
On the Tree Representations of Dichotomous Preferences

Yongjie Yang
Chair of Economic Theory, Saarland University, Saarbrücken, Germany

yyongjiecs@gmail.com

Abstract

We study numerous restricted domains of dichoto-
mous preferences with respect to some tree struc-
tures. Particularly, we study the relationships
among these domains and the ones proposed by
Elkind and Lackner [2015]. We also show that rec-
ognizing all the restricted domains proposed in this
paper is polynomial-time solvable. Finally, we ex-
plore the complexity of winner determination for
several important approval-based multiwinner vot-
ing rules when restricted to these domains.

1 Introduction
Preference domain restrictions have been widely studied in
computational social choice recently. The main motivations
of the study can be summarized as follows. First, domain re-
strictions have been a successful approach to circumventing
many impossibility theorems. One of the classic examples
is arguably the single-peaked domain, restricted to which the
median voter rule is non-dictatorial yet strategy-proof [Black,
1948; Moulin, 1980], circumventing Gibbard and Satterth-
waite’s impossibility theorem [Gibbard, 1973; Satterthwaite,
1975]. Second, many voting problems which are compu-
tationally hard in general become polynomial-time solvable
when restricted to special domains [Brandt et al., 2015;
Faliszewski et al., 2011]. Domain restrictions also offer many
structural parameters for researchers to study voting prob-
lems from the parameterized complexity point of view. Many
fixed-parameter tractability results have been established with
respect to several domain restrictions [Bredereck et al., 2016;
Cornaz et al., 2012; Yang, 2015; Yang and Guo, 2014]. Third,
domain restrictions model many real-world applications, be-
cause, in many practical scenarios, the preferences of voters
are subject to some combinatorial restrictions, resulting in a
restricted domain of preferences. We refer to [Elkind et al.,
2017] for a comprehensive discussion on domain restrictions.

Following up the work of Elkind and Lackner [2015],
we study several domain restrictions on dichotomous pref-
erences. In general, in our models, either candidates or
votes are mapped into vertices in a (rooted, oriented) tree
and, more importantly, for the former case all approved
candidates of every vote induce a special structure, and in

the latter case all votes approving a common candidate in-
duce a specific structure. Domain restrictions based on tree
structures have been studied previously. For instance, De-
mange [1983] extended the single-peaked domain proposed
by Black [1948] to single-peaked preferences on a tree. Pe-
ters and Elkind [2016] studied single-peaked preferences on
trees with further restrictions. Recently, a more general graph
class, namely median graphs, has been used in the study of
domain restrictions [Clearwater et al., 2015; Demange, 2012;
Puppe and Slinko, 2019; Kung, 2015]. One common point
of these models is that the trees or graphs involved are all
undirected. These domains may not be able to model the sce-
narios where candidates or votes have domination or depen-
dency relations. In this paper, we consider domain restric-
tions based on undirected trees, as well as rooted and ori-
ented trees where each edge has a direction which may in-
dicate the domination/dependency relations between the two
vertices incident to the edge. We study inclusive relationships
among domain restrictions defined in this paper and the ones
studied in [Elkind and Lackner, 2015] (Section 3). In addi-
tion, we explore whether they can be recognized efficiently
(Section 4). Finally, we study the complexity of WINNER
DETERMINATION for many important approval-based multi-
winner voting rules (Section 5).

2 Preliminary
We assume the familiarity of basics in graph theory and com-
plexity theory. A graph G = (N,A) consists of a set of ver-
tices N and a set of edges A. A bipartite graph is a graph
whose vertices can be partitioned into two subsets such that
there are only edges between these two subsets. A path is a
sequence u1, . . . , ut of vertices such that there is an edge be-
tween ui and ui+1 for each 1 ≤ i < t. A comb is obtained
from a path by, for every vertex u in the path, introducing one
degree-1 vertex adjacent to u. A tree is a connected graph
without cycles. A star is a tree where there is a specific ver-
tex, called the center, and every other vertex is of degree-1
and is adjacent to the center. A rooted tree is a tree with a spe-
cific vertex, called the root. An oriented tree is a tree where
each edge has a direction. An arborescence is an oriented tree
where there is exactly one vertex without incoming edges.

