
Distributed Primal-Dual Optimization for Non-uniformly Distributed Data

Minhao Cheng1, Cho-Jui Hsieh 1,2

1 Department of Computer Science, University of California, Davis
2 Department of Statistics, University of California, Davis

mhcheng@ucdavis.edu, chohsieh@ucdavis.edu

Abstract
Distributed primal-dual optimization has received
many focuses in the past few years. In this frame-
work, training samples are stored in multiple ma-
chines. At each round, all the machines conduct a
sequence of updates based on their local data, and
then the local updates are synchronized and merged
to obtain the update to the global model. All the
previous approaches merge the local updates by av-
eraging all of them with a uniform weight. How-
ever, in many real world applications data are not
uniformly distributed on each machine, so the uni-
form weight is inadequate to capture the hetero-
geneity of local updates. To resolve this issue, we
propose a better way to merge local updates in the
primal-dual optimization framework. Instead of us-
ing a single weight for all the local updates, we de-
velop a computational efficient algorithm to auto-
matically choose the optimal weights for each ma-
chine. Furthermore, we propose an efficient way to
estimate the duality gap of the merged update by
exploiting the structure of the objective function,
and this leads to an efficient line search algorithm
based on the reduction of duality gap. Combining
these two ideas, our algorithm is much faster and
more scalable than existing methods on real world
problems.

1 Introduction
Distributed optimization for large-scale machine learning has
become an important research topic due to the wide avail-
ability of large datasets. In this work, we study the dis-
tributed primal-dual optimization algorithm [Ma et al., 2015;
Yang, 2013; Jaggi et al., 2014], which has become one of
the fastest algorithms for solving large-scale linear SVMs and
logistic regressions. In this framework, training samples are
stored distributively in multiple machines. Each machine will
update the local model only based on local data, and once a
while all the machines will synchronize and merge their local
updates in order to obtain a new global model.

Clearly, how to merge local updates is the most crucial
step of these algorithms, and several approaches have been
proposed in the literature. All the current approaches use

a uniform weight when merging updates: in most algo-
rithms [Jaggi et al., 2014; Yang, 2013; Ma et al., 2015], lo-
cal updates ∆w1, . . . ,∆wK on K machines are merged by
∆w = s(

∑K
i=1 ∆wi), where s is the fixed step size. [Lee

and Roth, 2015] proposed a dynamic approach, showing that
s can be chosen by minimizing the dual objective function.

Using a uniform weight for combining all the local up-
dates makes sense when samples are uniformly distributed on
local machines. However, when samples are non-uniformly
distributed, some local updates will be more important than
others, and the correlation between different data blocks can
also vary hugely. In such cases, forcing the same weight will
lead to slow convergence. Unfortunately, non-uniformly dis-
tributed data is very common in real world applications. For
example, different data centers often contain data collected
from different local areas, and it is time-consuming to ran-
domly shuffle them before optimization. Moreover, in on-
device learning problems (e.g., On-device Tensorflow), each
local device only stores samples collected from a single user,
which is homogeneous, and no random shuffling is allowed
due to privacy issues and communication overhead, which
has been discussed in recent work on federated optimiza-
tion [Konečnỳ et al., 2015].

In this paper, we attempt to resolve this issue by setting
non-uniform weights when merging the local updates. We
show that the optimal weights leading to the maximum reduc-
tion of dual objective function can be computed efficiently,
and moreover there exist closed form solutions for certain
functions (including square-hinge loss and hinge loss). The
selection of optimal weights ensures our algorithm to make
better improvement in dual objective function compared with
existing approaches. Furthermore, we propose to search for
the step size that directly minimizes the estimation of dual-
ity gap instead of just considering the dual objective func-
tion. Although it is computational hard to compute the dual-
ity gap exactly, we show that by sub-sampling and exploiting
the structure of the L2-regularized ERM problem, we can do
it in an efficient way.

Experimental results show significant improvements over
existing methods when data is distributed non-uniformly.
And even when data is partitioned randomly, our algorithm
is still faster than all the competing methods due to the flexi-
bility of setting K weights instead of one single weight.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2028



2 Related Work
Large-scale ERM training is important in many real world
applications, so there has been substantial amount of
work developing parallel algorithms for solving this prob-
lem. Stochastic Dual Coordinate Descent (SDCA) [Shalev-
Shwartz and Zhang, 2013; Hsieh et al., 2008] is one of the
most successful algorithms for solving ERM problems, espe-
cially for solving linear SVM. SDCA updates a dual variable
at a time while maintaining the primal variable during the
whole procedure.

