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Abstract

Probabilistic Bipolar Abstract Argumentation
Frameworks (prBAFs) are considered, and the
complexity of the fundamental problem of com-
puting extensions’ probabilities is addressed. The
most popular semantics of supports and extensions
are considered, as well as different paradigms
for defining the probabilistic encoding of the
uncertainty. Interestingly, the presence of supports,
which does not alter the complexity of verifying
extensions in the deterministic case, is shown to
introduce a new source of complexity in some
probabilistic settings, for which tractable cases are
also identified.

1 Introduction
An abstract argumentation framework (AAF) represents a
dispute as an argumentation graph 〈A,D〉, whereA is the set
of nodes (called arguments) and D is the set of edges (called
defeats or attacks). Herein, an argument is an abstract entity
that may attack and/or be attacked by other arguments, where
“a attacks b” means that argument a rebuts/weakens b. Given
this, reasoning on the possible strategies for winning the dis-
pute typically requires looking into the extensions of the AAF,
i.e. a set of arguments that satisfies some properties certify-
ing its “strength”. Different semantics for AAFs have proven
reasonable, such as admissible (ad), stable (st), preferred
(pr), complete (co), grounded (gr), ideal (id) [Dung, 1995;
Dung et al., 2007; Baroni and Giacomin, 2009], and the
complexity of the problem EXT of verifying whether a set
is an extension has been studied under each of these seman-
tics [Dunne and Wooldridge, 2009; Dunne, 2009].

Since the introduction of AAFs in [Dung, 1995], many
variants have been proposed, with the aim of modeling dis-
putes more accurately. Among these, Bipolar Abstract Ar-
gumentation Frameworks (BAFs) allow supports, besides at-
tacks, to be specified between arguments. Specifically, two
alternative formal semantics of support have been introduced:
in [Cayrol and Lagasquie-Schiex, 2005], the support is a
generic “inverse” of the notion of attack (“abstract seman-
tics”: “a supports b” means that there is a positive interac-
tion between a and b – from a to b), while, in [Boella et al.,
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Figure 1: A bipolar abstract argumentation framework

2010], it is viewed as a “deductive” correlation between argu-
ments (“deductive semantics”: if a supports b, the acceptance
of a implies the acceptance of b). The various extensions’ se-
mantics defined for AAFs have been shown to have a natural
counterpart over BAFs, after noticing that combining attacks
with supports (of any semantics) generates “implicit” attacks.

Example 1 The graph in Figure 1 is a BAF with six argu-
ments a, b, c, d, e, f . The dashed and standard arrows denote
supports and attacks, respectively. The co-existence of sup-
ports and attacks entails the existence of implicit attacks. For
instance, under both the abstract and deductive semantics,
the fact that a strengthens b and b attacks c implicitly says
that a attacks c. This kind of implicit attack is often called
“supported attack”. If the deductive semantics is adopted,
there are other forms of implicit attacks. For instance, since
a supports b and e attacks b, there is an implicit attack from e
to a. Otherwise, a would be acceptable while b would be not,
thus contradicting the deductive support from a to b.

Other variants of AAFs are those addressing the repre-
sentation of uncertainty. In this regard, probabilistic AAFs
(prAAFs) are a popular paradigm, and in particular those
following the constellation approach. Here, the dispute
is modeled as a set of possible scenarios, each consisting
of a standard AAF (called possible AAF) associated with
a probability of representing all and only the arguments
and attacks actually occurring in the dispute. In particular,
two main paradigms have been adopted for specifying the
probability distribution function (pdf), called EX and IND.
In the general case, the extensive form EX is used, where the
each possible AAF must be explicitly specified along with its
probability. Otherwise, when independence between argu-
ments/attacks is assumed, the form IND can be used, where
the probabilities of the possible scenarios are represented
implicitly by specifying the marginal probabilities of the
arguments and attacks. For both EX and IND, the complexity
of the probabilistic counterpart P-EXT of EXT (asking for the
probability that a set of arguments is an extension) has been
characterized in [Fazzinga et al., 2016].

In this paper, we consider the probabilistic Bipolar Argu-
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mentation Framework (prBAF), where the bipolarity of BAFs
is combined with the probabilistic modeling of the uncer-
tainty of prAAFs, and characterize the complexity of reason-
ing on extensions. In our analysis, we start by observing that
the introduction of supports in the deterministic case does not
increase the complexity of verifying extensions, meaning that
EXT over BAFs (for both supports’ semantics) has the same
complexity as over AAFs. Then, we show that allowing sup-
ports can introduce a new source of complexity when prob-
abilities are considered: under the admissible and stable se-
mantics, and under the paradigm IND, for which P-EXT is
polynomial over prAAFs, the problem P-EXT becomes in-
tractable over prBAFs. For these cases, we give an insight on
this behavior by showing sufficient conditions restoring the
polynomiality of P-EXT. Table 1 summarizes our results.

