
Discrete Factorization Machines for Fast Feature-based Recommendation

Han Liu1, Xiangnan He2, Fuli Feng2, Liqiang Nie1∗, Rui Liu3, Hanwang Zhang4∗
1School of Computer Science and Technology, Shandong University

2School of Computing, National University of Singapore
3University of Electronic Science and Technology of China

4School of Computer Science and Engineering, Nanyang Technological University
{hanliu.sdu, xiangnanhe, fulifeng93, nieliqiang, ruiliu011, hanwangzhang}@gmail.com

Abstract
User and item features of side information are cru-
cial for accurate recommendation. However, the
large number of feature dimensions, e.g., usually
larger than 107, results in expensive storage and
computational cost. This prohibits fast recommen-
dation especially on mobile applications where the
computational resource is very limited. In this pa-
per, we develop a generic feature-based recommen-
dation model, called Discrete Factorization Ma-
chine (DFM), for fast and accurate recommenda-
tion. DFM binarizes the real-valued model param-
eters (e.g., float32) of every feature embedding into
binary codes (e.g., boolean), and thus supports effi-
cient storage and fast user-item score computation.
To avoid the severe quantization loss of the bina-
rization, we propose a convergent updating rule that
resolves the challenging discrete optimization of
DFM. Through extensive experiments on two real-
world datasets, we show that 1) DFM consistently
outperforms state-of-the-art binarized recommen-
dation models, and 2) DFM shows very competi-
tive performance compared to its real-valued ver-
sion (FM), demonstrating the minimized quantiza-
tion loss.

1 Introduction
Recommendation is ubiquitous in today’s cyber-world — al-
most every one of your Web activities can be viewed as a
recommendation, such as news or music feeds, car or restau-
rant booking, and online shopping. Therefore, accurate rec-
ommender system is not only essential for the quality of
service, but also the profit of the service provider. One
such system should exploit the rich side information beyond
user-item interactions, such as content-based (e.g., user at-
tributes [Wang et al., 2017] and product image features [Yu et
al., 2018]), context-based (e.g., where and when a purchase is
made [Rendle et al., 2011; He and Chua, 2017]), and session-
based (e.g., the recent browsing history of users [Li et al.,

∗The corresponding authors are Liqiang Nie and Hanwang
Zhang.

2017; Bayer et al., 2017]). However, existing collaborative
filtering (CF) based systems merely rely on user and item fea-
tures (e.g., matrix factorization based [He et al., 2016] and the
recently proposed neural collaborative filtering methods [He
et al., 2017; Bai et al., 2017]), which are far from sufficient
to capture the complex decision psychology of the setting and
the mood of a user behavior [Chen et al., 2017].

Factorization Machine (FM) [Rendle, 2011] is one of the
prevalent feature-based recommendation model that lever-
ages rich features of users and items for accurate recommen-
dation. FM can incorporate any side features by concatenat-
ing them into a high-dimensional and sparse feature vector.
The key advantage of it is to learn k-dimensional latent vec-
tors , i.e., the embedding parameters V ∈ Rk×n, for all the
n feature dimensions. They are then used to model pairwise
interactions between features in the embedding space. How-
ever, since n is large (e.g. practical recommender systems
typically need to deal with over millions of items and oth-
er features where n is at least 107 [Wang et al., 2018]), it
is impossible on-device storage of V. Moreover, it requires
large-scale multiplications of the feature interaction vT

i vj for
user-item score, even linear time-complexity is prohibitively
slow for float operations. Therefore, existing FM framework
is not suitable for fast recommendation, especially for mobile
users.

In this paper, we propose a novel feature-based recommen-
dation framework, named Discrete Factorization Machine
(DFM), for fast recommendation. In a nutshell, DFM re-
places the real-valued FM parameters V by binary-valued
B ∈ {±1}k×n. In this way, we can easily store a bit matrix
and perform XOR bit operations instead of float multiplica-
tions, making fast recommendation on-the-fly possible. How-
ever, it is well-known that the binarization of real-valued pa-
rameters will lead to significant performance drop due to the
quantization loss [Zhang et al., 2016]. To this end, we pro-
pose to directly optimize the binary parameters in an end-to-
end fashion, which is fundamentally different from the widely
adopted two-stage approach that first learns real-valued pa-
rameters and then applies round-off binarization [Zhang et
al., 2014]. Our algorithm jointly optimize the two challeng-
ing objectives: 1) to tailor the binary codes B to fit the origi-
nal loss function of FM, and 2) imposing the binary constraint

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3449

that is balanced and decorrelated, to encode compact infor-
mation. In particular, we develop an alternating optimization
algorithm to iteratively solve the mixed-integer programming
problems. We evaluate DFM on two real-world datasets Yelp
and Amazon, the results demonstrate that 1) DFM consis-
tently outperforms state-of-the-art binarized recommendation
models, and 2) DFM shows very competitive performance
compared to its real-valued version (FM), demonstrating the
minimized quantization loss.
Our contributions are summarized as follows:

• We propose to binarize FM, a dominant feature-based rec-
ommender model, to enable fast recommendation. To our
knowledge, this is the first generic solution for fast recom-
mendation that learns a binary embedding for each feature.

