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Abstract

We propose a model of random quantified boolean
formulas and their natural random disjunctive logic
program counterparts. The model extends the stan-
dard models for random SAT and 2QBF. We pro-
vide theoretical bounds for the phase transition re-
gion in the new model, and show experimentally
the presence of the easy-hard-easy pattern. Im-
portantly, we show that the model is well suited
for assessing solvers tuned to real-world instances.
Moreover, to the best of our knowledge, our model
and results on random disjunctive logic programs
are the first of their kind.

1 Introduction

Models for generating random instances of search problems
have received much attention from the artificial intelligence
community in the last twenty years. The results obtained for
boolean satisfiability (SAT) [Achlioptas, 2009] and constraint
satisfaction (CP) [Mitchell, 2002] have had major impact on
the development of fast and robust solvers, significantly ex-
panding their range of effectiveness as general purpose tools
for solving hard search and optimization problems arising in
Al, and scientific and engineering applications. They also re-
vealed an intriguing phase-transition phenomenon often asso-
ciated with the inherent hardness of instances, and provided
theoretical and experimental basis for a good understanding
of the phase-transition phenomenon.

Models of random propositional formulas and QBFs that
can reliably generate large numbers of instances of a de-
sired hardness are important [Gent and Walsh, 1999]. In-
herently hard instances for SAT and QBF solvers are essen-
tial for designing and testing search methods employed by
solvers [Achlioptas, 20091, and are used to assess their per-
formance in solver competitions [Jarvisalo ef al. 2012; Nar-
izzano et al. 2006; Calimeri et al. 2016]. On the flip side,
large collections of easy instances support the so-called fuzz
testing, used to reveal problems in solver implementation, as
well as defects in solver design [Brummayer et al. 2010].

Previous work mainly focused on random CNF formu-
las and random prenex-form QBFs with the matrix in CNF
or DNF (depending on the quantifier sequence). The fixed-
length clause model of k-CNF formulas and its 2QBF exten-
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sion have been especially well studied. Formulas in the fixed-
length clause model consist of m clauses over a (fixed) set of
n variables, each clause with k£ non-complementary literals.
All formulas are assumed to be equally likely. For that model
it is known that there are reals p;(k) and p, (k) such that if
m/n < pi(k), a formula from the model is almost surely
satisfiable (SAT), and if m/n > p,(k), almost surely unsat-
isfiable (UNSAT). It is conjectured that p; (k) = p, (k). That
conjecture is still open. However, it holds asymptotically, i.e.,
the two bounds converge to each other with & — oo [Achliop-
tas and Moore, 2002]. For the best studied case of k = 3, we
have p;(3) > 3.52 and p,(3) < 4.49 [Achlioptas, 2009],
and experiments show that the phase transition ratio m/n is
close to 4.26 [Crawford and Auton, 1996]. Important for the
solver design and testing is that instances from the phase tran-
sition region are hard and those from regions on both sides of
the phase transition are easy, a property called the easy-hard-
easy pattern [Selman et al., 1996] or, more accurately, the
“easy-hard-less hard” pattern [Coarfa ef al., 2003]. Empirical
studies suggest that SAT solvers devised for solving random
formulas are usually not effective with real world instances;
vice versa solvers for industrial instances are less efficient on
random formulas [Jdrvisalo et al., 2012]. This is often at-
tributed to some form of (hidden) structure present in indus-
trial problems that solvers designed for industrial applications
can exploit [Ansétegui et al., 2009]. Finding models to gen-
erate random formulas with “structure” that behave similarly
to those arising in practice is an important challenge [Kautz
and Selman, 2003]. Ansétegui et al. [2009] presented the first
model that may have this property: despite the “randomness”
of its instances, they are better solved by solvers tuned to in-
dustrial applications. More recently, Girdldez-Cru and Levy
[2016] proposed a model of random SAT based on the notion
of modularity, and showed that formulas with high modular-
ity behave similarly to industrial ones.

