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Abstract

We study numerous restricted domains of dichoto-
mous preferences with respect to some tree struc-
tures. Particularly, we study the relationships
among these domains and the ones proposed by
Elkind and Lackner [2015]. We also show that rec-
ognizing all the restricted domains proposed in this
paper is polynomial-time solvable. Finally, we ex-
plore the complexity of winner determination for
several important approval-based multiwinner vot-
ing rules when restricted to these domains.

1

Preference domain restrictions have been widely studied in
computational social choice recently. The main motivations
of the study can be summarized as follows. First, domain re-
strictions have been a successful approach to circumventing
many impossibility theorems. One of the classic examples
is arguably the single-peaked domain, restricted to which the
median voter rule is non-dictatorial yet strategy-proof [Black,
1948; Moulin, 1980], circumventing Gibbard and Satterth-
waite’s impossibility theorem [Gibbard, 1973; Satterthwaite,
1975]. Second, many voting problems which are compu-
tationally hard in general become polynomial-time solvable
when restricted to special domains [Brandt er al., 2015;
Faliszewski et al., 2011]. Domain restrictions also offer many
structural parameters for researchers to study voting prob-
lems from the parameterized complexity point of view. Many
fixed-parameter tractability results have been established with
respect to several domain restrictions [Bredereck er al., 2016;
Cornaz et al., 2012; Yang, 2015; Yang and Guo, 2014]. Third,
domain restrictions model many real-world applications, be-
cause, in many practical scenarios, the preferences of voters
are subject to some combinatorial restrictions, resulting in a
restricted domain of preferences. We refer to [Elkind et al.,
2017] for a comprehensive discussion on domain restrictions.

Following up the work of Elkind and Lackner [2015],
we study several domain restrictions on dichotomous pref-
erences. In general, in our models, either candidates or
votes are mapped into vertices in a (rooted, oriented) tree
and, more importantly, for the former case all approved
candidates of every vote induce a special structure, and in
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the latter case all votes approving a common candidate in-
duce a specific structure. Domain restrictions based on tree
structures have been studied previously. For instance, De-
mange [1983] extended the single-peaked domain proposed
by Black [1948] to single-peaked preferences on a tree. Pe-
ters and Elkind [2016] studied single-peaked preferences on
trees with further restrictions. Recently, a more general graph
class, namely median graphs, has been used in the study of
domain restrictions [Clearwater et al., 2015; Demange, 2012;
Puppe and Slinko, 2019; Kung, 2015]. One common point
of these models is that the trees or graphs involved are all
undirected. These domains may not be able to model the sce-
narios where candidates or votes have domination or depen-
dency relations. In this paper, we consider domain restric-
tions based on undirected trees, as well as rooted and ori-
ented trees where each edge has a direction which may in-
dicate the domination/dependency relations between the two
vertices incident to the edge. We study inclusive relationships
among domain restrictions defined in this paper and the ones
studied in [Elkind and Lackner, 2015] (Section 3). In addi-
tion, we explore whether they can be recognized efficiently
(Section 4). Finally, we study the complexity of WINNER
DETERMINATION for many important approval-based multi-
winner voting rules (Section 5).

2 Preliminary

We assume the familiarity of basics in graph theory and com-
plexity theory. A graph G = (N, A) consists of a set of ver-
tices N and a set of edges A. A bipartite graph is a graph
whose vertices can be partitioned into two subsets such that
there are only edges between these two subsets. A path is a
sequence ui, . . ., u; of vertices such that there is an edge be-
tween u; and u;4q for each 1 < ¢ < t. A comb is obtained
from a path by, for every vertex u in the path, introducing one
degree-1 vertex adjacent to u. A tree is a connected graph
without cycles. A star is a tree where there is a specific ver-
tex, called the center, and every other vertex is of degree-1
and is adjacent to the center. A rooted tree is a tree with a spe-
cific vertex, called the root. An oriented tree is a tree where
each edge has a direction. An arborescence is an oriented tree
where there is exactly one vertex without incoming edges.
We study approval-based multiwinner voting. In this set-
ting, an election is a tuple £ = (C, V') where C' is a set of
candidates and V' a multiset of votes. Each vote v € V is a
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Figure 1: An o-TR (left side) of an election (right side).
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Figure 2: The oriented tree on the left side is a S-TR of the elec-
tion F; and a 8-PTR of the election 5 on the right side.