Literature Our results

sem EXT
P-EXT EXT

P-EXT
(prAAF) (prBAF)(AAF)

IND EX
(BAF)

IND EX

admissible P FP FP P FP#P FP
stable P FP FP P FP#P FP
complete P FP#P FP P FP#P FP
grounded P FP#P FP P FP#P FP
preferred coNP FP#P FP||NP coNP FP#P FP||NP

ideal in θp2 ,
FP#P FP||NP

in θp2 ,
FP#P FP||NPcoNP-h coNP-h

Table 1: Complexity of EXT and P-EXT. Here: FP (resp., FPX ) is
the class of functions computable by a polynomial-time TM (resp.,
with invocations to an oracle for the class X); FP||X is similar to
FPX , but the oracle invocations can be done parallely; θp2 is P||NP ;
#P is the class of functions counting the solutions of an NP problem

Related Work. [Cayrol and Lagasquie-Schiex, 2005] first in-
troduced BAFs, where supports have the general “abstract”
semantics of positive interactions between arguments. Later,
three more specific interpretations for supports have been pro-
posed: [Boella et al., 2010], [Nouioua and Risch, 2010] and
[Oren and Norman, 2008] introduced the deductive, neces-
sary, and evidential semantics for the support relation, re-
spectively. In this paper, we focus on the abstract and de-
ductive semantics, but our results also hold for necessary
supports (as shown in [Cayrol and Lagasquie-Schiex, 2013],
they are dual to deductive ones). [Cayrol and Lagasquie-
Schiex, 2013] reviews the four different semantics for sup-
ports, and discusses the similarities and differences among
these interpretations. [Cohen et al., 2012] introduces a more
general framework that incorporates attacks, supports and a
preference relation.In [Martı́nez et al., 2006], subarguments
in AAF have been introduced, that in [Cohen et al., 2014]
have been shown to be closely related with the necessary sup-
port. Other related works are [Brewka and Woltran, 2010;
Verheij, 2009] where, although supports are not mentioned,
similar dependencies have been considered. A detailed sur-
vey over BAFs can be found in [Cohen et al., 2014].

As regards uncertainty in AAFs, the approaches based on
probability theory can be classified in two categories: those
adopting the classical constellations approach [Hunter, 2014;

Rienstra, 2012; Doder and Woltran, 2014; Dondio, 2014;
Hunter, 2012; Li et al., 2011; Fazzinga et al., 2013; Fazz-
inga et al., 2015] and those adopting the recent epistemic
one [Thimm, 2012; Hunter and Thimm, 2014b; Hunter and
Thimm, 2014a]. The former category has the two sub-
categories EX [Rienstra, 2012; Dondio, 2014] and IND [Do-
der and Woltran, 2014; Li et al., 2011; Fazzinga et al., 2013;
Fazzinga et al., 2015], described in the paper. The inter-
ested reader can find a more detailed comparative descrip-
tion of the two categories in [Hunter, 2013]. Furthermore,
many proposals have been made where uncertainty is rep-
resented by exploiting weights or preferences on arguments
and/or defeats [Bench-Capon, 2003; Amgoud and Vesic,
2011; Modgil, 2009; Dunne et al., 2011; Coste-Marquis et
al., 2012]. Although these approaches have proved effec-
tive in different contexts, there is no common agreement
on what kind of approach should be used in general. In
this regard, [Hunter, 2012; Hunter, 2013] observed that the
probability-based approaches may take advantage from rely-
ing on a well-established and well-founded theory, whereas
the approaches based on weights or preferences do not. Fi-
nally, recent works [Proietti, 2017; Polberg and Hunter, 2018]
investigate the need for extending BAFs with probabilities.

2 Preliminaries
We now review Bipolar Abstract Argumentation Frameworks
(BAFs) and the concepts of support, attack and defense, along
with the most popular extensions’ semantics over BAFs.

2.1 Bipolar Abstract Argumentation Frameworks
Definition 1 [BAF] A bipolar abstract argumentation frame-
work (BAF) is a tuple F = 〈A,Ra,Rs〉, where A is a set
of arguments, Ra ⊆ A × A is a defeat/attack relation and
Rs ⊆ A×A is a support relation.

