second)) and as (list first (car
tail)). What is often of more interest than the
instance is the viewpoint (or unifier) which
produced it. In this example, the viewpoint
identifies "first" with "head", "tail" with "(list

second)", and "second" and "(car tail)".

Unification can be used to dynamically determine

who is an instance of who. Suppose descriptions x

and y unify to produce a common instance z. If z
equals x but not y, then x is an instance of y.
Unification is a process that provides some

insight into not only classes and instances but
also equivalence. The unifier of two equivalent
descriptions is an empty environment. If the
unifier of two descriptions is an environment which
only binds variables to variables, then the two
description are equivalent except for variable

names.

935

The augmentations of unification in Uniform are

almost always stated as equivalences between
programs. For example, consider a definition of
"Append" in Uniform,
(assert (= (append () back)

back))
(assert (= (append (cons first rest) back)

(cons first (append rest back))))

Occasionally an augmentation of unification will
explicitly describe an instance. This is expressed
as a second-order unification as illustrated in the
following example,

(assert
(= (unify (a-divisor-of n) (a-divisor-of m))
(a-divisor-of (greatest-common-divisor m n))))

This example is computationally interesting
since can be used in appropriate cases to intersect
virtual sets very efficiently. "(a-divisor-of 6)",

for example, is logically, but not computationally,
equivalent to "(a-member-of (set 1-12-23-36
-6))".

The dual of the unification process s

generalization. Unification finds the most general
description which is a specialization of some
descriptions, while generalization finds the most
specific description which has as specializations
the descriptions. Surprisingly generalization of

two descriptions can be implemented using the
unifier of the descriptions. When a wunifier is
just a set of bindings, it is used in a backwards
fashion to substitute constants for variables.

Generalization
variables are bound

is more complicated when different
to the same constant or when

the unification fails. This is described further
in <4>.

Generalization is well-known to be a useful
process. Winston's program which learned the
concept of an arch by generalizing structural
descriptions is a classic example. One of my goals
is that a program such as Winston's would be
significantly shorter and simplier, if written in
Uniform. Much of the program would augment

generalization beyond syntax in a similar manner to
how unification is augmented currently in Uniform.

E. Unification and Circularity
Another of Uniform's extensions of unification s
in the handling of circularity. Traditionally
unification is defined to perform an "occur check"
on every variable binding. The check causes a
failure if a variable is bound to something which
contains that variable, ever comes to contain that
variable in the future, or recursively is bound to
some structure which contains variables that fail

the check. Because of the expense of making such a
check most implementations of Prolog do not make
the check.

In Uniform's augmented unification, the user can

specify for each type of form whether the occur
check should be performed. For example, "plus"
does not perform the check since there is nothing

wrong with unifying x with the sum of x, y and z

provided the sum of y and z can unify with 0.
Without the check the system needs to be able to
unify circular structures. In the following

example "cons" does not do the check. The variable

x is bound to "a" consed with itself while y is
bound to "a" consed with a cons of "a" and itself.
The two structurally different infinite lists of
"a"s unify successfully.
(and (unify x (cons 'a x))

(unify y (cons 'a (cons 'a y)))

(unify x y))
What is difficult about unifying "x" and "y" above
is avoiding an infinite recursion. By being
careful about the order in which sub-forms are
unified it is possible to avoid this. Intuitively,
the algorithm assumes that a unification will

succeed before working on the sub-unifications so
that if the same problem appears again it will
succeed immediately without causing further
recursions <4>.

Occur checks can also be used to prevent certain
types of inconsistencies. Consider the following
example from Peano arithmetic:

;a successor of any x is greater than x
(assert (> (successor x) x))

;is there a y greater than its successor?

(> y (successor y))

If one considers binding "y" to "(successor
(successor y))" an inconsistency, then "successor"
should perform the occur check to prevent it.

Another view is that "y",
applications of "successor",

as an infinite number of
is a representation of

infinity. Infinity is greater than (and also less
than) its successor.
Il RELATIONSHIPS WITH OTHER LANGUAGES

Uniform was designed and developed with the
initial goal of incorporating the most important
features of Lisp, Act 1, and Prolog into a single
coherent framework. Future plans include the
incorporation of the notions of descriptions,

frames, and experts as found in <5>, constraints as
in <6>, partial evaluation as in <10>, and quasi-
parallelism and graphics as found in Director <7>.
My basic research strategy begins with the belief
that many existing languages and systems contain
very general and powerful facilities, but each one
has only a small subset of the union of these
facilities. Furthermore, a simple coherent union
of these facilities is both possible and desirable.