The fixed-length clause model was extended to QBFs by
Chen and Interian [2005]. In addition to n and m (under-
stood as above), their model includes parameters controlling
the structure of formulas. Once these parameters are fixed,
similar properties as in the case of the k-CNF model emerge.
There is a phase transition region associated with a specific
value of the ratio m/n (that does not depend on n) and the
easy-hard-easy pattern can be experimentally verified.

These two models are based on formulas in normal forms.
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However, many applications give rise to formulas in non-
normal forms motivating studies of solvers of non-normal
form formulas and QBFs, and raising the need of models of
random non-normal form formulas. The fixed-shape model
proposed by Navarro and Voronkov [2005], and studied by
Creignou et al. [2012], is a response to that challenge.

Motivated by the work on random SAT and QBF mod-
els, researchers proposed models of random logic programs,
and obtained empirical and theoretical results concerning
their properties [Zhao and Lin 2003; Namasivayam and
Truszczynski 2009; Wang et al. 2015; Wen et al. 2016].
Those results are limited to non-disjunctive logic programs.
No models for disjunctive logic programs have been proposed
so far. Such results would be of substantial interest to answer
set programming (ASP) [Brewka et al., 2011], a popular com-
putational formalism based on disjunctive logic programs.

In this paper, we propose and study models of random non-
normal form formulas and 2QBFs. Specifically, we consider
disjunctions of ¢ k-CNF formulas (in the case of QBFs, using
them as matrices). We call models generating such formulas
multi-component. Instances we obtain in this way are not for-
mulas from the fixed-shape model of Navarro and Voronkov,
as their building blocks (k-CNF formulas) do not have a fixed
size. Importantly, via the encoding by Eiter and Gottlob
[1995], the multi-component models of QBFs give rise to a
model of random disjunctive logic programs. Our models ex-
hibit the phase transition and, aligned with it, easy-hard-easy
pattern. We obtain theoretical bounds on the location of the
phase transition, and conduct a comprehensive experimental
study. In experiments, we considered several ASP, SAT and
QBEF solvers to exclude a possibility of a bias being an arti-
fact of committing to a specific solver. For a fixed ¢, we study
hardness as a function of the ratio m/n and show that the re-
gions of hardness for the models lie within their phase transi-
tion regions. Importantly, we study hardness as a function of
t, the number of components, and show that as ¢ grows gener-
ated instances get orders of magnitude harder. As Ansétegui
et al. [2009], we compare SAT solvers designed for random
instances with those designed for real-world ones. We find
that for ¢ > 2 our models generate instances better solved by
SAT solvers for real-world instances, and that the difference
grows as t grows. We measure the effect of ¢ on process-
ing disjunctive programs, and show that ¢ allows us to control
the amount of computation dedicated to stable model check-
ing [Koch er al., 2003].

Our results provide new ways to generate hard and easy in-
stances of propositional formulas, QBFs and disjunctive pro-
grams. Our models can generate instances of increasing hard-
ness with properties affecting solver performance in a simi-
lar way real-world instances do. The results are particularly
important to the development of disjunctive ASP solvers, as
no models for generating random disjunctive programs of de-
sired hardness have been known before.

2 Preliminaries

A clause is a set of literals that contains no pair of comple-
mentary literals. A CNF formula is a set of clauses. Disjunc-
tions of CNF formulas are also understood as sets of their
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constituents. The dual concepts (e.g., DNF formulas) are de-
fined similarly. By C'(k, n, m) we denote the set of all k-CNF
formulas with m clauses over (some fixed) set of n propo-
sitional variables. Similarly, D(k,n,m) is the set of all k-
DNF formulas, i.e., disjunctions of m conjunctions of k non-
complementary literals over an n-element set of variables.