How to parallelize SDCA in the distributed setting has been
proposed in the past few years. The pioneer paper [Yang,
2013] provided an algorithm for distributed ERM training.
[Jaggi et al., 2014] showed that simply averaging the local
updates yields good practical performance with theoretical
guarantee. [Ma et al., 2015] further slightly changed the lo-
cal update rules to achieve faster convergence. [Lee and Roth,
2015] demonstrated that the step size could be automatically
chosen by minimizing the dual objective function. [Zheng et
al., 2017] proposed a distributed ADMM method to solve the
problem. They show their DADM algorithm is equivalent to
CoCoA+. All the existing algorithms are based on merging
local updates with the same weight, while we propose a novel
approach to automatically select non-uniform weights for lo-
cal updates when merging them. Although [Jaggi et al., 2014]
stated the per-block weight Bk/K in their algorithm frame-
work, they did not provide a way to select the per-block step
sizes, and it is impossible to hand-tune these weights. There-
fore, they fix all the Bk = 1 in both of their proof and exper-
iments. In comparison, our approach can choose per-block
weight automatically, which results in a significant speed up.

Also, there are a lot of papers focusing on how to pararl-
lelize distributively in loss function directly(mainly on SGD).
For centralized SGD, a lot of papers have been published
in both algorithm and implementation [Agarwal and Duchi,
2011; Dekel et al., 2012; Chen et al., 2016]. If there is no cen-
ter node, [Konečnỳ et al., 2016] compared variance reduc-
tion SGD methods in the on-devices setting with dual meth-
ods cocoA and cocoA+. [McMahan et al., 2016] extended
its framework into deep learning setting. [Lian et al., 2017]
showed decentralized SGD could perform better than central-
ized one with lower communication cost.

3 Setup
Given a set of training samples {(xi)}ni=1, xi ∈ Rd, we con-
sider the following L2-regularized empirical risk minimiza-
tion (L2-ERM) problem:

min
w∈Rd

{λ
2
‖w‖22 +

1

n

n∑
i=1

`i(w
Txi)

}
:= P (w), (1)

where `i(·) are convex loss functions which may depend on
the label of i-th training sample, and the constant λ > 0 is the
regularization parameter. The label of testing data can then
be predicted by sign(wTx). Many machine learning models
are in this form, such as linear SVM and logistic regression.

We focus on the dual form of eq (1):

min
α∈Rn

{
− 1

n

n∑
j=1

`∗j (−αj)−
λ

2
‖Xα
λn
‖2
}

:= D(α), (2)

where X = [x1, x2, . . . , xn] ∈ Rd×n is the data matrix
and `∗j (·) is the conjugate function of `j(·). If we define

w(α) =
1

λn
Xα, (3)

then the duality gap is given by

G(α) = P (w(α))−D(α), (4)

and based on the primal-dual relationship we know G(α∗) =
0 where α∗ is the dual optimal solution.

Distributed primal-dual optimization is one of the most
efficient ways for solving L2-ERM problems. Instead of solv-
ing primal problem, they solve the dual problem while main-
taining and communicating on the corresponding primal so-
lutions. Consider the distributed system with K machines
and each machine has a subset of training samples. We then
partition dual variables by the same way with their associ-
ated training samples, and use {Sk}Kk=1 to denote this non-
overlapping index partition. We use π(i) to denote the parti-
tion that the i-th index belongs to, and for any vector α ∈ Rn

we define α[k] to be the vector that

(α[k])i =

{
0 if i /∈ Sk
αi otherwise.