Boley's research on the FIT language shares this
research strategy <8>. FIT, however, is based upon
a generalized notion of variables, assignment,
pattern matching and demons.

A. Uniform and Lisp
Uniform, having been built upon MacLisp, in a
trivial sense incorporates all of Lisp's abilities.
There is a primitive for interfacing directly with
Lisp. Of course, using this primitive one loses
the ability to run programs symbolically or
backwards.

The more important way in which Uniform
incorporates Lisp is the ability to write Uniform
programs that look very much like Lisp. For
example, one can write "Append" in Uniform as
follows,

(assert

(r (append front back)
(cond ((null front) back)
((cons (first front)
(append (rest front) back))))))

This program does not mean the same as the

936

corresponding Lisp program. It states an
equivalence not an evaluation step. Unification
does not have eval's sense of direction or notion
of simplification. Instead of evaluation, a form
is unified with a variable constrained to be of a
particular data type such as integer or
s-expression or constrained to consist of only
primitive data types. This corresponds closely to
lazy evaluation in Lisp. Lacking the control
information implicit in Lisp, Uniform's interpreter
is in general slower. In return the append program
above can be executed symbolically, used in pattern
matching, run backwards, append any kind of list,
and be used in judging program equivalence.

The reason the "Append" program looks like Lisp

is that the primitives "Null", "First", "Rest", and
"Cond" can be written in Uniform. The primitives
of Lisp that currently are difficult to write
include those that perform side-effects such as
"Setq", "Rplaca" and array operations. It s
possible to implement them fairly straight-
forwardly in Uniform, but the implementation is
unacceptably inefficient. Essentially a cell is

list of its previous values where
the last cons contains the current value and a
variable for future bindings. Other possibilities
for implementing side-effects in Uniform are to use
tail-recursion optimization or reference counts to
know when it is safe to re-use the current
structure rather then copy. This shortcoming of
Uniform is an active area of research.

represented as a

the ability
lacking in

The most essential property of Lisp,
to run large programs efficiently is
Uniform. A compiler is planned and it is hoped
that it will produce acceptable code. Compilers
for SmallTalk <9>, Director <7>, and Prolog <2>
contain relevant techniques as do compilers based
upon partial evaluation such as the one for the
Lima pattern matcher <10>. Another area of
research that hopefully will lead to an acceptable
level of efficiency is work within logic
programming languages for describing and using
control or meta-level information <11>.

B. Uniform and Actor Languages
Computer languages based upon computational
entities called "actors" offer modularity,
parallelism, full extensibility of both data and

functions and a simple but powerful computational
semantics. An early version of Uniform was
attempted in Act 1 <12>, a language that takes the
idea of actors to the extreme. Many of the
facilities of Act 1 would have been available in
Uniform, including its excellent primitives for

Unfortunately
is too slow to
it.

describing concurrent computation.
the current implementation of Act 1
build a practical interpreter upon

Act 1 is a message passing language based upon
the convention that actors be able to respond to
"eval" and "match" messages. Uniform can be viewed
as a language in which forms pass "unify" messages
between themselves and their parts. As we saw in
the previous section, unification subsumes
evaluation. Unification clearly subsumes the match
messages in Act 1 since pattern matching is Just
the special case of unification where one of the
forms contains no variables.

One of the important features of actor languages
is the ability to describe a new data structure and
have old programs wuse it without modification.
This is a consequence of the fact that programs
depend only upon the behavior of data in response
to messages. A list is any actor which can answer
"first" and "rest" messages. The analogous
statement about Uniform is that a list is any form
that can wunify with "(cons x y)". For example,
suppose we want to define a new kind of list which
internally is represented by two lists, one for the
original members and one for those deleted. The
advantage of these "delete lists" is that deletion
becomes a very cheap and pure operation in return
for a little overhead on other operations.
They can be defined as follows in Uniform:
(assert
(= (delete-list deleted
(rules first
((member deleted)
;is already deleted so skip it
(delete-list deleted rest))
((?) ;otherwise the first element
(cons first
(delete-list
that is needed
lists since it
to "cons". If we
for "delete-list" it will be used
delete operation defined for "cons".
Notice that this way of implementing Ilists as
anything that can unify with a "cons" of two
variables subsumes the inheritance mechanism in
languages like SmallTalk and Director. Uniform
always tries first the shortest path between two
structures. The path to delete list's delete
operation is shorter than one through cons's delete
so it is followed first. Of course sub-classes are
possible. If x-lists only unify directly with
y-lists which unify with z-lists, then definitions
of operations wupon x-lists will be wused before
those for y-lists which in turn will be used before