In the first proposal of BAF [Cayrol and Lagasquie-Schiex,
2005], supports are given an abstract semantics, that is the
opposite of the traditional semantics of attack, inherited from
classical AAFs. This was shown to make the combination of
supports and attacks imply the so-called supported attacks1.
Definition 2 [Supported attack] Let F = 〈A,Ra,Rs〉 be a
BAF, and a, b ∈ A. There is a supported attack from a to b
iff there is a sequence a1R1 . . .Rn−1an, with n ≥ 2, where
a1 = a, an = b, ∀i ∈ [1..n− 2]Ri = Rs, andRn−1 = Ra.
Example 2 In the BAF in Figure 1, there is a supported at-
tack from a to c. Also the three direct attacks (e, b), (b, c) and
(f, d) are special cases of supported attack.

Besides the abstract, other semantics have been proposed
for supports (see Related Work). In particular, we consider
the well-established deductive semantics, first proposed in
[Boella et al., 2010]. Here, “a supports b” is interpreted as
a strong correlation between a and b, meaning that if a is ac-
ceptable, then b is acceptable too. As observed in [Cayrol and
Lagasquie-Schiex, 2013], under this semantics, a new form of
implicit attack, called d-attack, must be considered.

1[Cayrol and Lagasquie-Schiex, 2005] discussed also indirect
implicit attacks. W.l.o.g., as in [Cayrol and Lagasquie-Schiex,
2009], we disregard them, as they would not affect our results.
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Definition 3 [d-attack] Given a BAF F = 〈A,Ra,Rs〉 and
a, b ∈ A, there is a d-attack from a to b iff

– aRab, or
– there is an argument a′ such that there is a path from a to
a′ consisting of only support edges, and a′ attacks b, or

– there is an argument a′ such that there is a path from b to
a′ consisting of only support edges, and a attacks a′.

Example below shows that d-attacks include supported at-
tacks, but can be also of the form of supermediated attacks
(described by the last point in Definition 3).

Example 3 Under the deductive semantics for supports, in
the BAF of Figure 1, it is easy to see that the supported attacks
reported in Example 2 are d-attacks. Further d-attacks are
the supermediated attacks from e to a, and from f to c.

In order to analyze what changes when moving from one
semantics of supports to the other , we partition BAFs into
two classes: s-BAFs and d-BAFs, where only supported at-
tacks and d-attacks are considered, respectively. From now
on, we assume the presence of a BAFF = 〈A,Ra,Rs〉, and,
when needed, we will specify whether F is an s- or a d- BAF.

Definition 4 [Set-support] A set S ⊆ A set-supports an ar-
gument a ∈ A iff there is an argument a′ ∈ S such that there
is a path from a′ to a consisting of only support edges.

Definition 5 [Set-attack] Let F = 〈A,Ra,Rs〉 be an s-BAF
(resp., d-BAF). A set S ⊆ A set-attacks a ∈ A iff there is a
supported attack (resp., d-attack) from some b ∈ S to a.

Definition 6 [Set-defense] A set S ⊆ A set-defends an argu-
ment a ∈ A iff, ∀b ∈ A, if {b} set-attacks a then ∃c ∈ S such
that {c} set-attacks b.

Example 4 Consider the BAF F in Figure 1. Independently
from supports’ semantics, {a, e} both set-supports and set-
attacks b, and also set-attacks c. If F is an s-BAF, then {a, e}
does not set-defend c, since there is a supported attack from a
to c, and no attack from e to a. Observe that {a, e} does not
set-defend c if F is a d-BAF either.

2.2 Semantics
We first recall the notions of conflict-freeness and safety.

Definition 7 [Conflict-free and safe sets of arguments] A set
of arguments S ⊆ A is:
– conflict-free iff 6 ∃ a, b ∈ S such that {a} set-attacks b;
– safe iff 6 ∃ b ∈ A such that S set-attacks b and either S
set-supports b or b ∈ S.

Example 5 If the BAFF in Figure 1 is an s-BAF, both {a, e},
and {f, c} are conflict-free but not safe, while both {a, b, f}
and {a, b, d} are conflict-free and safe. If F is a d-BAF, both
{a, e}, and {f, c} are not conflict-free, while both {a, b, f}
and {a, b, d} are still conflict-free and safe.

All the most popular semantics of extensions of “standard”
AAFs have been extended to the case of BAFs [Cayrol and
Lagasquie-Schiex, 2005]. We start with the stable semantics.

Definition 8 [Stable extension] A set of arguments S ⊆ A is
a stable extension iff S is conflict-free and ∀a ∈ A\S it holds
that S set-attacks a.

Due to the presence of supports and the fact that, in BAFs,
conflict-freeness and safety do not coincide, for some AAF’s
semantics, different variants are considered when moving to
BAFs. This is the case of the admissible semantics.

Definition 9 [Admissible extension] A set S ⊆ A is
– a d-admissible extension iff S is conflict-free and set-
defends all of its arguments;

– an s-admissible extension iff S is safe and set-defends all
of its arguments;

– a c-admissible extension iff S is conflict-free, closed for
Rs and set-defends all of its arguments.