The fixed-length clause model. The model is given by
the set C'(k,n,m) of CNF formulas, with all formulas as-
sumed equally likely. Formulas from the model can be gen-
erated by selecting m k-literal clauses over a set of n vari-
ables uniformly, independently and with replacement. As
we noted, the model is well understood. In particular, let
us denote by p(k,n, m) the probability that a random for-
mula in C'(k,n,m) is SAT. We define p;(k) to be the supre-
mum over all real numbers x such that for every p < =z,
lim,, o p(k,n, |pn]) = 1. Similarly, we define p, (k) to
be the infimum over all real numbers = such that for every
p >z, lim, o p(k,n, |pn]) = 0. As we mentioned, p;(k)
and p, (k) are well defined. Moreover, p;(k) < p, (k) and,
it is conjectured that p;(k) = p,(k). Experimental results
agree with these theoretical predictions.

The Chen-Interian model. The model generates QBFs of
the form VX JY F. Sets X and Y are disjoint and contain all
propositional variables that may appear in F'. The sizes of
X and Y are prescribed to some specific integers A and F,
respectively. Moreover, each clause in F' contains a literals
over X and e literals over Y for some specific values a and e.
We denote the set of all such CNF formulas F' with m clauses
by C(a,e; A, E;m). Clearly, C(a,e; A, E;m) C Ca +
e,A+ E;m). We write Q(a,e; A, E;m) for the set of all
QBFs VX3IYF, where F € C(a,e; A, E;m). The Chen-
Interian model generates QBFs from Q(a, e; A, E; m), with
all formulas equally likely.

Chen and Interian [2005] presented a comprehensive ex-
perimental study of the model. Let g(a,e; A, F;m) be the
probability that a random QBF from Q(a, e; A, E;m) is true.
Let > 0 be fixed real. We set v;(a, ;1) to be the supre-
mum over all real numbers x such that for every v < =z,
lim, o q(a,e; A, E; |vn]) 1, where A = |rE] and
n = A+ E. Similarly, we set v,(a,e;r) to be the infi-
mum over all real numbers x such that for every v > =z,
lim, o q(a,e; A, E; |vn]) = 0, again with A = |rE]
and n = A+ E. Chen and Interian proved that v;(a,e;r)
and v, (a,e;r) are well defined. Clearly, v(a,e;r) <
vy (a, e;r). Whether v(a, e; 1) = v, (a, e; ) is an open prob-
lem. The quantities v;(a,e;7) and v, (a,e;r) delineate the
phase-transition region. For QBFs generated from the model
Q(a,e; |rE], E; |[vn]) (with fixed r), Chen and Interian ex-
perimentally observed the easy-hard-easy pattern as v grows,
showed that the hard region is aligned with the phase tran-
sition, and that the same behavior emerges no matter what
concrete 7 is fixed as the ratio A/E.

3 Multi-component Models

Let F be a class of propositional formulas (or a model of ran-
dom formula). By ¢-F we denote the class of all disjunctions
of ¢t formulas from F (or a model generating disjunctions of
random formulas from F). Similarly, if Q is a class (model)
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of QBFs of the form VXY F, where F' € F, we write t-
Q for the class (model) of all QBFs of the form VXIY F',
where F' € t-F. We refer to models ¢t-F and ¢-Q as multi-
component. For QBFs we also consider the dual model to
t-Q, based on conjunctions of ¢ DNF formulas. It gives rise
to the multi-component model of disjunctive logic programs
via the Eiter-Gottlob translation. In all cases, we assume that
formulas (QBFs, respectively) are equally likely.

In our work we focus on models based on the model
C(k,n,m). First, we note that the corresponding multi-
component model ¢-C(k,n,m) has similar satisfiability
properties and that the phase transition regions in the two
models are closely related. Let p;(k, n, m) be the probability
that a random formula in ¢-C'(k, n, m) is SAT.

Theorem 1 Lett > 1 be a fixed integer. Then, for every p <
pi(k), lim, oo pe(k, n, [pn]) = 1, and for every p > p,(k),
lim;, 0o pe(k, m, | pn]) = 0.