• We develop an efficient algorithm to address the challeng-
ing optimization problem of DFM that involves discrete,
balanced, and de-correlated constraints.

• Through extensive experiments on two real-world dataset-
s, we demonstrate that DFM outperforms state-of-the-art
hash-based recommendation algorithms.

2 Related Work
We first review efficient recommendation algorithms using la-
tent factor models, and then discuss recent advance in discrete
hashing techniques.

2.1 Efficient Recommendation
As pioneer work, [Das et al., 2007] used Locality-Sensitive
Hashing (LSH) [Gionis et al., 1999] to generate hash codes
for Google new users based on their item-sharing history sim-
ilarity. Following the work, [Karatzoglou et al., 2010] applied
random projection for mapping learned user-item latent fac-
tors from traditional CF into the Hamming space to acquire
hash codes for users and items. Similar to the idea of projec-
tion, [Zhou and Zha, 2012] generate binary code from rotat-
ed continuous user-item latent factors by running ITQ [Gong
and Lazebnik, 2011]. In order to derive more compact binary
codes, [Liu et al., 2014] imposed the de-correlation constraint
of different binary codes on continuous user-item latent fac-
tors and then rounded them to produce binary codes. How-
ever, [Zhang et al., 2014] argued that hashing only preserves
similarity between user and item rather than inner product
based preference, so subsequent hashing may harm the accu-
racy of preference predictions, thus they imposed a Constant
Feature Norm(CFN) constraint on user-item continuous la-
tent factors, and then quantized similarities by respectively
thresholding their magnitudes and phases.
The aforementioned work can be easily summarized as two

independents stages: relaxed user-item latent factors learning
with some specific constraints and binary quantization. How-
ever, such a two-stage relaxation is well-known to suffer from
a large quantization loss according to [Zhang et al., 2016].

2.2 Binary Codes Learning
Direct binary code learning by discrete optimization — is
becoming popular recently in order to decrease quantization
loss aforementioned. Supervised hashing [Luo et al., 2018]

improve on joint optimizations of quantization losses and
intrinsic objective functions, whose significant performance
gain over the above two-stage approaches.
In the recommendation area, [Zhang et al., 2016] is the

first work that proposes to learn binary codes for users
and items by directly optimizing the recommendation task.
The proposed method Discrete Collaborative Filtering (D-
CF) demonstrates superior performance over aforementioned
two-stage efficient recommendation methods. To learn in-
formative and compact codes, DCF proposes to enforce bal-
anced and de-correlated constraints on the discrete optimiza-
tion. Despite its effectiveness, DCF models only user-item
interactions and cannot be trivially extended to incorporate
side features. As such, it suffers from the cold-start problem
and can not be used as a generic recommendation solution,
e.g., for context-aware [Rendle, 2011] and session-based rec-
ommendation [Bayer et al., 2017]. Same as the relationship
between FM and MF, our DFM method can be seen as a gen-
eralization of DCF that can be used for generic feature-based
recommendation. Specifically, feeding only ID features of
users and items to DFM will recover the DCF method. In
addition, our DFM can learn binary codes for each feature,
allowing it to be used for resource-limited recommendation
scenarios, such as context-aware recommendation in mobile
devices. This binary representation learning approach for
feature-based recommendation, to the best of knowledge, has
never been developed before.
The work that is most relevant with this paper is [Lian et

al., 2017], which develops a discrete optimization algorith-
m named Discrete Content-aware Matrix Factorization (D-
CMF), to learn binary codes for users and items at the p-
resence of their respective content information. It is worth
noting that DCMF can only learn binary codes for each us-
er ID and item ID, rather than their content features. Since
its prediction model is still MF (i.e.,, the dot product of us-
er codes and item codes only), it is rather limited in lever-
aging side features for accurate recommendation. As such,
DCMF only demonstrates minor improvements over DCF for
feature-based collaborative recommendation (cf. Figure 2(a)
for their original paper). Going beyond learning user codes
and item codes, our DFM can learn codes for any side feature
and model the pairwise interactions between feature codes.
As such, our method has much stronger representation abili-
ty than DCMF, demonstrating significant improvements over
DCMF in feature-based collaborative recommendation.