In turn, the other semantics subsuming the admissible one
are defined as follows. A set S ⊆ A is said to be:
– a d-complete (resp. s-complete, c-complete) extension iff
S is d-admissible (resp., s-admissible, c-admissible) and S
contains all the arguments set-defended by S;

– a d-grounded (resp. s-grounded, c-grounded) extension iff
S is a minimal (w.r.t. ⊆) d-complete (resp. s-complete,
c-complete) extension;

– a d-preferred (resp. s-preferred, c-preferred) extension iff
S is a maximal (w.r.t. ⊆) d-complete (resp. s-complete,
c-complete) extension;

– a d-ideal (resp. s-ideal, c-ideal) extension iff S is a
maximal (w.r.t. ⊆) d-admissible (resp. s-admissible,
c-admissible) extension and S is contained in every d-
preferred (resp. s-preferred, c-preferred) extension.
We denote the set {d-ad, s-ad, c-ad, st, d-co, s-co, c-co, d-gr,

c-gr, c-gr, d-pr, s-pr, c-pr, d-id, s-id, c-id} consisting of the
above semantics as SEM (herein, st means stable, d-ad
d-admissible, s-ad s-admissible, and so on).

Example 6 Consider the BAF in Figure 1. {a, b, f}, al-
though conflict-free and safe, is not a d-ad extension for both
s-BAF and d-BAF (since b is not set-defended). Furthermore,
for the s-BAF case, {a, f} is a s-ad, s-gr and s-pr extension,
{a, e, f} is a st, d-ad, d-gr, d-pr, and d-id extension, {f} is
an s-id extension, {e, f} is a c-pr, c-gr and c-id extension.

For the d-BAF case we have: {e, f} is the unique stable
extension, that is also c-preferred, c-grounded and c-ideal.

The fundamental problem of verifying whether a set S of
arguments is an extension over a given BAF under a seman-
tics sem ∈ SEM will be denoted as EXTsem(S). Given a
BAF F = 〈A,Ra,Rs〉, a set S ⊆ A, and a semantics sem
∈ SEM , we define the boolean function ext(F , sem, S) re-
turning true iff S is an extension under sem.

3 Probabilistic BAFs (prBAFs)
We now consider the extension of BAFs where uncertainty
is addressed and modeled probabilistically as in “traditional”
probabilistic AAFs - prAAFs. A probabilistic BAF (prBAF)
F is a tuple F = 〈A,Ra,Rs,P〉, where F = 〈A,Ra,Rs〉
is a BAF and P is a probability distribution function (pdf)
over the set PS = {α = 〈A′,R′a,R′s〉 |A′ ⊆ A∧ R′a ⊆
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(A′×A′)∩Ra∧R′s ⊆ (A′×A′)∩Rs}. That is, the elements
in PS(F), called possible scenarios or possible BAFs, are the
alternative cases of dispute that may occur, and each of them
is encoded by a BAF. Then, P assigns to each possible BAF
the probability that it describes the actual dispute.

As happens with prAAFs, we consider two encodings of
the pdf over the possible BAFs, namely EX and IND. That
is, a prBAF F of form EX is a tuple 〈A,Ra,Rs, ~α, ~P〉,
where A, Ra and Rs are sets of arguments, attacks and
supports, respectively, while ~α ⊆ PS(F) is the sequence
~α = α1, . . . , αm of the possible BAFs that are assigned non-
zero probability and ~P = P (α1), . . . , P (αm) are their prob-
abilities. The size of a prBAF 〈A,Ra,Rs, ~α, ~P〉 of form EX

is thus O((|A| + |Ra| + |Rs|) · (|~α| + |~P |)). Obviously,
the form EX allows any pdf (encoding any correlation be-
tween arguments/attacks/supports) to be represented. Oth-
erwise, when independence is assumed (thus, no correlation
must be encoded), the more compact paradigm IND can be
used. A prBAF of type IND is a tuple 〈A,Ra,Rs,PA,PR〉
where A = {a1, . . . , am}, Ra = {δ1, . . . , δn} and Rs =
{σ1, . . . , σk} are the sets of arguments, attacks and sup-
ports, respectively, and PA = {P (a1), . . . , P (am)}, PR =
{P (δ1), . . . , P (δn), P (σ1), . . . , P (σk)} are their marginal
probabilities. The pdf P over the possible scenarios that is
implied by the independence assumption and the marginal
probabilities PA,PR is as follows. For each possible BAF
α′ = 〈A′,R′a,R′s〉, the probability P (α′) is:

P (α′) =
∏
a∈A′ P (a)×

∏
a∈A\A′

(
1−P (a)

)
×∏

δ∈R′a
P (δ)×

∏
δ∈(Rs∩(A′×A′))\R′a

(
1−P (δ)

)
×∏

σ∈R′s
P (σ)×

∏
σ∈(Rs∩(A′×A′))\R′s

(
1−P (σ)

)
.