Assume αt and wt = w(αt) are the solution after the t-th
synchronization step. Then at the current iteration all the K
machines perform updates in parallel by solving the subprob-
lem associated with local training samples:

arg min
∆α[k]

{
D(α+ ∆α[k])

}
:= − 1

n

∑
i∈Sk

`∗i (−αi − (∆α[k])i)

− 1

n2
wTX∆α[k] −

λ

2
‖ 1

λn
X∆α[k]‖2. (5)

And then after a while the local updates are synchronized to
obtain the global solution at step t+ 1:

αt+1 = αt+η
K∑
k=1

∆α[k] , w
t+1 = wt+η

K∑
k=1

∆w[k]. (6)

where the step size η can be viewed as a weight for merg-
ing all the local updates. CoCoA [Jaggi et al., 2014] used a
fixed step size, and show that η = 1/K guarantees the con-
vergence. [Yang, 2013; Ma et al., 2015] also used a fixed step
size, but proposed slight different ways to form the subprob-
lem (5). BQO [Lee and Roth, 2015] shows that η could be
computed by minimizing the dual objective function when `∗i
is simple (e.g., SVM). This primal-dual distributed optimiza-
tion framework is presented in Algorithm 1. In this paper, we
propose a more flexible way to combine local models.

4 Non-uniform Weights for Merging Local
Updates

As described in the previous section, all the existing algo-
rithms select a single weight η to obtain the new solution;
however, data is often non-uniformly distributed in local ma-
chines, and each local update should have different weights
contributing to the global model. This heterogeneity was not
taken into consideration in existing approaches.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2029



Algorithm 1: Distributed Primal-Dual Optimization
Framework
Input : Training data X , index partition {Sk}Kk=1,

initial solution α0 and w0 = w(α0)
Output: Primal solution α∗ and dual solution w∗.

1 for t = 0, 1, . . . do
2 Obtain an approximate solution ∆α[k] of the local

subproblem (5) for each node k.
3 Choose a step size η.
4 Update wt+1 = wt + η

∑K
k=1 ∆w[k].

5 Update α(t+1)
[k] ← αt[k] + η∆α[k] for each node k.

Based on this observation, we propose to have different
weights for different blocks. More specifically, after comput-
ing local updates ∆α[k] and ∆w[k] for all the machines, we
update the global solution by the following weighted average:

wt+1 = wt +
∑K

k=1
βk∆w[k], (7)

whereβ = [β1 β2 · · · βK ]T are the weights for local updates.
The update rule used in all the previous work (6) is a special
case of (7) when β1 = β2 = · · · = βK = η.

It is impossible to hand-tune all these weights. To over-
come this issue, we propose an efficient way to compute the
optimal weights {βi}Ki=1 by maximizing dual objective func-
tion, with small communication overhead. The dual objective
function after the update can be written as

D(α+
K∑
k=1

βk∆αk) = − 1

n

K∑
k=1

∑
i∈Sk

`∗i (−αi − βi∆αi)

− pTβ − 1

2
βTMβ + constant (8)

whereX is the Rd×n data matrix,M is aK byK matrix with
Msq = 1

λn2 ∆wT
[s]∆w[q] and pk = 1

λn2w
T∆w[k]. There-

fore, the optimal β can be chosen by solving the following
k-variate optimization problem:

β∗ = argmin
β
−D(α+

K∑
k=1

βk∆α[k]) (9)

= argmin
β

1

2
βTMβ + pTβ +

n∑
i=1

`∗i (−αi − βπ(i)∆αi),

where ∆αi = (∆α[π(i)])i is the change of the i-th dual vari-
able.

How to solve this small K-variate subproblem distribut-
edly? We first consider a set of simple but useful func-
tions, where `∗i is just a simple linear or quadratic function
with bounded constraints. More specifically,

`∗i (α) = aα+ bα2 + I(α ∈ [C,D]), (10)

where I(α ∈ [C,D]) taking value 0 when α ∈ [C,D] and∞
outside the constraint. Most of the widely used applications
follow this framework. For example, in SVM `i = max(1 −
yiw

Txi, 0) (hinge loss), and the conjugate loss is `∗i (α) =

αyiI(yiα ∈ [−1, 0]), where I(α) = 1 if α ∈ [0, yi] and
is infinity when α is outside the range. For L2-SVM, `i =
max(1 − yiwTxi, 0)2, and the conjugate is `∗i (α) = (α2 +
4α)I(yiα ≤ 0). In these cases, (9) can be written as

β∗ = argmin
β

1

2
βTMβ + p̄Tβ s.t. C̄ ≤ β ≤ D̄, (11)

where C̄, D̄, p̄ can be easily obtained by substituting (10)
into (9). After forming M and p̄, the subproblem (11) can
be solved in around O(K3) time using classical constrained
minimization approaches. K is number of nodes, which is
typically small.