We study approval-based multiwinner voting. In this set-
ting, an election is a tuple E = (C, V ) where C is a set of
candidates and V a multiset of votes. Each vote v ∈ V is a
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Figure 1: An α-TR (left side) of an election (right side).
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Figure 2: The oriented tree on the left side is a β-TR of the elec-
tion E1 and a β-PTR of the election E2 on the right side.

subset of C, representing the set of candidates approved by
the corresponding voter. For each candidate c ∈ C, let V (c)
be the multiset of votes approving c, i.e., V (c) = {v ∈ V :
c ∈ v}. A k-committee is a subset of k candidates. A
k-committee selection (multiwinner voting) rule maps each
election (C, V ) to a k-committee, called the winners.

An election E = (C, V ) can be also represented by a bi-
partite graph with the vertex bipartition (C, V ). Moreover,
there is an edge between c ∈ C and v ∈ V if and only if v
approves c, i.e., c ∈ v. We denote this graph by GE and call
it the incidence graph of (C, V ).

Now we are ready to give the formal definitions of several
restricted domains for dichotomous preferences. Generally
speaking, in each of these domains candidates are mapped
into vertices of a tree and approved candidates of each vote
induce some specific structure. We refer to Figures 1–3 for il-
lustrations of these concepts. Let E = (C, V ) be an election.

α-Tree representation (α-TR) We say that E admits an α-
TR if there is a rooted tree with vertex setC∪{x}where
x 6∈ C is the root and, moreover, for every vote v ∈ V
there is a candidate c ∈ C such that v approves exactly
the candidates in the path from x to c, except x.

β-Tree representation (β-TR) We say that E admits a β-
TR if there is an oriented tree T with vertex set C such
that the approved candidates of each vote induce an ar-
borescence.

β-Path-tree representation (β-PTR) We say that E admits
a β-PTR if there exists an oriented tree T = (C,A) such
that the approved candidates of every vote v ∈ V induce
a directed path in T .

Tree representation (TR) We say that E admits a TR if
there exists a tree T = (C,A) such that the approved
candidates of every vote induce a subtree of T .

Path-tree representation (PTR) We say that E admits a

a

c

b d

e f g

v1 = {a, b, c, d, e, f}
v2 = {e, f, d, g}
v3 = {a, b, d}

E1

v1 = {c, a, d, f}
v2 = {b, a, d, e}
v3 = {d, f, g}

E2

Figure 3: The tree on the left side is a TR of the election E1 and a
PTR of the election E2 on the right side.

PTR if there exists a tree T = (C,A) such that the ap-
proved candidates of every vote induce a path in T .

Analogous to the above definitions, we can define tree rep-
resentations of an election where votes are mapped into ver-
tices of a tree and require that for each candidate c the votes
approving c induce some specific subgraph. For each of the
above concepts we add the letter “V” immediately after the
hyphen to denote such a tree representation. For instance, for
β-TR, we say an election (C, V ) admits a β-VTR representa-
tion, if there is an oriented tree with vertex set V such that for
every candidate c ∈ C, votes in V (c) induce an arborescence.

As we also study some domains proposed in [Elkind and
Lackner, 2015], let’s also recall the definitions of these do-
mains. For an integer i, let [i] = {1, 2, . . . , i}.
t-Partition (t-PART) We say that E is t-PART if there is

a partition (C1, C2, . . . , Ct) of C such that for every
vote v it holds that v = Ci for some i ∈ [t].

Voter extremal interval (VEI) We say thatE is VEI if there
is an order (v1, v2, . . . , vn) of V such that for every
candidate c ∈ C, there exists an integer i ∈ [n] such
that V (c) is either {v1, . . . , vi} or {vi+1, . . . , vn}.

Voter interval (VI) We say that E is VI if there is a linear
order over V so that for every candidate c ∈ C, the votes
approving c are consecutive in this order.

Candidate extremal interval (CEI) We say that E is CEI if
there is an order (c1, . . . , cm) of C such that for every
vote v ∈ V there exists an integer i ∈ [m] such that
either v = {cj : 1 ≤ j ≤ i} or v = {cj : m ≥ j ≥ i}.