(1)

The size of a prBAF of type IND is O(|A|+ |Ra|+Rs|+
|PA|+|PR|). For both EX and IND, probabilities are assumed
to be rationals, whose sizes contribute to |~P|, |PA| and |PR|.
Example 7 Consider a prBAF F ′ of form EX, where A,Ra
and Rs are those of Figure 1, and ~α = α1, α2, α3 and
~P = P (α1), P (α2), P (α3) are: α1 = 〈A,Ra,Rs〉, α2 =
〈A,Ra \ {(e, b)},Rs〉, α3 = 〈A \ {e},Ra \ {(e, b)},Rs〉,
and P (α1) = 0.6, P (α2) = 0.2 and P (α3) = 0.2.

Consider now a prBAF F ′′ of form IND, where A,Ra and
Rs are those of Figure 1, and PA and PR are the following:
P (a) = P (b) = P (c) = P (d) = P (f) = 1, P (e) = 0.5,
P (e, b) = 0.5 and the probabilities of the other supports and
attacks are equal to 1. We have three possible scenarios,
α1, α2 and α3, that are the same of the case of F ′, but with
probabilities: P (α1) = 0.25, P (α2) = 0.25, P (α3) = 0.5.

In what follows, given a prBAF F = 〈A,Ra,Rs,P〉
of any kind (thus, independently from the way P is en-
coded), we denote as F .~α = α1, . . . , αm the possible BAFs
that are assigned non-zero probability by P , and as F . ~P =
P (α1), . . . , P (αm) their probabilities. For instance, if F is
encoded as a prBAF of form EX, then F .~α and F . ~P are ex-
actly the terms ~α and ~P in the tuple 〈A,Ra,Rs, ~α, ~P〉 en-
coding F . Analogously, if F is of form IND, then F .~α is
the set of all the possible BAFs having non-zero probability

definable over A,Ra and Rs, and F . ~P is the pdf defined in
Equation 1. The probabilistic versions of the two sub-classes
s-BAF and d-BAF will be called s-prBAF and d-prBAF, re-
spectively. Obviously, they can be of form IND or EX.

When switching to the probabilistic setting, the decision
problem EXTsem(S) makes no sense, since a number of dif-
ferent scenarios are possible, and a set of arguments can be
an extension in a some scenarios, but not in others. Thus, the
most natural “translation” of the problem of examining the
“reasonability” of a set of arguments S becomes the func-
tional problem P-EXTsem(S) of evaluating the probability
that S is an extension, according to the following definition.
Definition 10 (P-EXTsem(S) and P sem(S)) Given a
prBAF F , a set S of arguments, and a semantics sem
∈ SEM , P-EXTsem(S) is the problem of computing the
probability P semF (S) that S is an extension under sem, i.e.

P semF (S) =
∑

α ∈ F .~α ∧ ext(α, sem, S)

F .P (α) (2)

In the following, we will denote as P-EXTsemEX (S)(resp., P-
EXTsemIND (S)) the problem P-EXTsem(S) restricted to the case
that the input prBAF is of form EX (resp., IND).

Example 8 Continuing examples 6 and 7, we now compute
the probability that S = {a, e} is d-admissible in both the
s-and d- prBAF cases, and for both the forms F ′ and F ′′.
Case s-prBAF: S is d-admissible in both α1 and α2 (as e is
missing in α3), thus Pd-ad

F ′ (S) = P (α1)+ P (α2) =0.8 and
Pd-ad
F ′′ (S) = P (α1) + P (α2) = 0.5.

Case d-prBAF: S is d-admissible only in α2, as in α1 e d-
attacks a and in α3 e is missing, thus we have Pd-ad

F ′ (S) =

P (α2) = 0.2 and Pd-ad
F ′′ (S) = P (α2) = 0.25.

4 Complexity Results
We now provide our main contribution: we characterize the
complexity of P-EXTsem(S) over prBAFs for all the com-
binations of semantics of extensions, of supports (s- and d-
BAFs), and probabilistic paradigms (EX and IND). Table 1
summarizes our results: the variants d-, s-, and c- of the same
semantics are grouped in the same row (for instance, “ad-
missible” groups d-, s-, and c-admissible), as we will show
that moving from one variant to the other does not affect the
complexity. Before considering the probabilistic setting, we
address the deterministic one, by discussing the complexity
of EXTsem(S) over BAFs.