subset of C, representing the set of candidates approved by
the corresponding voter. For each candidate ¢ € C, let V(c)
be the multiset of votes approving ¢, i.e., V(c) = {v € V :
¢ € v}. A k-committee is a subset of k candidates. A
k-committee selection (multiwinner voting) rule maps each
election (C, V) to a k-committee, called the winners.

An election E = (C, V) can be also represented by a bi-
partite graph with the vertex bipartition (C, V). Moreover,
there is an edge between ¢ € C'and v € V if and only if v
approves c, i.e., ¢ € v. We denote this graph by G'g and call
it the incidence graph of (C, V).

Now we are ready to give the formal definitions of several
restricted domains for dichotomous preferences. Generally
speaking, in each of these domains candidates are mapped
into vertices of a tree and approved candidates of each vote
induce some specific structure. We refer to Figures 1-3 for il-
lustrations of these concepts. Let E = (C, V') be an election.

a-Tree representation («-TR) We say that E¥ admits an -
TR if there is a rooted tree with vertex set C'U{x} where
x ¢ C'is the root and, moreover, for every vote v € V
there is a candidate ¢ € C such that v approves exactly
the candidates in the path from z to ¢, except x.

(-Tree representation (5-TR) We say that £ admits a f3-
TR if there is an oriented tree 7" with vertex set C' such
that the approved candidates of each vote induce an ar-
borescence.

(-Path-tree representation (3-PTR) We say that £ admits
a S-PTR if there exists an oriented tree T' = (C, A) such
that the approved candidates of every vote v € V induce
a directed path in 7T'.

Tree representation (TR) We say that £ admits a TR if
there exists a tree T' = (C, A) such that the approved
candidates of every vote induce a subtree of 7.

Path-tree representation (PTR) We say that £ admits a
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Figure 3: The tree on the left side is a TR of the election F; and a
PTR of the election E-» on the right side.

PTR if there exists a tree T = (C, A) such that the ap-
proved candidates of every vote induce a path in 7'.

Analogous to the above definitions, we can define tree rep-
resentations of an election where votes are mapped into ver-
tices of a tree and require that for each candidate c the votes
approving c induce some specific subgraph. For each of the
above concepts we add the letter “V” immediately after the
hyphen to denote such a tree representation. For instance, for
B-TR, we say an election (C, V') admits a 5-VTR representa-
tion, if there is an oriented tree with vertex set V' such that for
every candidate ¢ € C, votes in V(¢) induce an arborescence.

As we also study some domains proposed in [Elkind and
Lackner, 2015], let’s also recall the definitions of these do-
mains. For an integer 4, let [i] = {1,2,...,i}.

t-Partition (t-PART) We say that E is t-PART if there is
a partition (C1,Cs,...,C;) of C such that for every
vote v it holds that v = C; for some i € [¢].

Voter extremal interval (VEI) We say that F is VEI if there
is an order (vi,ve,...,v,) of V such that for every
candidate ¢ € C, there exists an integer ¢ € [n] such
that V'(c) is either {v1,...,v;} or {vit1,...,0,}.

Voter interval (VI) We say that F is VI if there is a linear
order over V' so that for every candidate ¢ € C, the votes
approving c are consecutive in this order.

Candidate extremal interval (CEI) We say that E is CEI if
there is an order (ci,. .., ¢y, ) of C such that for every
vote v € V there exists an integer ¢ € [m] such that
eitherv ={c; : 1 < j<i}orv={c;:m>j>i}.

Candidate interval (CI) We say that F is CI if there is an
order of C such that the approved candidates of every
vote are consecutive in this order.