The proof follows from the identity p;(k,n,m) = 1—(1—
p(k,n,m))!. Thus, if the phase transition conjecture holds for
the single component model C(k,n, m), it also holds for
the multi-component model ¢-C'(k, n, m), and the threshold
value is the same for every ¢.

We also considered the multi-component model ¢-
Q(a,e; A, E;m) of QBFs, with the Chen-Interian model as
its single-component specialization. Let ¢:(a, e; A, E;m) be
the probability that a random QBF from ¢-Q(a, e; A, E;m) is
true (in particular, ¢, (a, e; A, E;m) = q(a, e; A, E;m)). Ex-
tending Chen and Interian’s work, we can prove that the phase
transition for different values of ¢ coincide (and coincide with
the phase transition in the Chen-Interian model).

Theorem 2 For every integer t > 1 and real r > 0, if v <
vi(a,e;r), thenlim, oo qi(a,€; A, E; |vn|) =1, and if v >
vy(a,e;r), im, o0 qi(a,e; A, E5 |vn]) = 0 (where A =
|rE| andn=A+ E).

The theorems above describe the situation when ¢ is fixed
and n is large. When n is fixed and ¢ grows, the analysis of
pt(k,m,m) and q;(a, e; A, E;m) shows that the region of the
transition from SAT to UNSAT shifts to the right. Of course,
once we stop growing ¢ and start increasing n again, the phase
transition region will move back to the left.

The experimental results on satisfiability we present later
agree with this theoretical analysis; we will also see the easy-
hard-easy pattern and a strong dependence of hardness on ¢.

4 Random Disjunctive Programs

Our results on QBFs imply a model of random disjunctive
logic programs. This is important as disjunction increases the
expressive power of answer set programming posing, at the
same time, a computational challenge [Brewka et al., 2011].

Our model of random disjunctive programs is based on the
translation from QBFs to programs due to Eiter and Gott-
lob [1995]. It works on the model dual to the one we dis-
cussed above. The model consists of QBFs ® = FXVY F,
where F' € D(e,a; E, A;m), the set of formulas dual to

C(e,a; E,A;m). The model clearly has the same prop-
erties (modulo a switch between true and false). To de-
scribe the translation, let us assume that X = {z1,...,zg},
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Y ={y1,...,yatand F = Dy V...V D,,, where D; =
LiiN...NLj gy and L; ; are literals over X UY". For every
atom z € X UY we introduce a fresh atom z’. For every
z€ XUY,weseto(z) =z and o(—z) = 2'. Finally, we in-
troduce one more fresh atom, say w, and define a disjunctive
logic program Pg to consist of the following rules:

zV 2 foreachz € X UY
y<+ w and ¥ < w foreachy € Y
w<0(L;1),...,0(Ligte) foreach D;,i=1,....,m
w 4 not w

Eiter and Gottlob proved that ® is true if and only if Pg
has an answer set. Thanks to this correspondence, the model
D(a,e; A, E;m) gives rise to a model of disjunctive logic
programs. We denote it (and, with some abuse of notation,
the set of programs it consists of) by Dy, (e, a; E, A;m).

The set of atoms of programs in Dy, (e, a; E, A;m) is
{w}UZUZ' ,where Z = X UY and Z' = {z:z € Z}. The
structure of these programs is quite simple. Each program has
a fixed part (the same in all programs)

zV 2 foreachz € Z
y<+ w and y < w foreachy € Y
w < not w

and its unique core consisting of m Horn rules

W= 21, ...y 20

where ¢ = e + a and the body of each rule has e atoms z and
2’ with z € X (and so, also a atoms z and 2’ with z € ).
This structure can be generalized. Assuming an ad-
ditional set of t fresh atoms wi,...,w;, we write t-
Dy (e, a; E, A;m) for the set of programs consisting of:

AR foreachz € Z
y<+w and y < w foreachy € Y
W — Wi, ..., wy and w < not w

as the fixed part, and the core of mt¢ Horn rules of the form

Wh € 21,44, 20

where h = 1,...,t, each wy, is the head of exactly m rules,
£ = e + a, and the body of each rule has e atoms z and 2’
with z € X (and so, also a atoms of the form z and 2’ with
z € Y). Note that programs in 1-Dgyy, (e, a; E, A;m) co-
incide with those in Dyy, (e, a; E, A; m) modulo a rewriting,
where the rule w < w; is removed and wy is replaced by w.