For a general loss function (e.g., logistic regression), we
can conduct gradient descent to solve (9). At each iteration,
the main difficulty is to compute the third term, so each ma-
chine has to compute the scalar

∑
i∈Sk

`∗
′

i (−αi − βk∆αi)

and then communicates with others. This only requires O(1)
communication and O(n/K) computation, so will be quite
efficient in a communication-dominated environment. Ba-
sically the cost is the same with one of the previous ap-
proaches [Lee and Roth, 2015].
How to obtainM, p̄? The next question is how to formM
and p̄. p̄k is mainly related to wT∆w[k], which can be com-
puted in O(d) time and aggregated to a master machine with
O(1) communication. Thus, there is almost no overhead for
getting this term. For computing M , we mainly need to dis-
tribute each ∆w[k] to other machines, and each machine takes
O(dK) time to compute a column of M . This operation re-
quires O(dK) communication, which is more expensive then
the original O(d) communication cost.

However, we observe that M = ∆WT∆W and ∆W =
[∆w[1] ∆w[2] · · · ∆w[K]] is a d by K matrix with d � K.
Therefore, we can use either sampling or sketching technique
to reduce the communication cost, while still maintain a good
enough approximation ofM in order to compute the step size.
For example, if we use Gaussian sketching, the matrix is ap-
proximated by

M̄ = ∆WTSTS∆W, (12)
where S is a matrix whose rows are i.i.d Gaussian ran-
dom vectors. Here S ∈ Rq×d and we hope d � q be-
cause each machine can compute the sketching on local vari-
ables S∆w[i] and then use O(q) communication to form M̄ .
In Theorem 1, we will show that the algorithm is guaran-
teed to linearly converge with high probability when q =
O(K logK).

Using this approach, the communication cost can be re-
duced to O(qK). Moreover, our step size selection strategy
can be used for any set of local updates ∆w[k], so we can also
combine with the modified local subproblem used in [Ma et
al., 2015; Yang, 2013].

Next, we discuss the theoretical benefit of our proposed ap-
proach. Since our step size β∗ maximizes the dual objective
function, it has the following nice property:
Lemma 1. The block-wise step sizes β∗ computed by solv-
ing (9) is guaranteed to reduce the objective function more
than any single constant step size:

D(α+
∑K

k=1
β∗k∆α[k]) ≥ D(α+η

∑K

k=1
∆α[k]) ∀η ∈ R.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2030



As a result, our step size selection is guaranteed to be better
than previous work. Moreover, we further discuss how the
convergence will be affected by using the sampling technique
to compute M in the following Theorem.
Theorem 1. If we approximate M by the sketched matrix M̄
defined in (12) with q = O(K logK), then with high proba-
bility, β∗ obtained by solving the approximate system (9) will
satisfy

D(α+
K∑
k=1

βk∆α[k])−D(α) ≥

ε

2
(D(α+ η

K∑
k=1

∆α[k])−D(α)) ∀η ∈ R.

Proof: Let f̄(β) = 1
2β

T M̄β + pTβ +
∑n
i=1 `

∗
i (−αi −

βπ(i)∆αi) and β̄ = argminβ f̄(β). We can easily get
f̄(β̄) ≤ f̄(β∗) = f(β∗) + 1

2β
∗T (M − M̄)β∗. From

[Tropp and others, 2015], we can bound β∗T (M − M̄)β∗

with ||β∗||2M . Since the first term of f(·) is quadratic and
`∗i (−αi − βπ(i)∆αi) is convex, f̄(β) ≤ f(β∗) − ε

2f(β∗).

Therefore, we are guaranteed to make more progress than
the right-hand side, which is the best objective function re-
duction that can be achieved by previous approaches with one
single weight.

Based on Theorem 1, we can use the same analysis in [Ma
et al., 2015] to show the convergence rate of our algorithm.
Assume each local solver achieves the “Θ approximate solu-
tion”, which means

E[D(α+∆α∗[k])−D(α+∆α[k])] ≤ Θ
(
D(α+∆α∗[k])−D(α)

)
(13)

where ∆α∗[k] is the optimal solution of (5). We then have the
following results: If `i is 1/µ-smooth for all i, then after

T ≥ 1

K(1−Θ)

λµn+ σmax

λµn
log(1/εD)

iterations we have E[D(α∗)−D(αt)] ≤ εD. And after

T ≥ K(λµn+ σmax)

(1−Θ)λµn
log
( λµn+ σmax

γ(1−Θ)λµn

1

εG

)
iterations we haveE[G(αT )]≤εG, where we assume ‖xi‖ ≤
1 for all training samples and σmax = maxk |Sk|. Similarly,
our algorithm has the same guarantee with CoCoA when `i is
Lipschitz continuous (Theorem 8 of [Ma et al., 2015]).