Proposition 1 For both s-BAFs and d-BAFs, EXTsem(S) is
in P for sem ∈ {d-ad, s-ad, c-ad, st, d-co, s-co, c-co, d-gr,
c-gr, c-gr}, is coNP-complete for sem∈ {d-pr, s-pr, c-pr}
and is in θp2 and coNP-hard for sem∈ {d-id, s-id, c-id}.

Proposition 1 follows from the fact that the conditions that
must be checked to verify an extension in the presence of sup-
ports (for the three variants d-, s-, and c- ) require only poly-
nomial computations on top of those needed in the absence
of supports. This implies that the complexity of EXTsem(S)
over BAFs is the same as over AAFs (second column of Ta-
ble 1). We now characterize the complexity of P-EXTsemEX (S).
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Theorem 1 For both s-prBAFs and d-prBAFs, P-
EXTsemEX (S) is in P for sem∈ {d-ad, s-ad, c-ad,
st, d-co, s-co, c-co, d-gr, c-gr, c-gr}, and FP||NP -complete
for sem∈ {d-pr, s-pr, c-pr, d-id, s-id, c-id}.
(Proof.) Evaluating the probability that S is an extension
requires checking whether S is an extension over all the
possible BAFs. Under EX, the number of possible scenarios
is linear in the input size. Hence, P-EXTsemEX (S) is in P for all
the semantics that are polynomial in the deterministic case.
For the other semantics, membership in FP||NP follows from
the fact that the check can be done in coNP (for the group
“preferred”) or with parallel invocations to NP oracles (for
the group “ideal”). Hardness for FP||NP follows from the
hardness for prAAF proved in [Fazzinga et al., 2016]. 2

We now characterize the complexity of P-EXTsemIND (S).
Theorem 2 For any sem ∈ SEM , and for both s- and d-
prBAFs, P-EXTsemIND (S) is FP#P -complete.
(Proof.) The membership can be shown applying minor mod-
ifications to the TM used in Theorem 3.14 in [Fazzinga et al.,
2015], where the membership in FP#P of the correspondent
problem for prAAFs (thus, with no supports) was shown.
For the hardness, we have to reason by cases. The case that
sem is not “stable” or a variant of “admissible” is trivial,
since it follows from the fact that the problem is FP#P -hard
even when no supports occur [Fazzinga et al., 2015]. Oth-
erwise, if sem ∈ {d-ad, s-ad, c-ad, st}, we consider two cases.
Case 1: the prBAF is an s-prBAF. We first prove the hard-
ness for sem ∈ {d-ad,s-ad,c-ad}. It suffices to show a re-
duction from a #P-complete problem, since, for functional
problems, #P- and FP#P - hardnesses coincide. We show a
Cook reduction from #BP2DNF, the #P-complete problem of
counting the satisfying assignments of a bipartite positive 2-
DNF formula. Specifically, given two disjoint sets of proposi-
tional variablesX = {X1, . . . , Xn}, Y = {Y1, . . . , Ym}, and
a BP2DNF formula φ = C1∨ . . .∨Ck, where every clauseCi
is of the form X ∧ Y , with X ∈ X and Y ∈ Y , we consider
the s-prBAF F(φ) = 〈A,Ra,Rs,PA,PR〉 where:
– A = {a, b, c, d} ∪ {xi |Xi∈X} ∪ {yi |Yi∈Y};
– Ra={〈c, xi〉 |Xi∈X}∪{〈c, yi〉 |Yi∈Y}∪{〈c, b〉, 〈b, d〉};
– Rs = {〈a, xi〉 |Xi ∈ X} ∪ {〈yj , b〉 |Yj ∈ Y} ∪
{〈xi, yj〉 |Xi ∧ Yj is a clause of φ};

– PA assigns probability 1 to every argument;
– PR assigns probability 1 to every defeat and to every sup-

port 〈xi, yj〉 such that Xi ∧Yj is in φ, and probability 1
2 to

the other supports (i.e., those of form 〈a, xi〉 or 〈yj , b〉).
Let β be the bijection from the truth assignments for

X1, . . . , Xn, Y1, . . . , Ym to the possible BAFs of F(φ) with
non-zero probability, such that, for each truth assignment t,
β(t) = 〈A′,R′a,R′s〉 is the possible BAF where: i) 〈a, xi〉 ∈
R′s iff t(Xi) =true and ii) 〈yj , b〉 ∈ R′s iff t(Yj) =true.

Consider the set of arguments {c, d}. It is easy to see that,
for each truth assignment t, the set {c, d} is d-/s-/c-admissible
in β(t) iff t does not satisfy φ (otherwise, there would be a
supported attack from a to d, and a is not attacked by c or d).

Hence, any instance φ of #BP2DNF can be reduced to an
instance of P-EXTsemIND (S) by first constructing the prBAF

F(φ), and next returning 2n+m · (1 − P semF(φ)({c, d})) as the
number of satisfying assignments of φ.