Dichotomous uniformly Euclidean (DUE) We say that E
is DUE if we can map votes and candidates into the real
line such that the approved candidates of every vote is at
most r far from this vote, where r is a fixed number.

Weakly single-crossing (WSC) We say that £ is WSC if
there is an order of V' such that for every pair of can-
didates c and ¢/, the votes in each of V1 = V(¢) \ V(¢),
Vo =V(d)\V(c),and V' \ (V4 U V3) are consecutive
with V'\ (V1 U V3) being between V7 and V5.
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Figure 4: An arc from one domain to another means that the former
implies the latter. The relations indicated by solid arcs are from this
paper and by dashed arcs are from [Elkind and Lackner, 2015].

3 Relations Among Different Domains

In this section, we investigate the relationships among the re-
stricted domains proposed in this paper and the ones studied
by Elkind and Lackner [2015]. Our findings are summarized
in the following theorem.

Among these relations, we find that the relations among -
TR, VI, and 5-VPTR are particularly interesting. Recall that
in a-TR, candidates are mapped into vertices of a tree, but in
VI votes are mapped into vertices in a path. Nevertheless, we
prove that a-TR is a special case of VI. The proof is based on
the depth-first-search (DFS) traversal of the o-TR tree. Fur-
ther given that VI is a special case of 3-VPTR, we are able
to bridge the relations between candidates-mapped tree repre-
sentations and votes-mapped tree representations. We prove
similar relations among a-TVR, CI, and 5-PTR.

For two domain restrictions A and B, A C B, which
reads A implies B, means that every A-election is a B-
election but not necessarily the other way around.

Theorem 1. The following relations hold:

t-PART C o-TR C B-PTR C PTR C TR = (3-TR,

t-PART C o-VTR C B-VPTR C VPTR C VIR = (3-VTR,
a-VIR C CI C B-PIR, and o-TR C VI C 3-VPTR, More-
over, the relations are complete, in the sense that if a concept
of restricted domain has no inclusive relation with another
one shown above, there is no such a relation in general. (See
Figure 4 for a graphical illustration.)

Proof. Let E = (C, V) be an election. We only prove for the
relations involving candidates-mapped representations.

t-PART C «-TR. Let (C,...,C}) be a partition of C
such that every vote in V' is one of (', ..., C;. We can con-
struct a tree with vertex set C' U {x} such that z is the root
and each C;, 1 < i < t, induces a path in the tree with one of
its endpoints being a child of z.

a-TR C VI Let T be an o-TR representation of E with
root x. For each vote v € V, let ¢, € C be the candidate so
that the approved candidates in v are exactly the candidates in
the path from x to ¢, except z. We shall show that ordering
the votes according to the DFS traversal numbers of their cor-
responding candidates leads to a VI ordering of the election.
(See page 603 in [Cormen et al., 2009] for the definition of
DFS) For each candidate ¢ € C, let DFS(c) be the DFS traver-
sal number of c. Let vq, ..., v, be an order of V' such that for
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every i, 1 < i < n, it holds that DFS(c,,) < DFS(c,,,,).
Due to the definition of DFS, for every candidate ¢, the votes
which approve c are exactly the votes corresponding to ¢ or
some descendant of ¢, which lie continuously in the above
defined order. We illustrate it with the election in Figure 1. A
DEFS traversal order is , a, ¢, b, d, e, g, f. Clearly, ¢,, = a,
Cy, = g, Cys = €, and ¢, = d. The DFS traversal numbers
of a, g, e, d are respectively 2, 7, 6, 5. Hence, the correspond-
ing order of V' by the above definition is (v1,v4,v3,v2), in
which the votes approving each candidate are consecutive.

a-TR C B-PTR. Let T" be an a-TR representation of £
with root . Without loss of generality, let (c1, ca,...,c;) be
any arbitrary order of the children of z. Let 7" be an oriented
tree obtained from 7T by (1) remove the root x; (2) draw an
arc from ¢; to ¢;41 forevery i € [t — 1] if ¢ > 1; and (3) for
each candidate ¢, orient the edges between c and its children
so that c is the head of the edges. It is easy to see that T”
is a S-PTR representation of E. To show that the relation is
strict, one can check that the election E5 in Figure 2 admits a
[B-PTR but does not admit an a-TR.