Programs in ¢-Dg,, (e, a; E, A; m) correspond to 3V QBFs
whose matrix belongs to t-D(e, a; E, A;m). They can be
seen as the results of translating QBFs & into logic programs
® 41, where we use variables w; to represent component DNF
formulas in the matrix of ®. The correspondence ® — & 4,
preserves the semantics in the following sense.

Theorem 3 Let ® = IXVY'F, for F € t-D(e,a; E, A;,m).
Then ® is true if and only if ® g1, has an answer set, where
D 41, is the disjunctive logic program int-Dgy, (e, a; E, A;m)
corresponding to ®.

5 Empirical Analysis

We now present an experimental analysis of the behavior of
our models and discuss their properties.
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Experiment Setup. To claim that properties and patterns
are inherent to a model and not an artifact of a solver used,
we performed our experiments with several well-known SAT,
QBF and ASP solvers: the SAT solvers GLUCOSE 4.0 [Au-
demard et al., 2013] LINGELING, version of 2015 [Biere,
2014], and KCNFS, version of SAT’07 competition [Dequen
and Dubois, 2006]; the QBF solvers BQ-CEGAR!, AIG-
SOLVE [Pigorsch and Scholl, 2010]; RAREQS [Janota et
al., 2016], and AQUA-SZV2 and the ASP solvers CLASP
3.1.3 [Gebser et al., 2007] and WASP 2.1 [Alviano et al.,
2015], both paired with gringo 4.5.3.All solvers were run in
their default configurations. We stress that we did not aim at
comparing solver performance, instead our goal was to iden-
tify solver-independent properties inherent to a model.

Formulas generated according to the multi-component
model with ¢ > 1 are non-clausal, whereas the (Q)DIMACS
format requires the formulas to be in CNF. Therefore, the
generator transforms non-clausal formulas to CNF using the
standard Tseitin transformation. Once a formula ® is gener-
ated, it is stored in two files: one with an encoding of ® in the
(Q)DIMACS numeric format of (Q)SAT solvers [Jirvisalo et
al., 2012; Narizzano et al., 2006], and the other one with the
disjunctive logic program corresponding to ® in the ASP-
Core 2.0 syntax [Calimeri et al., 2016]. Since the formulas
we generate are of the form VXJY F, the programs are ob-
tained from their negations 3XVY —F. They have answer
sets if and only if the original formulas are false. Thus, when
we analyze satisfiability we plot only the curves obtained by
evaluating either the formulas or the corresponding logic pro-
grams (plots are symmetric). Experiments were run on a De-
bian Linux with 2.30GHz Intel Xeon E5-4610 v2 CPUs and
128GB of RAM. Each execution was constrained to one sin-
gle core by using the faskset command. Time measurements
were performed by using the runlim tool. Formulas were gen-
erated with a tool we developed in Java.The results are aver-
aged over 128 samples of the same size.