3 Preliminaries
We use bold uppercase and lowercase letters as matrices and
vectors, respectively. In particular, we use ai as the a-th col-
umn vector of matrix A. We denote ∥ · ∥F as the Frobe-
nius norm of a matrix and tr(·) as the matrix trace. We de-
note sgn(·) : R → {±1} as the round-off function, i.e.,
sgn(x) = +1 if x ≥ 0 and sgn(x) = −1 otherwise.
Factorization Machine (FM) is essentially a score predic-

tion function for a (user, item) pair feature x:

FM(x) := w0 +

n∑
i=1

wixi +

n∑
i=1

n∑
j=i+1

⟨vi,vj⟩xixj , (1)

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3450

where x ∈ Rn is a high-dimensional feature representation
of the rich side-information, concatenated by one-hot user ID
and item ID, user and item content features, location features,
etc. w ∈ Rn is the model bias parameter: wo is the global
bias and wi is the feature bias. V ∈ Rk×n is the latent fea-
ture vector, and every ⟨vi,vj⟩models the interaction between
the i-th and j-th feature dimensions. Therefore, V is the key
reason why FM is an effective feature-based recommenda-
tion model, as it captures the rich side-information interac-
tion. However, on-the-fly storing V and computing ⟨vi,vj⟩
are prohibitively expensive when n is large. For example, a
practical recommender system for Yelp1 needs to provide rec-
ommendation for over 1, 300, 000 users with about 174, 000
business, which have more than 1, 200, 000 attributes (here,
n = 1, 300, 000 + 174, 000 + 1, 200, 000 = 2, 674, 000).
To this end, we want to use binary codesB ∈ {±1}k×n in-

stead of V, to formulated our proposed framework: Discrete
Factorization Machines (DFM):

DFM(x) := w0 +

n∑
i=1

wixi +

n∑
i=1

n∑
j=i+1

⟨bi,bj⟩xixj . (2)

However, directly obtainB = sgn(V)will lead to large quan-
tization loss and thus degrade the recommendation accuracy
significantly [Zhang et al., 2016]. In the next section, we will
introduce our proposed DFM learning model and discrete op-
timization that tackles the quantization loss.

4 Discrete Factorization Machines
We first present the learning objective of DFM and then e-
laborate the optimization process of DFM, which is the key
technical difficulty of the paper. At last, we shed some lights
on model initialization, which is known to have a large impact
on a discrete model.

4.1 Model Formulation
Given a training pair (x, y) ∈ V , where y is the groundtruth
score of feature vector x and V denotes the set of all training
instances, the problem of DFM is formulated as:

argmin
w0,w,B

∑
(x,y)∈V

(y − w0 −
n∑

i=1

wixi −
n∑

i=1

n∑
j=i+1

⟨bi,bj⟩xixj)2

+ α
n∑

i=1

w2
i , s.t. B ∈ {±1}k×n, B1 = 0︸ ︷︷ ︸

Balance

, BBT = nI︸ ︷︷ ︸
De-correlation

(3)

Due to the discrete constraint in DFM, the regularization
∥B∥2F becomes an constant and hence is removed. Addition-
ally, DFM imposes balanced and de-correlated constraints on
the binary codes in order to maximize the information each
bit carries and to make binary codes compact [Zhou and Zha,
2012]. However, optimizing the objective function in Eq.(3)
is a highly challenging task, since it is generally NP-hard.
To be specific, finding the global optimum solution needs to
involveO(2kn) combinatorial search for the binary codes [S-
tad, 2001].

1https://www.yelp.ca/dataset

Next, we introduce a new learning objective that allows
DFM to be solved in a computationally tractable way. The
basic idea is to soften the balanced and de-correlated con-
straints. To achieve this, let us first introduce a delegate con-
tinuous variable D ∈ D, where D = {D ∈ Rk×n|D1 =
0,DDT = nI}. Then the balanced and de-correlated con-
straints can be softened byminD∈D ∥B−D∥F . As such, we
can get the softened learning objective for DFM as:

argmin
w0,w,B

∑
(x,y)∈V

(y − w0 −
n∑

i=1

wixi (4)

−
n∑

i=1

n∑
j=i+1

⟨bi,bj⟩xixj)2 + α
n∑

i=1

w2
i − 2βtr(BTD),

s.t. D1 = 0,DDT = nI,B ∈ {±1}k×n,

where we use 2tr(BTD) instead of ∥B−D∥F for the ease of
optimization (note that the two terms are identical sinceBTB
andDTD are constant). β is tunable hyperparameter control-
ling the strength of the softened de-correlation constraint. As
the above Eq.(4) allows a certain discrepancy betweenB and
D, it makes the binarized optimization problem computation-
ally tractable. Note that if there are feasible solution in Eq.(3),
we can impose a very large β to enforce B to be close to D.
The above Eq.(4) presents the objective function to be op-

timized for DFM. It is worth noting that we do not discard
the discrete constraint and we still perform a direct optimiza-
tion on discrete B. Furthermore, through joint optimization
for the binary codes and the delegate real variables, we can
obtain nearly balanced and uncorrelated binary codes. Next,
we introduce an efficient solution to solve the mixed-integer
optimization problem in Eq.(4).