B-PTR C PTR. This relation is easy to see. To check that
the inclusion is strict, consider an election with four candi-
dates a, b, ¢, d, and three votes v1 = {a,b,c}, va = {a,b,d},
and v3 = {a, ¢, d}. This election admits a PTR but does not
admit a S-PTR.

B-TR = TR. It is clear that 5-TR C TR. It remains to
show that TR C 3-TR. Let T be a TR tree of E/ with vertex
set C. We pick any arbitrary candidate ¢ € C as the root and
orient the edges accordingly so that there is a directed path
from the root to every leave. Obviously, every subtree of 7' is
an arborescence of the rooted tree. It is clear that PTR C TR.
So, we also have PTR C -TR.

CI C B-PTR. The relation is easy to see. O

4 Complexity of Recognition

To exploit restricted domains to design algorithms, an im-
portant question is how efficiently we can determine whether
an election falls into the category of some restricted do-
main. Many of our concepts are related to special hyper-
graphs whose recognition algorithms have been studied. We
need the following notions for exposition.

A hypergraph G = (N, A) is a tuple where N is the set of
vertices and A the hyperedges each of which is a subset of V.
A hypergraph can be represented by a bipartite graph where
we have IV as the vertex set on one side and on the other side
we create one vertex a(e) for each hyperedge e € A which
is adjacent to all vertices included in e. A hypergraph (N, .A)
is a tree-hypergraph if there is a tree 7' with vertex set N
such that every hyperedge in .4 induces a subtree of 7. Par-
ticularly, such a tree T is referred to as a tree-support of G
in the literature. Given a hypergraph G = (IV,.A), it has
been shown that determining whether it is a tree-hypergraph
can be done in polynomial time. More importantly, if G is
a tree-hypergraph, a tree-support of G can be constructed
in O(n? - (m + logn)) time where n = |N| and m is the
number of hyperedges [Slater, 1978; Klemz et al., 2014;
Korach and Stern, 2003; Johnson and Pollak, 1987; Buchin
et al., 2011]. Tt is easy to see that an election £ = (C,V)
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admits a TR (resp. VTR), if and only if the hypergraph cor-
responding to the bipartite graph G g with V' (resp. C') being
considered as the hyperedge set is a tree-hypergraph. This
results in the following corollary.

Corollary 1. Determining whether an election admits a TR
(resp. VTR) can be done in polynomial time and, moreover, a
TR (VTR) representation can be constructed in O(|C|?-(|V |+
log |C|)) (resp. O(|V|? - (|C| + log |V |))) time.

Brandes et al. [2012] considered path-based tree-supports
of hypergraphs and showed that determining whether a hy-
pergraph admits a path-based tree-support can be solved
in O(n3m) time, where n and m are respectively the num-
ber of vertices and the number of hyperedges in the hyper-
graph. Recall that a path-based tree-support of a hypergraph
G = (N, A) is a tree-support T of G such that every hy-
peredge in A induces a path of 7". Similar to the discussion
above, we can obtain the following corollary.

Corollary 2. Recognizing whether an election (C, V') is PTR
(resp. VPTR) can be done in polynomial time and, if so, a PTR
(resp. VPTR) representation can be constructed in O(|C|? -
V) (resp. O(|V'|? - |C])) time.

A hypergraph G is called a directed path hypergraph if there
is an oriented tree such that every hyperedge of G induces a
directed path in this tree. Such a tree is called a dipath-based
tree-support of G. Chaplick et al. [2010] investigated the rela-
tion between path-based tree-supports and dipath-based tree-
supports of hypergraphs, and proved that given a path-based
tree-support 1" of a directed path hypergraph, it is always pos-
sible to orient the edges in T" in some way to obtain a dipath-
based tree-support of G. More importantly, any algorithm for
constructing a path-based tree-support can be adapted to con-
struct a dipath-based tree-support without increasing the time
complexity in the worst case. Note that any hypergraph which
has a dipath-based tree-support must have a path-based tree-
support as well. Hence, we have the following result.