Reasoning analogously, the statement for the stable seman-
tics can be proved by taking the same construction and re-
turning 2n+m · (1−P st

F(φ)({a, c, d})) (instead of 2n+m · (1−
P st
F(φ)({c, d}))) as the number of satisfying assignments of φ.

Case 2: the prBAF is an d-prBAF. We show a Cook reduc-
tion from the #P-complete problem #P2CNF of counting the
satisfying assignments of a positive 2-CNF formula. Specifi-
cally, given a positive 2-CNF formula φ = C1∧ . . .∧Ck over
the set of propositional variables X = {X1, . . . , Xn} where
each clause Ch is of the form Xi ∨Xj with X ∈ X , we con-
sider the d-prBAF F(φ) = 〈A,Ra,Rs,PA,PR〉 where:

– A = {a} ∪ {xi |Xi ∈ X} ∪ {ch |Ch ∈ {C1, . . . , Ck}};
– Ra = {〈a, xi〉 |Xi ∈ X} ∪ {〈ch, a〉 |Ch ∈
{C1, . . . , Ck}};

– Rs = {〈ch, xi〉 |Xi occurs in the clause Ch};
– PA assigns probability 1.0 to the arguments a, c1, . . . , ck

and probability 1
2 to the arguments x1, . . . , xn;

– PR assigns probability 1.0 to every attack and support.

Let β be the bijection from the truth assignments for
X1, . . . , Xn to the possible BAFs of F(φ) with non-zero
probability such that, for each truth assignment t, we have
that β(t) = 〈A′,R′a,R′s〉 is the possible BAF such that
xi ∈ A′ iff t(Xi) =true. Consider the set of arguments
{a}. It is easy to see that, for each truth assignment t, {a}
is d-/s-/c-admissible or stable in β(t) iff t satisfies φ. This
derives from the fact that β(t) contains an attack from a to
xi iff t(Xi) =true. In turn, the existence of 〈a, xi〉 raises a
supermediated attack from a to every cj such that Xi occurs
in Cj , thus defending a from cj . Hence, any instance φ of
#P2CNF can be reduced to an instance of P-EXTsemIND (S) by
first constructing the prBAF F(φ), and next returning 2n+m ·
P semF(φ)({a}) as the number of satisfying assignments of φ. 2

4.1 Tractable Cases for P-EXTsem
IND (S)

The results above say that the combination of bipolarity and
probabilities makes reasoning over extensions harder only for
the form IND under the s-/d-/c-admissible and stable seman-
tics, for which P-EXTsem(S) is polynomial in the absence
of supports (see Table 1). Thus, finding conditions restor-
ing the polynomiality is worth investigating, as this gives an
insight on the new source of complexity introduced by com-
bining probabilities and supports. With this aim, we focus on
the form IND and show a restricted form of prBAFs (namely,
C-bounded prBAFs) for which P-EXTsem(S) is polynomial.
At the end of this section, we will show that the relevance of
this restriction goes beyond the definition of a tractable class:
our proof of tractability is based on introducing a general
paradigm for computing extensions’ probability that can en-
hance the efficiency even when the restriction does not hold.

Formally, given a prBAF F = 〈A,Ra,Rs,PA,PR〉, con-
sider the sets: i) F .Ae = {a| ∃〈a, b〉 ∈ Rs ∨ ∃〈b, a〉 ∈ Rs}
(called set of supp-arguments, as they are those involved in
supports), and ii) F .Re = {〈a, b〉 ∈ (Ra ∪ Rs) | (a ∈
Ae∨b ∈ Ae} (called set of supp- attacks and supports, as they
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are attacks/supports incident to supp-arguments). Given this,
for any constant C, F is said to be C-bounded if |F .Re| ≤ C
(meaning that the number of supports and of attacks to/from
arguments involved in supports is bounded by C).

Our strategy is based on the notions of contraction and
completion. A contraction for a prBAF F = 〈A,Ra,Rs,
PA,PR〉 is a prBAF F∗ = 〈A∗,R∗a,R∗s,P∗A,P∗R〉 where:
– A∗ ⊆ A and A \ A∗ ⊆ F .Ae;
– R∗a ⊆ Ra ∩ (A∗ ×A∗) andRa \ R∗a ⊆ F .Re;
– R∗s ⊆ Rs ∩ (A∗ ×A∗);
– P∗A(a) = 1 if a ∈ F .Ae and P∗A(a) = PA(a) otherwise;
– P∗R(〈a, b〉) = 1 if a ∈ F .Ae ∨ b ∈ F .Ae, and
P∗R(〈a, b〉) = PR(〈a, b〉) otherwise.