4.2 Optimization
We employ alternating optimization strategy [Liu et al., 2017]
to solve the problem. Specifically, we alternatively solve
three subproblems for DFM model in Eq.(4), taking turns to
update each of B, D, w, given others fixed. Next we elabo-
rate on how to solve each of the subproblems.
B-subproblem. In this subproblem, we aim to optimize B
with fixed D and w. To achieve this, we can update B by
updating each vector br according to

argmin
br∈{±1}k

bT
r U(

∑
Vr

x2rx̂x̂
T)UTbr − 2(

∑
Vr

xrψx̂
T)UTbr

− 2βdT
r br,

where ψ = y − w0 − wT x−
n−1∑
i=1

n−1∑
j=i+1

⟨ui,uj⟩x̂ix̂j

where Vr = {(x, y) ∈ V|xr ̸= 0} is the training set for r,
vector x̂ is equal to x excluding element xr, U excludes the
column br of matrix B, and ui is a column in U.
Due to the discrete constraints, the optimization is general-

ly NP-hard. To this end, we use Discrete Coordinate Descent
(DCD) [Zhang et al., 2016] to take turns to update each bit of
binary codes br. Denote brt as the t-th bit of br and brt̄ as

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3451

the rest codes excluding brt, DCD will update brt by fixing
brt̄. Thus, we update brt based on the following rule:

brt ← sgn
(
K(b̂rt, brt)

)
,

b̂rt =
∑
Vr

(xrψ − x2rx̂TZt̄brt̄)x̂
T zt + βdrt

(5)

where Z = UT , zt is the t-th column of the matrix Z while
Zt̄ excludes the t-th column fromZ, andK(x, y) is a function
that K(x, y) = x if x ̸= 0 and K(x, y) = y otherwise.
Through this way, we can control that when b̂rt = 0, we do
not update brt.

D-subproblem. WhenB andw are fixed in Eq.(4), the op-
timization subproblem for D is:

argmax
D

tr(BTD), s.t.D1 = 0,DDT = mI. (6)

It can be solved with the aid of a centering matrix J =
I − 1

n11
T . Specifically, by Singular Value Decomposition

(SVD), we have BJ = B = PΣQT , where P ∈ Rk×k′
and

Q ∈ Rn×k′
are left and right singular vectors correspond-

ing to the r′(≤ r) positive singular values in the diagonal
matrix Σ. We first apply eigendecomposition for the small

k × k matrix B B
T

=
[
P P̂

] [Σ2 0
0 0

] [
P P̂

]T
, where

P̂ are the eigenvectors of the zero eigenvalues. Therefore, by
the definition of SVD, we have Q = B

T
PΣ−1. In order to

satisfy the constraint D1 = 0, we further obtain additional
Q̂ ∈ Rn×(k−k′) by Gram-Schmidt orthogonalization based
on [Q 1]. As such, we have Q̂T1 = 0. Then we can get the
closed-form update rule for theD-subproblem in Eq.(6) as:

D←
√
n
[
P P̂

] [
Q Q̂

]T
(7)

w-subproblem. When B and D are fixed in Eq.(4), the
subproblem is for optimizing w is:

argmin
w0,w

∑
(x,y)∈V

(ϕ− w0 −
n∑

i=1

wixi)
2 + α

n∑
i=1

w2
i ,

ϕ = y −
n∑

i=1

n∑
j=i+1

⟨bi,bj⟩xixj .
(8)

Since w is a real-valued vector, it is the standard multivariate
linear regression problem. Thus we can use coordinate de-
scent algorithm provided in the original FM [Rendle, 2011]
to find the optimal value of w and the global bias w0.