Corollary 3. Determining whether an election admits a [3-
PTR (resp. B-VPTR) can be done in polynomial time, and if
so, a B3-PTR (resp. 3-VPTR) can be constructed in O(|C|> -
[V]) (resp. O(|V|? - |C))) time.

Finally, we study a polynomial-time algorithm to recognize
whether an election admits an a-TR or a-VTR.

Theorem 2. Determining whether an election (C, V') admits
an a-TR (resp. a-VTR) can be done in polynomial time, and,
if so, an o-TR tree can be constructed in O(p* - m?) time,
wherem = |Clandp =3\ |v].

Proof. We only give the proof for a-TR. Let E = (C,V)
be an election and G its incidence graph. Let m = |C]|
and p = ) oy |v|. We first calculate all connected compo-
nents of Gg which can be done in O(m + p + mp) time.
If £ admits an «-TR, we shall construct a rooted tree 1T’
where candidates in each connected component induce a sub-
tree rooted at a child of the root of 7. Note that for each
connected component we have a subelection (C’, V") where
C'C C,V'CV,and C' U V' is the vertex set of this con-
nected component. Then, it suffices to separately determine
if each of these subelections admits an «-TR. Particularly, if
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all subelections admit a-TRs, we can get an a-TR represen-
tation of (C, V') by merging all the roots of these trees. So,
let’s now only focus on one connected component H of G,
and let (C’, V') be the subelection corresponding to H. Ob-
serve that if there exists no candidate ¢ € C’ who is ap-
proved by all votes in V', (C’,V’) does not admit an «-
TR; so does not (C, V). Otherwise, let cr(1),. .., Cr(z) be
the candidates in C’ each of which is approved in all votes
in V', We fix an order Cr(1)s - -+ Cr(x) OF these candidates
and accordingly construct a path. Then, we remove the can-
didates cy(1), - - -, Cr(z) from H, possibly leading to several
connected components in H, for which we iteratively deter-
mine whether the subelection with respect to each of these
connected components admits an «-TR. If this is the case,
similar to the above procedure, we merge all roots of these
a-TR trees together with ¢ (,). The algorithm can be imple-

mented in O(p*m?) time. O

5 Multiwinner Determination

In this section, we explore how different domain restric-
tions shape the complexity of WINNER DETERMINATION for
some approval-based multiwinner voting rules, and how to
exploit structures of restricted elections to design tractability
algorithms. Let (C, V') be an election and k an integer.

Chamberlin-Courant approval voting (CCAV) The score
of a committee w is the number of votes intersecting w,
ie, {v € V. : vnw # 0}|. This rule selects a k-
committee w C C' with the maximum score.

Proportional approval voting (PAV) The score of a com-
mittee w received from a vote v is defined as
PAV (v, w) = 1+%+--~+ﬁif@ﬂw # (), and
is 0 if v N w = (). This rule selects a k-committee with
the maximum total score )\, PAV (v, w).

Minimax approval voting (MAV) The score of a commit-
tee w is defined as max,cv (v \ w| + |w \ v|), and this
rule selects a k-committee with the minimum score.

Recall that in the WINNER DETERMINATION problem for
arule ¢ € {MAV, CCAV, PAV} (WD-y), we are given an
election and a rational number R, and the question is whether
there is a k-committee with score at least (resp. most) R for
PAV and CCAV (resp. MAV).