Candidate interval (CI) We say that E is CI if there is an
order of C such that the approved candidates of every
vote are consecutive in this order.

Dichotomous uniformly Euclidean (DUE) We say that E
is DUE if we can map votes and candidates into the real
line such that the approved candidates of every vote is at
most r far from this vote, where r is a fixed number.

Weakly single-crossing (WSC) We say that E is WSC if
there is an order of V such that for every pair of can-
didates c and c′, the votes in each of V1 = V (c) \ V (c′),
V2 = V (c′) \ V (c), and V \ (V1 ∪ V2) are consecutive
with V \ (V1 ∪ V2) being between V1 and V2.
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Figure 4: An arc from one domain to another means that the former
implies the latter. The relations indicated by solid arcs are from this
paper and by dashed arcs are from [Elkind and Lackner, 2015].

3 Relations Among Different Domains
In this section, we investigate the relationships among the re-
stricted domains proposed in this paper and the ones studied
by Elkind and Lackner [2015]. Our findings are summarized
in the following theorem.

Among these relations, we find that the relations among α-
TR, VI, and β-VPTR are particularly interesting. Recall that
in α-TR, candidates are mapped into vertices of a tree, but in
VI votes are mapped into vertices in a path. Nevertheless, we
prove that α-TR is a special case of VI. The proof is based on
the depth-first-search (DFS) traversal of the α-TR tree. Fur-
ther given that VI is a special case of β-VPTR, we are able
to bridge the relations between candidates-mapped tree repre-
sentations and votes-mapped tree representations. We prove
similar relations among α-TVR, CI, and β-PTR.

For two domain restrictions A and B, A ⊂ B, which
reads A implies B, means that every A-election is a B-
election but not necessarily the other way around.
Theorem 1. The following relations hold:
t-PART ⊂ α-TR ⊂ β-PTR ⊂ PTR ⊂ TR = β-TR,
t-PART ⊂ α-VTR ⊂ β-VPTR ⊂ VPTR ⊂ VTR = β-VTR,
α-VTR ⊂ CI ⊂ β-PTR, and α-TR ⊂ VI ⊂ β-VPTR, More-
over, the relations are complete, in the sense that if a concept
of restricted domain has no inclusive relation with another
one shown above, there is no such a relation in general. (See
Figure 4 for a graphical illustration.)

Proof. Let E = (C, V ) be an election. We only prove for the
relations involving candidates-mapped representations.
t-PART ⊂ α-TR. Let (C1, . . . , Ct) be a partition of C

such that every vote in V is one of C1, . . . , Ct. We can con-
struct a tree with vertex set C ∪ {x} such that x is the root
and each Ci, 1 ≤ i ≤ t, induces a path in the tree with one of
its endpoints being a child of x.
α-TR ⊂ VI. Let T be an α-TR representation of E with

root x. For each vote v ∈ V , let cv ∈ C be the candidate so
that the approved candidates in v are exactly the candidates in
the path from x to cv , except x. We shall show that ordering
the votes according to the DFS traversal numbers of their cor-
responding candidates leads to a VI ordering of the election.
(See page 603 in [Cormen et al., 2009] for the definition of
DFS) For each candidate c ∈ C, let DFS(c) be the DFS traver-
sal number of c. Let v1, . . . , vn be an order of V such that for

every i, 1 ≤ i < n, it holds that DFS(cvi) < DFS(cvi+1
).