4.3 Initialization
Since DFM deals with mixed-integer non-convex optimiza-
tion, the initialization of model parameters plays an impor-
tant role for faster convergence and for finding better local
optimum solution. Here we suggest an efficient initialization
strategy inspired by DCF [Zhang et al., 2016]. It first solves
a relaxed optimization problem in Eq.(4) by discarding the
discrete constraints as:

argmin
w0,w,V

∑
(x,y)∈V

(y − w0 −
n∑

i=1

wixi −
n∑

i=1

n∑
j=i+1

⟨vi,vj⟩xixj)2

+α

n∑
i=1

w2
i + β∥V∥2F − 2βtr(VTD), s.t.D1 = 0,DDT = nI

To solve the problem, we can initialize real-valued V and w
randomly and find feasible initializations forD by solvingD-
subproblem. The optimization can be done alternatively by
solving V by traditional FM, solving D by D-subproblem,
and solving w by gradient descent. Assuming the solution
is (V∗,D∗,w∗, w∗

0), we can then initialize the parameters in
Eq.(4) as:

B← sgn(V∗),D← D∗,w← w∗, w0 ← w∗
0 (9)

5 Experiments
As the key contribution of this work is the design of DFM for
fast feature-based recommendation, we conduct experiments
to answer the following research questions:
RQ1. How does DFM perform as compared to existing
hash-based recommendation methods?
RQ2. How does the key hyper-parameter of DFM impact
its recommendation performance?
RQ3. How efficient is DFM as compared to the real-valued
version of FM?

5.1 Experimental Settings
Datasets. We experiment on two publicly available datasets
with explicit feedbacks from different real-world websites:
Yelp and Amazon. Note that we assume each user has only
one rating for an item and average the scores if an item has
multiple ratings from the same user.
a) Yelp. This dataset [Lian et al., 2017] originally contains

409,117 users, 85,539 items (points of interest on Yelp such
as restaurants and hotels), and 2,685,066 ratings with integer
scores ranging from 1 to 5. Besides, each item has a set of
textual reviews posted by the users.
b) Amazon. This book rating dataset [McAuley et al.,

2015] originally includes 12,886,488 ratings of 929,264 item-
s (books on Amazon from 2,588,991 users. In this dataset, an
item also has a set of integer rating scores in [1, 5] and a set
of textual reviews.
Considering the extreme sparsity of the original Yelp and

Amazon datasets, we remove users with less than 20 ratings
and items rated by less than 20 users. After the filtering, there
are 13,679 users, 12,922 items, and 640,143 ratings left in the
Yelp dataset. For the Amazon dataset, we remain 35,151 user-
s, 33,195 items, and 1,732,060 ratings. For fair comparison
with DCMF, we leave out the side information from the user
field and represent an item with the bag-of-words encoding of
its textual contents after aggregating all review contents of the
item. Note that we remove stopping words and truncate the
vocabulary by selecting the top 8,000 words regarding their
Term FrequencyInverse Document Frequency. By concate-
nating the bag-of-words encoding (side information of the
item) and one-hot encoding of user and item ID, we obtain
a feature vector of dimensionality 34,601 and 76,346 for a
rating (use-item pair) for Yelp and Amazon, respectively.

Baselines. We implement our proposed DFM method using
Matlab2 and compare it with its real-valued version and state-
of-the-art binarized methods for Collaborative Filtering:

2Codes are available: https://github.com/hanliu95/DFM

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3452

0
 libFM DFM DCMF DCF BCCF

Yelp

2 4 6 8 100.5

0.6

0.7

0.8

k

8 bits

N
D

C
G

@
K

2 4 6 8 100.5

0.6

0.7

0.8

k

16 bits

N
D

C
G

@
K

2 4 6 8 100.5

0.6

0.7

0.8

k

32 bits

N
D

C
G

@
K

2 4 6 8 100.5

0.6

0.7

0.8

k

64 bits

N
D

C
G

@
K

Amazon

2 4 6 8 100.7

0.8

0.9

k

8 bits

N
D

C
G

@
K

2 4 6 8 100.7

0.8

0.9

k

16 bits
N

D
C

G
@

K

2 4 6 8 100.7

0.8

0.9

k

32 bits

N
D

C
G

@
K

2 4 6 8 100.7

0.8

0.9

k

64 bits

N
D

C
G

@
K

Figure 1: Performance of NDCG@K (K ranges from 1 to 10) w.r.t., code length ranges for 8 to 64 on the two datasets.

• libFM. This is the original implementation3 of FM which
has achieved great performance for feature-based recom-
mendation with explicit feedbacks. Note that we adopt l2
regularization on the parameters to prevent overfitting and
use the SGD learner to optimize it.

• DCF. This is the first binarized CFmethod that can directly
optimize the binary codes [Zhang et al., 2016].

• DCMF. This is the state-of-the-art binarized method for
CF with side information [Lian et al., 2017]. It extends
DCF by encoding the side features as the constraints for
user codes and item codes.

• BCCF. This is a two-stage binarized CF method [Zhou and
Zha, 2012] with a relaxation stage and a quantization stage.
At these two stages, it successively solves MF with bal-
anced code regularization and applies orthogonal rotation
to obtain user codes and item codes.

Note that for DCF and DCMF, we use the original imple-
mentation as released by the authors. For BCCF, we re-
implement it due to the unavailability.