It has been shown that in general elections WD-MAV, WD-
CCAV, and WD-PAV are all NP-hard [Aziz et al., 2015;
LeGrand, 2004; Betzler ef al., 2013], which sparks much
study of these problems in restricted elections. In particu-
lar, Peters [2018] proved that WD-PAV and WD-CCAV are
polynomial-time solvable when restricted to CI elections .
As a-VTR is a subdomain of CI, the polynomial-time solv-
ability directly transfers to a-VTR elections. In addition,
WD-CCAV restricted to VI elections is also polynomial-time
solvable [Elkind and Lackner, 2015]. However, whether WD-
PAV restricted to VI elections is polynomial-time solvable re-
mained as an open question so far. We are not able to resolve

!The first polynomial-time algorithm for WD-CCAV is attributed
to Betzler er al. [2013] and is based on the dynamic-programming
technique. Peters [2018] showed the result by providing a totally
unimodular integer linear programming for the problem.
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this open question, but based on the dynamic-programming
technique we show that this problem is polynomial-time solv-
able when restricted to a subdomain of VI, namely the a-TR
domain. In fact, we show this result for a large class of rules.

An a-PAV rule is characterized by a non-increasing vector
a = (ay,...,a) of k non-negative real numbers The score

of a k-committee w from a vote v is ZI a ifonw#0
and is O otherwise. This rule selects a k: committee with
the maximum total score. Therefore, CCAV and PAV are

(1,0,...,0)-PAV and (1, 3, .., +)-PAV, respectively.

Theorem 3. WD-a-PAV restricted to «o-TR elections is
polynomial-time solvable.

Proof Sketch. Let (C,V) be an a-TR election. Due to The-
orem 2, we can construct an «-TR tree T of this election
in polynomial time. Let z denote the root of 7. For a
candidate ¢, let P(c) be the set of all candidates in the
unique path from z to c except z and c. Let T, be the
subtree rooted at ¢, V(7T.) the multiset of votes approving
at least one candidate in 7, and C( ¢) the set of candi-
dates in T.. A crucial observation is that there exists an
optimal k-committee such that if some candidate c is in the
committee then all candidates in P(c) are also in this com-
mittee. Based on this observation, we develop a dynamic-
programming algorithm as follows. For each candidate c and
a non-negative integer ¢ < |C(T¢)|, (c,i) denote the
a-PAV score of an optimal (|P(c)| 4 i)-committee consist-
ing of exactly ¢ candidates from T, with respect to the sub-
election (P(c) U C(T,),V(T.)). Updating sc(c,i), i > 1,
can be reduced to a variant of the classic Knapsack prob-
lem. In particular, let cq,...,c; be the children of c. Note
that for any c, and ¢, such that 1 < x # y < ¢, it holds
that V(c;) N V(ey) = (. The question is then to find a
vector (iy,14s,...,1;) of non-negative integers such that (1)
ZE 1l =1— 1 (2)zj < |C(T,)| forevery 1 < j < t;
and (3) Z] 1 sc(¢;,45) is maximized among all vectors sat-
isfying the first and second conditions. Such a vector can be
found in polynomial time using a similar dynamic program-
ming algorithm for the Knapsack problem [Kellerer, 2016].
Given such a vector (i1, 1, ...,14), let

\UV )

The score of an optimal k-committee is then sc(z, k) (regard-
ing x as a candidate not approved by anyone). U

|P(c

-~

[+1
sc(c

kb\}—‘

Zsc ¢, i)+ |V (T,

Jj=1 1

j=

For WD-MAY, Liu and Guo [2016] derived a polynomial-
time algorithm for CI and VI elections, implying that WD-
MAV is also polynomial-time solvable in a-TR and o-VTR
elections. We show that when restricted to a slightly ex-
panded domain, the complexity of the problem changes. An
election is a star/comb PTR (or other domains studied in this
paper) election if it admits a PTR representation where the
underling tree is a star/comb.

Theorem 4. WD-MAV and WD-PAV restricted to star PTR
elections are NP-hard.
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The proof is adapted from the reductions in [Aziz et al.,
2015; LeGrand, 2004] by introducing a candidate being the
center of the star and being approved by all votes.