(cons first rest))

is ok

deleted rest))))))
to run any program
provides a path from
describe how to

This is all
that works on
"delete-list"
delete items
before the

z-list's definitions.
This same mechanism works for multiple super
classes. If we define how horizontal-dashed-lines

and with dashed-lines
one can be applied to

unify with horizontal-lines
then operations upon either
horizontal-dashed-lines. Since Uniform follows
shortest paths first, the multiple super classes
are searched in a breadth-first fashion.

part of some of the actor
languages is the user definable control structures
and ability to compute in parallel <13> <12>. This
is a serious deficiency of Uniform. The plan is to
add such information as advice to the interpreter
as to how to go about doing the unifications. This
approach is similar to one taken in Metalog <11>.
The appeal of separating logic from control is that
a user can develop and test the logic or competence
of a program before adding control information to
improve its performance <14>. Also different uses
of the same program may be helped by different
control information.

One very important

C. Uniform and Logic Programming

In recent years a number of logic programming
languages have appeared. Most notable is Prolog, a
programming language which resembles Planner <2>.

937

(One of Prolog's major Planner is
its use of unification.) Programs in Prolog are
axioms in the first-order predicate logic
restricted to Horn clauses. Programs are executed
by a resolution theorem prover. What is special
about Prolog is that it is intended as a general
purpose programming language meant to compete with
compiled Lisp as well as with Planner-like
languages. The objection to logic as being an
excessively constrained manner of reasoning is
irrelevant to its worth as a programming language.
One would not want to build Al programs upon an
"informal" Lisp. The objection to logic that it is
not concerned with control over the wuse of
knowledge is a serious one. There are many
advantages however, to having a programming
language based upon logic with a separate control
component for improving performance such as
IC-Prolog or Metalog <11>.

improvements over

When compared with Lisp,
advantages and a few very serious
Prolog shares with Uniform the ability
same program in many ways. For example,
definition of "append" can be wused not only to
compute the result of appending two lists together
but can also be used as a predicate to verify that
the result of appending two lists is a third list,
as a generator of pairs of lists that append to a

Prolog has many
disadvantages.
to use the
the Prolog

particular list, as a way of finding the difference
between two lists, and as a generator of triples of
lists such that the first two append to form the
third.

Prolog has a few other features which Lisp
lacks. Among them are the ability to compute with
partially instantiated structures, a convenient way

to handle multiple outputs, and the use of pattern

matching instead of explicit list construction and
selection. On the negative side, Prolog
implementations are the result of a much smaller
implementation effort than the major Lisp dialects
and correspondingly lack good programming
environments, i/o facilities, adequate arithmetic,
and the like. Attempts to embed Prolog in Lisp
(e.g. QLOG <11>) may alleviate this. Among

problems are a dependence
lack of user control

Prolog's more fundamental
upon automatic backtracking, a

over search, and a lack of an efficient substitute
for impure operations.

Uniform was developed with the goal of capturing
and improving these positive aspects of Prolog.
Uniform supports all the uses of a definition that
Prolog does and an additional few For example,
Uniform's definition of "append" is equivalent to

Prolog's and can also be used as an implementation
of segment patterns.' In addition, it is all the
knowledge about "append" the system needs to answer
questions about program equivalence.

*For
(list
using

Uniform description (append
x) (list x) y '(center) y) (or equivalently
read macros (x x y 'center ly)) matches a
list whose first and second elements are the same
and the rest of the list has the symbol "center" in
the middle surrounded by equal list segments.

example, the

is under way ao that Uniform
lists

For example, work
can successfully unify the following for all
x and vy.

(s (append (reverse Xx) y)
(reverse (append (reverse y) x)))

In Uniform one can augment the unification of

relations other than the "a" relation and so can
write in Prolog's relational, as opposed to a
functional, style. The following is a Uniform
program for defining the "grandparent" relation
(which can be used as the "grandchild" relation
too).