Behavior of Multi-component Model. To study the satis-
fiability of multi-component model instances (the location
of the phase transition), we considered the setting with the
number of variables (propositional atoms) fixed. Figure 1(a)
shows the results for the ¢ component model ¢-C(3, 200, m),
with ¢ € {1,3,5,7,9,11}. The z-axis gives the ratio of
the numbers of clauses and variables (m/200), the y-axis
shows the frequency of SAT. Consistently with our theoret-
ical results, the phase transition shifts from left to right, and
it sharpens for growing values of ¢t. The same can be ob-
served in Figure 1(b), showing the frequency of QBFs from
t-Q(1,3,24,12,m) that are true, fort € {1,3,5,7,9,11}.
To study the hardness of the multi-component model we
computed the average solver running times. The results (on
the same instances as before) for the GLUCOSE SAT solver
and the BQ-CEGAR QBEF solver are in Figures 1(c) and 1(d).
The plots show a strong dependency of the hardness on the
number of components: the peak of hardness moves right
and grows visibly with ¢. In more detail, the CNF formulas

' A combination of blogger preprocessor [Heule et al., 2015] and
ghostq [Klieber et al., 2013] solver from QBF gallery 2014.
2www.gbflib.org/DESCRIPTIONS/aqual6.pdf

536

(one component) are solved by GLUCOSE in less than 0.42s,
whereas instances with 11 components require about 7 min-
utes, i.e, they are more than 3 orders of magnitude harder.
Analogous behavior is observed when running BQ-CEGAR
on QBF formulas. Those from the one-component model are
solved instantaneously (average time < 0.01s), those from the
11-component model requires about one minute. The experi-
ments with other solvers gave similar results.

To underline the dependency of the hardness on the num-
ber of components, for each solver we compute the average
time over samples of the same size and plot its maximum (for
simplicity maximum execution time) for several values of ¢
in Figures 1(e) (SAT) and 1(f) (QBF, programs). In particu-
lar, Figure 1(e) reports the results obtained by running GLU-
COSE and LINGELING, and Figure 1(f) — the results obtained
by running BQ-CEGAR, AIGSOLVE, AQUA-S2V, RAREQS
and the results obtained by running CLASP and WASP on the
corresponding programs. The picture shows that the peak of
difficulty grows with the number of components no matter the
implementation or the representation roughly, at a rate that is
more than quadratic with ¢ (y-axis in logarithmic scale).

Next, we discuss the behavior of formulas when both the
number of variables and the number of components grow.
Figure 1(g) reports on the behavior of CNF formulas with
n € {100,200} and ¢ € {1, 10}. Formulas with 100 variables
are plotted in grey, and those with 200 variables in black. We
use squares to identify graphs for formulas with one compo-
nent and stars for graphs concerning formulas with ten com-
ponents. Figure 1(g) shows that when the number of variables
grows the phase transition moves to the left, and the tran-
sition becomes sharper. By Theorem 1, we expect that the
bounds on (un)satisfiability do not depend on ¢, indeed when
the number of variables grows the right shift due to an in-
crease in the number of components is compensated, and be-
comes negligible. Our experiments also confirm that hardness
grows with both the number of components and the number
of variables. This is seen in Figure 1(g) in the bottom, which
plots the average number of choices taken by CLASP (we con-
sider choices since execution times are negligible). Note that
CNF formulas with 100 variables and 10 components are al-
ready harder than formulas with 200 variables and one com-
ponent. Figure 1(h) shows the same picture for QBFs in ¢-
Q(1,3,50,25,m) (plotted in grey) and t-Q(1, 3,100, 50, m)
(plotted in black), with ¢ € {1,3}. These results were ob-
tained by running CLASP on the corresponding programs.

Impact on SAT Solving. A desirable property of a ran-
dom model is to generate instances that behave similarly to
real-world ones [Kautz and Selman, 2003; Ansétegui ef al.,
2009]. This similarity has been measured empirically by
comparing the performance of solvers for random and indus-
trial instances. Following [Ansétegui et al., 2009], we mea-
sure the ratio of the execution times of solvers. We compared
KCNFS (a well-known SAT solver specialized in random in-
stances) with GLUCOSE and LINGELING (both specialized in
real-world instances) to assess whether our model allows to
generate instances that are better solved by solvers for real-
world instances. In particular, Figure 2(a) shows the results
for the model ¢-C(3,100,m), while varying the number of
components ¢t € {1,2,3,4,5}. The z-axis gives the ratio
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Figure 2: Impact on solving technology.