However, we observe that if we only use this approach, the
duality gap, although smaller than COCOA, will oscillate and
is not stable. The main reason is that we highly optimize the
dual objective function but do not consider primal function
value in this approach. We then tackle this question in the
next section.

5 Proposed Approach II: Stochastic Line
Search on Duality Gap

Although our algorithm is faster than existing approaches in
terms of achieving a lower dual objective function, this does

not imply a better duality gap. The same phenomenon has
been also observed for the BQO [Lee and Roth, 2015] ap-
proach which finds a single step size by minimizing the dual
objective function. Motivated by this observation, we further
propose a line search algorithm to minimize an estimator of
duality gap. Combined with the BlockLS approach, we are
able to achieve improvement in terms of both duality gap and
primal objective function value.

The duality gap (4) is hard to compute exactly. However,
we show that an estimation of duality gap can be computed
efficiently. We define an approximate duality gap by

G̃(α) = P̃ (w(α))−D(α),

where P̃ (w(α)) =
1

|U |
∑
i∈U

`i(w
Txi) +

λ

2
‖w‖2, (14)

where U is a subset sampled from {1, 2, · · · , n}. We then
approximate the primal function by sub-sampling, and keep
the exact dual objective function value. Typically |U | can be
very small comparing to the full dataset, and we set |U | =
0.01n in all the experimental results.

Given the BQO step size β and the local updates
∆w[k],∆α[k] for all k = 1, · · · ,K, the approximate duality
gap can be computed efficiently by the following approach.
First, the dual objective function can be computed by

D(α+ γ

K∑
k=1

βk∆α[k]) = D(α)− (pTβ)γ − (
1

2
βTMβ)γ2

+
1

n

n∑
j=1

(`∗j (−αj)− `∗j (−αj + γβπ(j)∆αj)). (15)

As discussed in the previous section, in many applications
(SVM, L2-SVM or square loss) the last term is just a lin-
ear term with bounded constraints that can be computed ef-
ficiently. The second and third term have already been com-
puted in BlockLS. So in these cases (15) can be computed in
O(1) time. If we consider a general loss function, then similar
to the previous section, we need O(1) more communication
to gather the last term.

The approximate primal function P̃ can be computed by

P̃ (w + γ
K∑
k=1

βk∆w[k]) =
λ

2
‖w‖2 + (λ2n2pTβ)γ+

(
n2

2
βTMβ)γ2 +

1

|U |

n∑
i=1

`i(w
Txi + γ(

K∑
k=1

βk∆wT
[k]xi

)).

(16)
Again, we already have p and M , so the main difficulty is

to compute the final term in (16). Unfortunately, `i are of-
ten quite complex. Examples include hinge loss (SVM) and
square-hinge loss (L2-SVM). This is also the reason that we
need to approximate the primal function instead of comput-
ing it exactly. Before line search for γ, we will pre-compute
wTxi and

∑K
k=1 βk∆wT

[k]xi, where the second one can be
computed in each node and then synchronize together with
others. As a result, we need O(|U |d̄) time for pre-computing
those values, where d̄ is average number of nonzero features

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2031



Dataset Training Size Features(d) Sparsity λ Worker

epsilon 400,000 2,000 100% 1 32
rcv1 677,399 47,236 0.16% 1 32
covtype 522,911 54 22.22% 0.001 8

Table 1: Data statistics

for each training sample. After pre-computing these two val-
ues, we just need O(|U |) time to compute (16) for each γ.

In summary, in the line search procedure for γ, we will first
need O(|U |d̄) time to pre-compute, and after that each itera-
tion we only need O(|U |) time to compute the approximate
duality gap G̃(α+ γ(

∑K
k=1 βk∆α[k])).

Using this approach, we can approximately compute the
duality gap efficiently for each choice of step size γ. We pro-
pose to have a backtracking step size selection rule until

G̃(α+ γ(
K∑
k=1

βk∆α[k])) ≤ σG̃(α+
1

K
(
K∑
k=1

βk∆α[k]))).