Basically, F∗’s supports are a subset of F ’s, and arguments
(resp., attacks) are a subset of F ’s containing at least the non
supp-arguments (resp., the non supp-attacks). Then, the prob-
abilities are copied from those specified inF , except for those
over supp- arguments and attacks, that are overwritten with 1.
E(F) will denote the set of possible contractions of F . For

F∗ ∈ E(F), the probability of F∗ given F is: P (F∗|F) =∏
a∈Ae

PF∗(a)×
∏
δ∈Re∩(A∗×A∗) PF∗(δ), where:

– if a∈A∗, PF∗(a)=PA(a); else, PF∗(a)=1−PA(a);
– if δ ∈ R∗a∪R∗s , PF∗(δ)=PR(δ); else,PF∗(δ)=1−PR(δ).

As regards completions, their definition uses the function
cert(F), returning the BAF consisting of all and only the
certain arguments/attacks/supports of F (i.e., those having
probability 1). Thus, the completion of F is the prBAF
compl(F) = 〈A′,R′a,R′s,P ′A,P ′R〉 where:

– A′ = A andR′s = Rs;
– R′a=Ra∪R′, where R′ consists of the s- or the d- attacks

of cert(F), depending on whetherF is an s- or a d- prBAF;
– ∀a ∈ A, P ′A(a) = PA(a);
– ∀δ ∈ R′a, if δ ∈ R′ then P ′R(δ)=1, else P ′R(δ) = PR(δ).

Next lemma allows for decomposing the evaluation of
P semF (S) into evaluating P semF∗ (S) over each contraction F∗.
Lemma 1 Let F be a prBAF and S a set of its arguments.
For sem ∈ {d-ad, s-ad, c-ad, st}, it holds that P semF (S) =∑
F∗∈E(F) P (F∗|F)× P semF∗ (S).

The following lemma provides a method for computing
P semF∗ (S) for each F∗ ∈ E(F), as it states that P semF∗ (S)

can be computed by taking the prAAF F obtained by re-
moving the supports from the completion of F∗, and then us-
ing over F any state-of-the-art algorithm for computing the
extensions’ probabilities over “traditional” prAAFs (that is
polynomial for the semantics ad, st).

Lemma 2 Let F be a prBAF, F∗ a contraction for F , F the
prAAF obtained from compl(F∗) by removing the supports,
and S a set of arguments of F∗. Then:

– For sem ∈ {d-ad, st} P semF∗ (S) = P sem
′

F (S), where
sem′ ∈ {ad, st} respectively;

– P s-ad
F∗ (S) = 0 if S is not safe over cert(compl(F∗)); oth-

erwise, P s-ad
F∗ (S) = Pad

F
(S);

– P c-ad
F∗ (S) = 0 if S is not closed for Rs over

cert(compl(F∗)); otherwise, P c-ad
F∗ (S) = Pad

F
(S).

Observe that lemmas 1 and 2 do not require that F is C-
bounded: they state general properties that, on C-bounded
prBAFs, can be exploited to compute P-EXTsemIND (S) effi-
ciently (for what shown in the proof of Theorem 3).

Theorem 3 For sem ∈ {d-ad, s-ad, c-ad, st}, P-EXTsemIND (S)
is in FP for both C-bounded s- and d- prBAFs.

Proof. Lemma 1 ensures that P semF (S) can be computed
as
∑
F∗∈E(F) P (F∗|F) × P semF∗ (S), where for each F∗ ∈

E(F). Lemma 2 and the fact that computing P sem
′

F (S)

over a prAAF is feasible in polynomial time for sem′ ∈
{ad, st} [Fazzinga et al., 2015] in turn imply that P semF∗ (S)
can be computed in polynomial time w.r.t. the size of F . It is
easy to see that, since F is C-bounded, |E(F)| ≤ 2C , as the
number of contractions is bounded by the number of subsets
of F .Re. Thus, the sum in Lemma 1 consists of a constant
number of polynomial time computable addends. 2

Remark. The strategy used to prove the tractability of the C-
bounded class can be applied also to non C-bounded prBAFs,
where, even if it is not guaranteed to work in polynomial time,
it is likely to perform better than an ‘exhaustive’ evaluation,
as it requires only contractions to be enumerated.

5 Conclusions
We have characterized the computational complexity of eval-
uating extensions’ probabilities over probabilistic BAFs. The
most popular semantics of extensions and of supports have
been considered, along with different probabilistic paradigms
for encoding uncertainty. Interestingly, we have shown that,
considering bipolarity does not do not increase the computa-
tional complexity, except for the case of admissible and sta-
ble semantics under the assumption of independence between
the terms of the dispute. For this case, we have shown that the
complexity explodes from FP to FP#P -complete, and islands
of tractability have been detected.
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