of the numbers of clauses and variables (m/100), the y-axis
shows GLUCOSE versus KCNFS (top) and LINGELING versus
KCNFS (bottom). We observe that, KCNFS is faster (ratios
> 1) than both GLUCOSE and LINGELING when ¢ = 1, i.e.,
when our model coincides with the classical one for random
formulas. Once we increase the number of components the
result is reverted, GLUCOSE and LINGELING are faster than
KCNFS (ratios < 1), and the difference grows significantly
with ¢. This is independent of the clauses/variables ratio.
The difference between random and real-world instances
is often attributed to the presence of some hidden structure in
the latter [Ansétegui et al., 2009]. We observed that multi-
component models yield instances that are solved faster by
solvers designed for real-world instances. We conjecture this
is due to the component structure introduced by the model.
This structure can be controlled by varying the number of
components, yielding instances of varying hardness.

Impact on QBF and ASP Solving. An analysis distinguish-
ing the behavior of random and industrial instances is not
possible for ASP and QBF solvers. Indeed, no QBF/ASP
solvers have ever been designated as (or known to be) spe-
cialized to random instances in ASP and QBF Evaluations so
far (cf. [Calimeri et al., 2016; Narizzano et al., 2006] and
http://www.gbflib.org). Nonetheless our model has
other interesting implications for QBF and ASP solvers.

To assess the validity of our model for QBF, we submit-
ted several instances to the QBF Evaluation 2016. All our
instances (with n = 100 only, and ¢ < 6) were classified as
hard by the organizers, and helped identify a bug in one of the
participating solvers, demonstrating the efficacy of our model
in performance analysis and in correctness testing.

For ASP solvers, Figure 2(b) outlines the impact of our
model on answer set search for programs corresponding
to QBF formulas ¢-Q(1,3,24,12,m) with ¢ € {1,3,5,7,
9,11}. ASP solvers evaluate disjunctive programs by first
computing a candidate model, and then checking its stabil-
ity (the latter task is co-NP complete). Thus, we plot (i) the
ratio between the number of choices made during the search
phase and the number of stable model checks performed by
WASP and CLASP, and (i) the ratio between the time spent
in stable model checking and the total execution time for the
solver WASP (results for CLASP are analogous) both for grow-
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ing t. The ratio between the numbers of choices and model
checks decreases when the number of components grows, fol-
lowing a similar behavior for both solvers. This is a machine-
independent measure of the impact of the two activities, and
we observe that the role of the model checker grows with t.
Specifically, the impact of the model checking on the total
solving time grows from about about 3% (¢ = 1) to 88%
(t = 11). It is known that, on available benchmarks, ASP
solvers spend more time in the model search phase than in
the model checking phase (this also happens when ¢t = 1).
However, our model allows to generate in a controllable way
instances that put emphasis also the model checking phase.

6 Conclusions

In this paper we proposed the multi-component models for
random propositional formulas, and disjunctive logic pro-
grams. Despite their simple structure the models have the-
oretical and empirical properties that make them important
for further advancement of the SAT, QBF and ASP solvers.
First, the hardness of formulas/programs can be controlled
and, unlike in the earlier models, not only in terms of the
ratio of clauses to variables. Our experiments showed that
the hardness strongly depends on the number of components,
and even a small number of components can lead to very hard
instances. Further, the multi-component model generates for-
mulas that in at least one aspect are similar to instances aris-
ing in practice: they are solved better by solvers specialized
in industrial benchmarks than by solvers specialized in ran-
dom ones. This makes them useful for development and test-
ing of solvers intended for practical applications. Finally, our
model of random disjunctive programs is the first model for
that class of logic objects. This and the fact that it allows us
to control the role of the stable model checking phase point
to its potential for the development of ASP solvers.
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