And we force γ ≥ 1/K for this line search procedure, which
ensures the convergence of the algorithm if `∗ satisfies (10).
To prove this, sinceD(·) is a quadratic function on γ and after
line search γ ∈ [1/K, 1], we have D(α+ γ(

∑
k βk∆α[k]))

is larger than the dual objective function value of the right-
hand side, which implies a sufficient decrease of dual objec-
tive function. Thus, the convergence is guaranteed.

6 Experimental Results
In this section, we combine the Block-wise step size selec-
tion algorithm with Stochastic line search and propose it as
”Stochastic BlockLS” algorithm. We use SDCA as our local
solver and apply each method to the binary hinge-loss sup-
port vector machines. We include the following algorithms
into comparison:
• Stochastic BlockLS: our proposed algorithm, using 1%

of training samples to conduct stochastic line search on
duality gap, and q = 10−2n for approximating M .
• CoCoA [Jaggi et al., 2014]: they set the step size η =

1/K.
• CoCoA+ [Ma et al., 2015]: they slightly changed the

local subproblems and used a constant step size to syn-
chronize the updates..
• BQO [Lee and Roth, 2015]: conducted an exact line

search on dual objective function. We set τ = 0.001
as suggested in the original paper.

[Zheng et al., 2017] proved their DADM algorithm equiva-
lent to CoCoA+ and their performance improvement was got
by using acceleration which could be used in our algorithm
as well. Therefore, we don’t include it in our experiment.
Datasets and Settings. We consider three datasets: rcv1,
epsilon, covtype. Details are shown in Table 1. Since ep-
silon and covtype doesn’t have the testing dataset. We split
87.5% data instances to training set and 12.5% to testing set.
To have a fair comparison between all algorithms, we imple-
ment all methods in C++ using MPI-LIBLINEAR setting.

In our experiments, we use 8-32 nodes in the TACC Stam-
pede cluster where each node is with 256GB memory. In-
stances are split into our nodes in a uniform random style in

covtype and rcv1. The comparison results are shown in Fig-
ure 2. We test the algorithms using the default λ values used
in previous papers, as listed in the Table 1. Also, results with
different λ values are showed in the as well.

Uniform vs non-uniform distributed data: to verify our al-
gorithm works well for the non-uniformly distributed setting,
we do K-Means clustering on epsilon and distribute different
clusters to different nodes. This is to simulate the case when
data is non-uniformly distributed. The comparison between
uniformed and non-uniformed dataset is shown in Figure 3.

Results. We show the results on both epoch and time ver-
sus duality gap. In all datasets, Stochastic BlockLS algorithm
is faster than CoCoA, CoCoA+ and BQO. In Figure 2, our
method outperforms other methods in both duality gap and
primal function value. Also, our algorithm is much more sta-
ble than BQO. In Figure 3, our algorithm performs better in
non-uniformly distributed datasets, where every node should
have a different weight because of the heterogeneous prop-
erty. To be noted, although duality gaps are in 102, however,
all relative duality gaps are around 10−3, which will generate
an approximate optimal solution.

Sensitivity to parameters. We also test our algorithm on
rcv1 with different choices of regularization parameters. Due
to the page limit, we can’t show the results here. How-
ever, We find that our algorithm is consistently better for
λ = 0.1, 10, 100; BQO is good for small λ but becomes
extremely bad for large λ, and CoCoA/CoCoA+ are always
much slower than our method.

Scalability. Figure 1 shows the speedup versus number of
nodes. We observe that our algorithm has a better scalabil-
ity than CoCoA and CoCoA+. The speedup is calculated by
the time needed to obtain the same primal function value di-
vided by the time to get the same primal function value in 2
machine. As number of machines increases, data distribution
becomes more unbalanced. Therefore, our method, which
calculates each block’s step-size differently instead of doing
a simple average, could have a better performance with large
number of nodes.

Figure 1: Scaling up with number of nodes

7 Conclusions.
In this paper, we propose a novel line search approach for
both uniformly and non-uniformly distributed primal-dual
optimization framework.

Acknowledgments
Cho-Jui Hsieh and Minhao Cheng acknowledge the support
of NSF via IIS-1719097

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2032



(a) Duality gap versus epoch (b) Duality gap versus time (c) Relative Primal function value ver-
sus time

(d) Duality gap versus epoch on cov-
type

(e) Duality gap versus time on covtype (f) Relative Primal function value ver-
sus time on covtype

Figure 2: Comparison on duality gap and relative primal function value on uniformly distributed datasets.