Evaluation Protocols. We first randomly split the ratings
from each user into training (50%) and testing (50%). As
practical recommender systems typically recommend a list of
items for a user, we rank the testing items of a user and eval-
uate the ranked list with Normalized Discounted Cumulative
Gain (NDCG), which has been widely used for evaluating
ranking tasks like recommendation [He et al., 2017]. To e-
valuate the efficiency of DFM and real-valued FM, we use
Testing Time Cost (TTC) [Zhang et al., 2016], where a lower
cost indicates better efficiency.

Parameter Settings. As we exactly follow the experimen-
tal settings of [Lian et al., 2017], we refer to their optimal
settings for hyper-parameters of DCMF, DCF, and BCCF.

3http://www.libfm.org/

For libFM, we test the l2 regularization on feature embed-
dings V of {10−i|i = −4,−3,−2,−1, 0, 1, 2}. Under the
same range, we test the de-correlation constraint (i.e., β in E-
q. (3)) of DFM. Besides, we test the code length in the range
of [8, 16, 32, 64]. It is worth mentioning that we conduct al-
l the experiments on a computer equipped with an Intel(R)
Core(TM) i7-7700k 4 cores CPU at 4.20GHZ, 32GB RAM,
and 64-bit Windows 7 operating system.

5.2 Performance Comparison (RQ1)
In Figure 1, we show the recommendation performance (ND-
CG@1 to NDCG@10) of DFM and the baseline methods on
the two datasets. The code length varies from 8 to 64. From
the figure, we have the following observations:
• DFM demonstrates consistent improvements over state-
of-the-art binarized recommendation methods across code
lengths (the average improvement is 7.95% and 2.38% on
Yelp and Amazon, respectively). The performance im-
provements are attributed to the benefits of learning binary
codes for features and modeling their interactions.
• Besides, DFM shows very competitive performance com-
pared to libFM, its real-valued version, with an average
performance drop of only 3.24% and 2.40% on the two
datasets. By increasing the code length, the performance
gap continuously shrinks from 5.68% and 4.76% to 1.46%
and 1.19% on Yelp and Amazon, respectively. One pos-
sible reason is that libFM suffers from overfitting as the
increase of its representative capability (i.e., larger code
length) [He and Chua, 2017], whereas binarizing the pa-
rameters can alleviate the overfitting problem. This finding
again verifies the effectiveness of the proposed DFM.
• Between baseline methods, DCF consistently outperforms
BCCF, while slightly underperforms DCMF with an aver-
age performance decrease of 1.58% and 0.76% on the two
datasets, respectively. This is consistent with the findings
in [Liu et al., 2014] that the direct discrete optimization is

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3453

0 1E-4 1E-3 0.01 0.1 1 10 1000.70

0.75

0.80

0.85

 Yelp
N

D
C

G
@

10

hyper-parameter

 DFM
 libFM

0 1E-4 1E-3 0.01 0.1 1 10 1000.80

0.82

0.84

0.86

0.88

 Amazon

N
D

C
G

@
10

hyper-parameter

 DFM
 libFM

Figure 2: Recommendation performance of libFM and DFM (code
length=64) on NDCG@10 w.r.t., l2 regularization (libFM) and de-
correlation constraint (DFM).

stronger than two-stage approaches and that side informa-
tion makes the user codes and item codes more representa-
tive, which can boost the performance of recommendation.
However, the rather small performance gap between DCF
and DCMF indicates that DCMF fails to make full use of
the side information. The main reason is because that D-
CMF performs prediction only based on user codes and
item codes (which is same as DCF). This inevitably limits
the representation ability of DCMF.

5.3 Impact of Hyper-parameter (RQ2)
Figure 2 shows the recommendation performance of libFM
and DFM on NDCG@10 regarding l2 regularization of
libFM and de-correlation constraint, respectively. We omit
the results on different values of K and code length other
than K = 10 and code length = 64 since they shown the
same trend. First, we can see that the performance of libFM
continuously drops as we decrease the l2 regularization. One
reason is that libFM could easily suffer from overfitting [X-
iao et al., 2017]. Second, we observe that DFM performs
slightly worse as decreasing the de-correlation constraint. By
setting the de-correlation constraint and l2 regularization to
be zero, both of DFM and libFM exhibit significant perfor-
mance decrease in NDCG@10. Specifically, the performance
of DFM drops with a 1.91% and 2.05% margin on Yelp and
Amazon, respectively, while libFM encounters a 10.44% and
6.56% one. The above findings again demonstrate the over-
fitting problem of libFM, which leads to libFM to be very
sensitive to the l2 regularization hyper-parameter, while the
proposed DFM is relatively insensitive to its de-correlation
constraint hyper-parameter.