For CCAY, the above adaption does not work, because in
this case if a candidate is approved in all votes, then any k-
committee including this candidate is a winning k-committee.
Nevertheless, via a completely different reduction, we show
that WD-CCAV remains NP-hard even when restricted to star
B-PTR elections, a special case of PTR.

In a graph, we say a vertex covers an edge if this vertex is
one of the endpoints of this edge.

PARTIAL VERTEX COVER (PVC)

Given: A graph G = (U, F') with vertex set U and edge
set F', two positive integers p and /.
Question: Is there a subset S C U of p vertices which to-

gether cover at least £ edges in G?

It is known that PVC remains NP-hard even when the input
graph G is a bipartite graph [Caskurlu e al., 2017].

Theorem 5. WD-CCAV restricted to star 3-PTR elections is
NP-hard.

Proof. Let (G = (AU B,F),p,{) be a PVC instance
where G is a bipartite graph with the bipartition (A, B).
Let n |F| be the number of edges. For each vertex
u € AU B, we create a candidate c(u). In addition, we create
a candidate d. For each edge e = (u,u’) € F where u € A
and v’ € B, we create a vote v(e) which approves d, c(u),
and c(u’). Moreover, for each vertex u € A U B, we create a
multiset V' (u) of n votes each of which approves only ¢(u).
It is easy to see that the election admits a star 3-PTR, where
there is an arc from every candidate c(u), u € A, to the candi-
date d, and an arc from d to every candidate c(u), u € B. We
complete the construction by setting k = pand R = ¢+ p-n.

(=) Assume that there exists an S C A U B of p vertices
in G which covers at least £ edges. Let w = {c(u) : u € S}.
We claim that w has CCAYV score at least R. First, w inter-
sects all p - n votes in | J,.g V(u). In addition, if an edge
e (u,v'), u € A, ' € B, is covered by some vertex
in S, at least one of ¢(u) and c(v’) is in w; hence, w inter-
sects the corresponding vote v(e). Since S covers at least £
edges, w intersects at least £ votes corresponding to these cov-
ered edges. In total, w intersects at least p - n + ¢ = R votes.

(<) Suppose that the constructed election has a k-
committee w of score at least R. Observe that the candi-
date d cannot be in w, since otherwise w can intersect at most
n+(k—1)-n = k-n < Rvotes. So,w C {c(u) : u € AUB}.
Let S = {u € AUB : ¢(u) € w} be the set of ver-
tices corresponding to w. Clearly, w intersects all k - n votes
inJ,cq V(u). As R = k-n-+/, this implies that w intersects
at least ¢ edge-votes in GG. Due to the construction, vertices
in S cover all edges corresponding to these edge-votes. [

We show that the polynomial-time solvability for VI elec-
tions does not extend to VTR elections with even specific un-
derling tree structures.
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a-TR B-PTR PTR TR «a-VTR B-VPTR  VPTR VTR
PAV P [Thm.3] ? NP-h (star) <« P [Peters, 2018] ? 2 NP-h [Thm. 6]
[Thm. 4] (star, comb)
CCAV P [Thm. 3] NP-h (star) <« < P [Peters, 2018] — P(star)  NP-h [Thm. 6]
[Thm. 5] [Thm. 7]  (star, comb)
MAV P P (star) NP-h (star) <+ P — P (star) NP-h [Thm. 6]
[Liu and Guo, 2016]  [Thm. 8] [Thm. 4] [Liu and Guo, 2016] [Thm.7] (star, comb)
Table 1: Entries marked with <— (—) mean that the results are the same as the one immediately on the left (right) side.
U1 V9 V3 V4 V3k—1  VUsk We fill the gaps by the following theorems.
------------ Theorem 7. WD-CCAV and WD-MAV restricted to star
VPTR elections are polynomial-time solvable.
Proof. We give only the proof for CCAV. Let (C, V') be the
v(ur) vl(ug) vl(uz) vl(us) v(Uz—1) v(Usy) election in a given instance. Observe that if there are two can-

Figure 5: An illustration of the proof of Theorem 6. Dark nodes
correspond to the votes approving a candidate ¢(s) such that s =
{UQ, ug,u&i} eSs.