(a) Duality gap comparison versus
epoch on uniformed epsilon

(b) Duality gap comparison versus time
on uniformed epsilon

(c) Relative Primal function value com-
parison versus time on uniformed ep-
silon

(d) Duality gap comparison versus
epoch on non-uniformed epsilon

(e) Duality gap comparison versus time
on non-uniformed epsilon

(f) Relative Primal function value com-
parison versus time on non-uniformed
epsilon

Figure 3: Comparison on duality gap and relative primal function value on non-uniformly distributed datasets.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2033



References
[Agarwal and Duchi, 2011] Alekh Agarwal and John C

Duchi. Distributed delayed stochastic optimization. In Ad-
vances in Neural Information Processing Systems, pages
873–881, 2011.

[Chen et al., 2016] Jianmin Chen, Xinghao Pan, Rajat
Monga, Samy Bengio, and Rafal Jozefowicz. Re-
visiting distributed synchronous sgd. arXiv preprint
arXiv:1604.00981, 2016.

[Dekel et al., 2012] Ofer Dekel, Ran Gilad-Bachrach, Ohad
Shamir, and Lin Xiao. Optimal distributed online predic-
tion using mini-batches. Journal of Machine Learning Re-
search, 13(Jan):165–202, 2012.

[Hsieh et al., 2008] Cho-Jui Hsieh, Kai-Wei Chang, Chih-
Jen Lin, S. Sathiya Keerthi, and Sellamanickam Sun-
dararajan. A dual coordinate descent method for large-
scale linear SVM. In Proceedings of the Twenty Fifth Inter-
national Conference on Machine Learning (ICML), 2008.

[Jaggi et al., 2014] Martin Jaggi, Virginia Smith, Mar-
tin Takáč, Jonathan Terhorst, Thomas Hofmann, and
Michael I Jordan. Communication-efficient distributed
dual coordinate ascent. In NIPS. 2014.

[Konečnỳ et al., 2015] Jakub Konečnỳ, Brendan McMahan,
and Daniel Ramage. Federated optimization: Distributed
optimization beyond the datacenter. arXiv preprint
arXiv:1511.03575, 2015.

[Konečnỳ et al., 2016] Jakub Konečnỳ, H Brendan McMa-
han, Daniel Ramage, and Peter Richtárik. Federated op-
timization: Distributed machine learning for on-device in-
telligence. arXiv preprint arXiv:1610.02527, 2016.

[Lee and Roth, 2015] C.-P. Lee and D. Roth. Distributed
box-constrained quadratic optimization for dual linear
SVM. In ICML, 2015.

[Lian et al., 2017] Xiangru Lian, Ce Zhang, Huan Zhang,
Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentral-
ized algorithms outperform centralized algorithms? a case
study for decentralized parallel stochastic gradient de-
scent. In Advances in Neural Information Processing Sys-
tems, pages 5336–5346, 2017.

[Ma et al., 2015] C. Ma, V. Smith, M. Jaggi, M. I. Jordan,
P. Richtárik, and M. Takáč. Adding vs. averaging in dis-
tributed primal-dual optimization. In ICML, 2015.

[McMahan et al., 2016] H Brendan McMahan, Eider Moore,
Daniel Ramage, Seth Hampson, et al. Communication-
efficient learning of deep networks from decentralized
data. arXiv preprint arXiv:1602.05629, 2016.

[Shalev-Shwartz and Zhang, 2013] Shai Shalev-Shwartz and
Tong Zhang. Stochastic dual coordinate ascent methods
for regularized loss minimization. Journal of Machine
Learning Research, 14:567–599, 2013.

[Tropp and others, 2015] Joel A Tropp et al. An introduc-
tion to matrix concentration inequalities. Foundations and
Trends R© in Machine Learning, 8(1-2):1–230, 2015.

[Yang, 2013] T. Yang. Trading computation for communi-
cation: Distributed stochastic dual coordinate ascent. In
NIPS, 2013.

[Zheng et al., 2017] Shun Zheng, Jialei Wang, Fen Xia, Wei
Xu, and Tong Zhang. A general distributed dual coordinate
optimization framework for regularized loss minimiza-
tion. Journal of Machine Learning Research, 18(115):1–
52, 2017.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2034