5.4 Efficiency Study (RQ3)
As libFM is implemented based on C++, we re-implement
the testing algorithm of DFM with C++ and compile it with
the same C++ compiler (gcc-4.9.3) for a fair comparison. Ta-
ble 1 shows the efficiency comparison between DFM and
libFM regarding TTC on the two datasets. We have the fol-
lowing observations:

• DFM achieves significant speedups on both datasets re-
garding TTC, significantly accelerating the libFM by a
large amplitude (on average, the acceleration ratio over
libFM is 15.99 and 16.04, respectively). This demon-
strates the great advantage of binarizing the real-valued pa-
rameters of FM.

Yelp
Code Length 8 16 32 64
libFM (TTC) 27.18 56.77 114.10 217.64
DFM (TTC) 2.06 3.56 6.60 12.43

Acceleration Ratio 13.19 15.95 17.29 17.51

Amazon
Code Length 8 16 32 64
libFM (TTC) 177.03 357.46 716.83 1, 414.67
DFM (TTC) 12.67 22.50 42.56 81.04

Acceleration Ratio 13.97 15.89 16.84 17.46

Table 1: Efficiency comparison between DFM (C++ implementa-
tion) and libFM w.r.t., TTC (minutes) where the code length ranges
from 8 to 64 on the two datasets.

• The acceleration ratio of DFM based on libFM is stable
around 16 times on both the datasets when the code length
increases from 8 to 64.

Along with the comparable recommendation performance of
DFM and libFM, the above findings indicate that DFM is
an operable solution for many large-scale Web services, such
as Facebook, Instagram, and Youtube, to substantially reduce
the computation cost of their recommendation systems.

6 Conclusions
In this paper, we presented DFM, the first binary represen-
tation learning method for generic feature-based recommen-
dation. In contrast to existing hash-based recommendation
methods that can only learn binary codes for users and items,
our DFM is capable of learning a vector of binary codes for
each feature. As a benefit of such a compact binarized model,
the predictions of DFM can be done efficiently in the bina-
ry space. Through extensive experiments on two real-world
datasets, we demonstrate that DFM outperforms state-of-the-
art hash-based recommender systems by a large margin, and
achieves a recommendation accuracy rather close to that of
the original real-valued FM.
This work moves the first step towards developing efficien-

t and compact recommender models, which are particularly
useful for large-scale and resource-limited scenarios. In fu-
ture, we will explore the potential of DFM for context-aware
recommendation in mobile devices, a typical application s-
cenario that requires fast and compact models. Moreover,
we will develop pairwise learning method for DFM, which
might be more suitable for personalized ranking task. With
the fast developments of neural recommendation methods re-
cently [He and Chua, 2017], we will develop binarized neural
recommender models in the next step to further boost the per-
formance of hash-based recommendation. Besides, we are
interested in deploying DFM for online recommendation s-
cenarios, and explore how to integrate bandit-based and rein-
forcement learning strategies into DFM. Lastly, we will ex-
plore the potential of DFM in other tasks such as popularity
prediction of online content [Feng et al., 2018].

Acknowledgments
This work is supported by the National Basic Research Pro-
gram of China (973 Program), No.: 2015CB352502; Nation-
al Natural Science Foundation of China, No.: 61772310, No.:

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3454

61702300, and No.: 61702302; and the Project of Thousand
Youth Talents 2016. This work is also part of NExT research,
supported by the National Research Foundation, Prime Min-
ister’s Office, Singapore under its IRC@SG Funding Initia-
tive.

References
[Bai et al., 2017] Ting Bai, Ji-Rong Wen, Jun Zhang, and

Wayne Xin Zhao. A neural collaborative filtering mod-
el with interaction-based neighborhood. In CIKM, pages
1979–1982, 2017.

[Bayer et al., 2017] Immanuel Bayer, Xiangnan He, Bhargav
Kanagal, and Steffen Rendle. A generic coordinate de-
scent framework for learning from implicit feedback. In
WWW, pages 1341–1350, 2017.

[Chen et al., 2017] Jingyuan Chen, Hanwang Zhang, Xiang-
nan He, Liqiang Nie, Wei Liu, and Tat-Seng Chua. Atten-
tive collaborative filtering: Multimedia recommendation
with item- and component-level attention. In SIGIR, pages
335–344, 2017.

[Das et al., 2007] Abhinandan S. Das, Mayur Datar,
Ashutosh Garg, and Shyam Rajaram. Google news
personalization: scalable online collaborative filtering. In
WWW, pages 271–280, 2007.

[Feng et al., 2018] Fuli Feng, Xiangnan He, Yiqun Liu,
Liqiang Nie, and Tat-Seng Chua. Learning on partial-order
hypergraphs. In WWW, pages 1523–1532, 2018.