Due to the definition of DFS, for every candidate c, the votes
which approve c are exactly the votes corresponding to c or
some descendant of c, which lie continuously in the above
defined order. We illustrate it with the election in Figure 1. A
DFS traversal order is x, a, c, b, d, e, g, f . Clearly, cv1 = a,
cv2 = g, cv3 = e, and cv4 = d. The DFS traversal numbers
of a, g, e, d are respectively 2, 7, 6, 5. Hence, the correspond-
ing order of V by the above definition is (v1, v4, v3, v2), in
which the votes approving each candidate are consecutive.
α-TR ⊂ β-PTR. Let T be an α-TR representation of E

with root x. Without loss of generality, let (c1, c2, . . . , ct) be
any arbitrary order of the children of x. Let T ′ be an oriented
tree obtained from T by (1) remove the root x; (2) draw an
arc from ci to ci+1 for every i ∈ [t − 1] if t > 1; and (3) for
each candidate c, orient the edges between c and its children
so that c is the head of the edges. It is easy to see that T ′
is a β-PTR representation of E. To show that the relation is
strict, one can check that the election E2 in Figure 2 admits a
β-PTR but does not admit an α-TR.
β-PTR ⊂ PTR. This relation is easy to see. To check that

the inclusion is strict, consider an election with four candi-
dates a, b, c, d, and three votes v1 = {a, b, c}, v2 = {a, b, d},
and v3 = {a, c, d}. This election admits a PTR but does not
admit a β-PTR.
β-TR = TR. It is clear that β-TR ⊆ TR. It remains to

show that TR ⊆ β-TR. Let T be a TR tree of E with vertex
set C. We pick any arbitrary candidate c ∈ C as the root and
orient the edges accordingly so that there is a directed path
from the root to every leave. Obviously, every subtree of T is
an arborescence of the rooted tree. It is clear that PTR ⊂ TR.
So, we also have PTR ⊂ β-TR.

CI ⊂ β-PTR. The relation is easy to see.

4 Complexity of Recognition
To exploit restricted domains to design algorithms, an im-
portant question is how efficiently we can determine whether
an election falls into the category of some restricted do-
main. Many of our concepts are related to special hyper-
graphs whose recognition algorithms have been studied. We
need the following notions for exposition.

A hypergraph G = (N,A) is a tuple where N is the set of
vertices andA the hyperedges each of which is a subset ofN .
A hypergraph can be represented by a bipartite graph where
we have N as the vertex set on one side and on the other side
we create one vertex a(e) for each hyperedge e ∈ A which
is adjacent to all vertices included in e. A hypergraph (N,A)
is a tree-hypergraph if there is a tree T with vertex set N
such that every hyperedge in A induces a subtree of T . Par-
ticularly, such a tree T is referred to as a tree-support of G
in the literature. Given a hypergraph G = (N,A), it has
been shown that determining whether it is a tree-hypergraph
can be done in polynomial time. More importantly, if G is
a tree-hypergraph, a tree-support of G can be constructed
in O(n2 · (m + log n)) time where n = |N | and m is the
number of hyperedges [Slater, 1978; Klemz et al., 2014;
Korach and Stern, 2003; Johnson and Pollak, 1987; Buchin
et al., 2011]. It is easy to see that an election E = (C, V )
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admits a TR (resp. VTR), if and only if the hypergraph cor-
responding to the bipartite graph GE with V (resp. C) being
considered as the hyperedge set is a tree-hypergraph. This
results in the following corollary.
Corollary 1. Determining whether an election admits a TR
(resp. VTR) can be done in polynomial time and, moreover, a
TR (VTR) representation can be constructed inO(|C|2·(|V |+
log |C|)) (resp. O(|V |2 · (|C|+ log |V |))) time.

Brandes et al. [2012] considered path-based tree-supports
of hypergraphs and showed that determining whether a hy-
pergraph admits a path-based tree-support can be solved
in O(n3m) time, where n and m are respectively the num-
ber of vertices and the number of hyperedges in the hyper-
graph. Recall that a path-based tree-support of a hypergraph
G = (N,A) is a tree-support T of G such that every hy-
peredge in A induces a path of T . Similar to the discussion
above, we can obtain the following corollary.
Corollary 2. Recognizing whether an election (C, V ) is PTR
(resp. VPTR) can be done in polynomial time and, if so, a PTR
(resp. VPTR) representation can be constructed in O(|C|3 ·
|V |) (resp. O(|V |3 · |C|)) time.