(assert (grandparent-of grandchild grandparent)

;the above is true if the following holds
(parent-of a-parent grandparent)
(parent-of grandchild a-parent))

The program says that two variables are in the
grandparent relation if a «child of the first
variable unifies with a parent of the second. As
in Prolog the variables "grandparent” and
"grandchild" are universally quantified and
"a-parent" is existential (by virtue of not being

in the "head").

Il A DETAILED EXAMPLE

As a simple example that exemplifies many of
Uniform's features let us consider an
implementation of association |lists. It is a

typical example of how the same program can be used
to construct a data structure and to compute with
the same data structure. Besides reducing the
amount of programming it makes it impossible for
the accessing programs to be based upon a mistaken
notion of how the structure is constructed.

The following is an implementation of
association lists:
(assert association is in the front of the list

(:

(association-of key
(cons (list key value) rest))
value))
(assert ;otherwise "cdr"
(s (association-of key (cons first rest))
(association-of key rest)))

This program can best be understood by seeing
how it can be used. First let us build a list of
associations between objects and colors. We can
associate sky with blue in a list colors by
unifying "(association-of 'sky colors)" with the
symbol "blue". The variable "colors" is unified
with (cons (list 'sky 'blue) rest-1) or in an
alternative syntax "([sky ‘'blue] l!rest-1]". In
other words, "colors" is a list whose first element
is a list of "sky" and "blue" and the rest is an
unbound variable. If we next associate grass with
green and ocean with blue, the "colors" list will
be bound to "[sky 'blue! ('grass 'green] ['ocean
'blue] Irest-33". Were we to add any of the
associations already In colors it would succeed
without making any new bindings.

down the list

*Extending Prolog to allow a functional style of
programming would not be too difficult <11>. More
difficult would be to support these functional
definitions in unification.

938

The association list can be used in many ways.
If we associate grass with the variable
"grass-color", it will be bound to green. Or if we
associate the variable "blue-thing" with blue,
blue-thing will be bound to sky. If that falls
later or other alternatives are desired, then
blue-thing will be unified with ocean.

If that alternative fails, a weakness of logic
programming is revealed. The problem of unifying

(association-of blue-thing colors) with ‘'blue s
interpreted as "is it possible that blue-thing is
associated with blue and if so how". If we reject
an answer it is interpreted as "is it possible in
some other way". If an association list "ends"
with a variable, then the answer is always yes.
The first answer was "yes if blue-thing is sky",
the second answer was "yes if blue-thing is ocean"
and the next answer was "yes if colors is []'sky
'blue] ['grass ' green] [*ocean 'blue] [blue-thing
'blue] frest-4]". In other words, "yes, if colors

is an association list with the variable blue-thing
associated with blue".

This problem was revealed when in answer to the

question "what can be blue" Uniform replied, "the
sky, the ocean and any blue thing". It was the
question that was at fault, not the answer. It
should have been "what is known to be blue". This

logic programming languages
the variables in
Uniform has a
the two
marks the
if any

cannot be expressed in
(without finding and binding all
colors to unique constants).

primitive relation to distinguish
interpretations. The primitive "known"
incoming unifier so that a failure results
of its unbound variables are unified.

A strength of Uniform is that one can define and
use an association list which has variables in it.
Dealing with partial knowledge is very important in
Al. One can express, for example, that John's
apple is either red, green or yellow by associating
John's apple with a variable for the color of
John's apple and unifying that variable with the
disjunction of red, green, and yellow. Later if we
learn more about the color of John's apple we can
specify it further, in the meanwhile we can use
what is known about his apple.

IV CONCLUSIONS AND FUTURE RESEARCH

A surprising result of this research is that
unification, a process of generating the most
general instance of a set of descriptions, can be

such a powerful basis for a programming language.

Unification unifies the essence of Lisp, Act 1, and
Prolog into a simple coherent framework.
Uniform is far from complete.* Some of the

implementation
The

*At the time of this writing, the
does not run all the examples in this paper.
unification algorithm and Its primitive types, the
path following, and the top-level works and is
capable of running examples such as "append",
"association-of", and "grandparent". Factorial,
the "rules" primitive, and the "known" primitive do
not work yet. Examples involving them have been
hand-simulated.

major avenues of future research follow.