RESTRICTED EXACT COVER BY THREE SETS (RX3C)

Given: A universe U = {u1, us, ..., usx}, a collection S
of 3-subsets of U such that every v € U occurs in
exactly three elements in S. (So, |S| = 3k)

Question:  Is there an S’ C S such that |S’| = & and every

u € U occurs in exactly one element of S’?

Theorem 6. WD-PAV, WD-CCAV, and WD-MAV restricted to
comb/star VIR elections are NP-hard.

Proof. We give only the proof for PAV in Comb VTR elec-
tions. Let (U, S) be an instance of the RX3C problem such
that |U| = |S| = 3k. For each s € S, we create a can-
didate ¢(s). Concerning the votes, we first create 3x votes
v1,Va,...,Vs3,. Then, for each u € U, we create one
vote v(u). Importantly, we let the candidate ¢(s) correspond-
ing to s € S be approved by all votes v; such that 1 <17 < 3k,
and by every vote v(u) such that u € s. Hence, every can-
didate is approved by 3k + 3 votes. Finally, we set k = &
and R = 3k + 3k(1 +  + -+ + 1). Figure 5 depicts the
construction. We show the correctness as follows.

(=) Let S C S be an exact 3-set cover. Let w be the
k-committee consisting of every c(s) such that s € S’. Due
to the construction, all the 3« votes v;, 1 < ¢ < 3k, approve
all candidates. Moreover, as S’ is an exact 3-set cover, every
vote v(u), u € U, approves exactly one candidate ¢(s) € w
such that u € s and s € S’. It is then easy to verify that the
score of the committee w is exactly R.

(<) Let w be a k-committee with score at least R. As all
the 3k votes v;, 1 < ¢ < 3k, approve all candidates, the score
of the committee w with respect to the votes in {v(u) : u €
U}isatleast R—3k(1+ 3 +---+1) = 3k. Itis fairly easy to
check that this is the case only when every vote v(u) where
u € U approves exactly one candidate in w, which implies
that {s: s € S, c(s) € w} is an exact 3-set cover. O
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didates ¢,¢’ € C such that V(c) C V(¢’), removing ¢ does
not change the answer to the instance. Hence, hereinafter,
we assume that no such two candidates exist. Let vg € V
denote the center and vq,...,v,_1 the leaves in the VPTR
representation of (C, V). Observe that if vy does not approve
any candidate, all k-committees have the same score under
the above assumption. Otherwise, let C’ be the set of candi-
dates approved by three votes (one of them is vg). Under the
above assumption, if |C’| < k, any optimal k-committee con-
tains C’ and any arbitrary k — |C’| candidates from C'\ C’;
we are done. If |C'| > k, we solve the problem by reduc-
ing it to the PARTIAL EDGE COVER (PEC) problem which is
polynomial-time solvable [Plesnik, 1999]. In particular, for
each vote v;, 1 < 7 < n — 1, we create a vertex, denoted still
by v; for simplicity. Then, for every candidate ¢ € C’ such
that V(¢) = {vo, vs,v;} where 1 <14 # j < n— 1, we create
an edge between v; and v;. Now, the question is equivalent
to finding a subset of £ edges that cover as many vertices as
possible. This is exactly a PEC instance. O

Theorem 8. WD-MAV restricted to star 3-PTR elections is
polynomial-time solvable.

6 Conclusion

We studied several restricted domains of dichotomous prefer-
ences, where candidates/votes are mapped into vertices of a
(rooted, oriented) tree, and votes/candidates induce some spe-
cific structures. Particularly, we studied the relations among
these domains and the ones in [Elkind and Lackner, 2015]
(Figure 4), the complexity of recognizing them, and the com-
plexity of WINNER DETERMINATION restricted to these do-
mains (Table 1). Except DUE, all domains shown in Figure 4
can be recognized in polynomial time. The complexity of de-
termining whether an election satisfies DUE remained open.
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