[Gionis et al., 1999] Aristides Gionis, Piotr Indyk, and Ra-
jeev Motwani. Similarity search in high dimensions via
hashing. In VLDB, pages 518–529, 1999.

[Gong and Lazebnik, 2011] Yunchao Gong and Svetlana
Lazebnik. Iterative quantization: A procrustean approach
to learning binary codes. In CVPR, pages 817–824, 2011.

[He and Chua, 2017] Xiangnan He and Tat-Seng Chua. Neu-
ral factorization machines for sparse predictive analytics.
In SIGIR, pages 355–364, 2017.

[He et al., 2016] Xiangnan He, Hanwang Zhang, Min-Yen
Kan, and Tat-Seng Chua. Fast matrix factorization for on-
line recommendation with implicit feedback. In SIGIR,
pages 549–558, 2016.

[He et al., 2017] Xiangnan He, Lizi Liao, Hanwang Zhang,
Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural collabo-
rative filtering. In WWW, pages 173–182, 2017.

[Karatzoglou et al., 2010] Alexandros Karatzoglou, Alexan-
der J. Smola, and Markus Weimer. Collaborative filtering
on a budget. pages 389–396, 2010.

[Li et al., 2017] Jing Li, Pengjie Ren, Zhumin Chen,
Zhaochun Ren, Tao Lian, and Jun Ma. Neural attentive
session-based recommendation. In CIKM, pages 1419–
1428, 2017.

[Lian et al., 2017] Defu Lian, Rui Liu, Yong Ge, Kai Zheng,
Xing Xie, and Longbing Cao. Discrete content-aware ma-
trix factorization. In SIGKDD, pages 325–334, 2017.

[Liu et al., 2014] Xianglong Liu, Junfeng He, Cheng Deng,
and Bo Lang. Collaborative hashing. In CVPR, pages
2147–2154, 2014.

[Liu et al., 2017] An-An Liu, Yu-Ting Su, Wei-Zhi Nie, and
Mohan Kankanhalli. Hierarchical clustering multi-task
learning for joint human action grouping and recognition.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 39(1):102–114, 2017.

[Luo et al., 2018] Xin Luo, Liqiang Nie, Xiangnan He,
Ye Wu, Chen Zhen-Duo, and Xin-Shun Xu. Fast scalable
supervised hashing. In SIGIR, 2018.

[McAuley et al., 2015] Julian McAuley, Rahul Pandey, and
Jure Leskovec. Inferring networks of substitutable and
complementary products. In SIGKDD, pages 785–794,
2015.

[Rendle et al., 2011] Steffen Rendle, Zeno Gantner,
Christoph Freudenthaler, and Lars Schmidt-Thieme.
Fast context-aware recommendations with factorization
machines. In SIGIR, pages 635–644, 2011.

[Rendle, 2011] Steffen Rendle. Factorization machines. In
ICDM, pages 995–1000, 2011.

[Stad, 2001] Johan Stad. Some optimal inapproximability re-
sults. ACM, 2001.

[Wang et al., 2017] XiangWang, Xiangnan He, Liqiang Nie,
and Tat-Seng Chua. Item silk road: Recommending items
from information domains to social users. In SIGIR, pages
185–194, 2017.

[Wang et al., 2018] Zihan Wang, Ziheng Jiang, Zhaochun
Ren, Jiliang Tang, and Dawei Yin. A path-constrained
framework for discriminating substitutable and comple-
mentary products in e-commerce. In WSDM, pages 619–
627, 2018.

[Xiao et al., 2017] Jun Xiao, Hao Ye, Xiangnan He, Han-
wang Zhang, Fei Wu, and Tat-Seng Chua. Attentional fac-
torization machines: Learning the weight of feature inter-
actions via attention networks. IJCAI, pages 3119–3125,
2017.

[Yu et al., 2018] Wenhui Yu, Huidi Zhang, Xiangnan He, X-
u Chen, Li Xiong, and Zheng Qin. Aesthetic-based cloth-
ing recommendation. InWWW, pages 649–658, 2018.

[Zhang et al., 2014] Zhiwei Zhang, Qifan Wang, Lingyun
Ruan, and Luo Si. Preference preserving hashing for effi-
cient recommendation. In SIGIR, pages 183–192, 2014.

[Zhang et al., 2016] Hanwang Zhang, Wei Liu, Wei Liu, X-
iangnan He, Huanbo Luan, and Tat Seng Chua. Discrete
collaborative filtering. In SIGIR, pages 325–334, 2016.

[Zhou and Zha, 2012] Ke Zhou and Hongyuan Zha. Learn-
ing binary codes for collaborative filtering. In SIGKDD,
pages 498–506, 2012.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3455