Developing and incorporating the dual of
unification, generalization, into the language.
The duality between unification and generalization
is striking and the ability to implement them both
using the same mechanism is surprising.

A shortcoming of Uniform and Prolog is their
inability to wuse negative information. In the
previous example of association lists we cannot
prevent a key from having more than one
association. Uniform will be extended to be able

to use the following:

(assert
(not (= (association-of
key
(cons (list key value) rest))
(not value))))
This would cause the unification to fail if the key
is found but the values do not unify. Negative

information can be used in a default strategy which

concurrently tries to unify two descriptions and to
show that they are not unlifiable.

In the process of unification a variable may
acquire multiple constraints. As a default,
Uniform simply conjoins them. If later an attempt
is made to give the variable a value, then the
constraints disappear if the value satisfies them,
otherwise it fails. Inconsistent constraints do
not cause failure unless there is an attempt to use
them. If the constraints have a unique solution
then only that value can unify with them, but the
system does not compute that value. The
unification of constraints appears to be a natural
place to use some of the constraint satisfaction

techniques found in Steele and Sussman's constraint
system <6> and the XPRT system <5>.

We have explored the unification of descriptions

of programs. Exploring the wunification of other
complex structures such as frames, scripts, and
units should be equally valuable. Much of what
systems such as FRL, XPRT, SAM and KRL do is match
complex declarative structures with others.
Unification, a more general and powerful process

than pattern matching, promises to be very useful

for dealing with these structures.

As has been pointed out elsewhere (<14> among
others) there is much to be gained by separating
the control and logic components of an algorithm.

Uniform programs have much less control information

in them than equivalent Lisp or Act 1 programs. A
general search strategy is used as a default so
that the factual or competence component of
programs can be developed and tested without the
added complexity of being concerned with
efficiency. The efficiency can be put in later and
kept lexically separate from the rest of the
program. A compiler is planned which will be
written in Uniform and produce Lisp code.

It is very difficult to evaluate the worth of
computer language based solely upon small programs.
Prolog, for example, becomes less desirable as the
size of the programs grow due to its impoverished
notion of errors and debugging and its reliance
upon automatic backtracking. Work has been done to
alleviate these particular failings in Uniform, but

experience

with
be
In

<1>

<2>

<3>

<4>

<5>

<6>

<7>

<8>

<9>

<10>

<11>

<12>

<13>

<14>

tested by writing
this

in using Uniform is lacking. Concurrent
research suggested above, Uniform needs to
large complex programs in it.

is way behind Lisp et. al.

the

respect Uniform

REFERENCES

Robinson, J. "A Machine-oriented Logic Based

on the Resolution Principle", Journal of the
ACM, 12:1, January 1965

Warren, D. "Implementing Prolog — compiling
predicate logic programs", Department of
Artificial Intelligence, University of
Edinburgh, D.A.J. Research Report 39, May 1977
Sacerdoti, E. et. al. "Qlisp: A Language for
the the Interactive Development of Complex
Systems", SRl Technical Note 120, 1976

Kahn, K., "Implementing Uniform — an Al

language based upon Unification", forthcoming

Steels, L., "Reasoning Modeled as a Society of
Communicating Experts", MIT Al Lab TR-542,
June 1979

Steele G., "The definitions and implementation

of a computer programming language based on
constraints", MIT Al Lab TR-595, August 1980
Kahn, K., MIT Al Memo 482B,
December

"Director Guide",
1979

"Five Views of FIT programming"”,
Informatik, University of Hamburg,
1979

Boley, H.
Fachbereich
Nr. 57, September

Goldberg, A., Kay A.
Instruction Manual"
Group, Xerox Parc,

editors, "Smalltalk-72
The Learning Research
March 1976
Emanuelson, P. "Performance enhancement in a
well-structured pattern matcher through
partial evaluation", ph.d. thesis, Software
Systems Research Center, Linkoping University,
Sweden, 1980

Tarnlund, S-A. ed.,
Programming Workshop,
Computer Science Society,

Proceedings of the Logic
John von Neumann
July 1980

Lieberman, H., "A Preview of Act 1",
submitted for publication

Hewitt, C. "Viewing Control Structures as
Patterns of Passing Messages", Artificial
Intelligence, 8:3, June 1977, 323-364
Kowalski, R., "Algorithm = logic + control",

Communications of the ACM, 22:7, 1979