A hypergraph G is called a directed path hypergraph if there
is an oriented tree such that every hyperedge of G induces a
directed path in this tree. Such a tree is called a dipath-based
tree-support of G. Chaplick et al. [2010] investigated the rela-
tion between path-based tree-supports and dipath-based tree-
supports of hypergraphs, and proved that given a path-based
tree-support T of a directed path hypergraph, it is always pos-
sible to orient the edges in T in some way to obtain a dipath-
based tree-support of G. More importantly, any algorithm for
constructing a path-based tree-support can be adapted to con-
struct a dipath-based tree-support without increasing the time
complexity in the worst case. Note that any hypergraph which
has a dipath-based tree-support must have a path-based tree-
support as well. Hence, we have the following result.
Corollary 3. Determining whether an election admits a β-
PTR (resp. β-VPTR) can be done in polynomial time, and if
so, a β-PTR (resp. β-VPTR) can be constructed in O(|C|3 ·
|V |) (resp. O(|V |3 · |C|)) time.

Finally, we study a polynomial-time algorithm to recognize
whether an election admits an α-TR or α-VTR.
Theorem 2. Determining whether an election (C, V ) admits
an α-TR (resp. α-VTR) can be done in polynomial time, and,
if so, an α-TR tree can be constructed in O(p2 · m2) time,
where m = |C| and p =

∑
v∈V |v|.

Proof. We only give the proof for α-TR. Let E = (C, V )
be an election and GE its incidence graph. Let m = |C|
and p =

∑
v∈V |v|. We first calculate all connected compo-

nents of GE which can be done in O(m + p + mp) time.
If E admits an α-TR, we shall construct a rooted tree T
where candidates in each connected component induce a sub-
tree rooted at a child of the root of T . Note that for each
connected component we have a subelection (C ′, V ′) where
C ′ ⊆ C, V ′ ⊆ V , and C ′ ∪ V ′ is the vertex set of this con-
nected component. Then, it suffices to separately determine
if each of these subelections admits an α-TR. Particularly, if

all subelections admit α-TRs, we can get an α-TR represen-
tation of (C, V ) by merging all the roots of these trees. So,
let’s now only focus on one connected component H of GE ,
and let (C ′, V ′) be the subelection corresponding to H . Ob-
serve that if there exists no candidate c ∈ C ′ who is ap-
proved by all votes in V ′, (C ′, V ′) does not admit an α-
TR; so does not (C, V ). Otherwise, let cπ(1), . . . , cπ(x) be
the candidates in C ′ each of which is approved in all votes
in V ′. We fix an order cπ(1), . . . , cπ(x) of these candidates
and accordingly construct a path. Then, we remove the can-
didates cπ(1), . . . , cπ(x) from H , possibly leading to several
connected components in H , for which we iteratively deter-
mine whether the subelection with respect to each of these
connected components admits an α-TR. If this is the case,
similar to the above procedure, we merge all roots of these
α-TR trees together with cπ(x). The algorithm can be imple-
mented in O(p2m2) time.

5 Multiwinner Determination
In this section, we explore how different domain restric-
tions shape the complexity of WINNER DETERMINATION for
some approval-based multiwinner voting rules, and how to
exploit structures of restricted elections to design tractability
algorithms. Let (C, V ) be an election and k an integer.
Chamberlin-Courant approval voting (CCAV) The score

of a committee w is the number of votes intersecting w,
i.e., |{v ∈ V : v ∩ w 6= ∅}|. This rule selects a k-
committee w ⊆ C with the maximum score.

Proportional approval voting (PAV) The score of a com-
mittee w received from a vote v is defined as
PAV(v, w) = 1 + 1

2 + · · · + 1
|v∩w| if v ∩ w 6= ∅, and

is 0 if v ∩ w = ∅. This rule selects a k-committee with
the maximum total score

∑
v∈V PAV(v, w).

Minimax approval voting (MAV) The score of a commit-
tee w is defined as maxv∈V (|v \ w|+ |w \ v|), and this
rule selects a k-committee with the minimum score.

Recall that in the WINNER DETERMINATION problem for
a rule ϕ ∈ {MAV, CCAV, PAV} (WD-ϕ), we are given an
election and a rational number R, and the question is whether
there is a k-committee with score at least (resp. most) R for
PAV and CCAV (resp. MAV).

It has been shown that in general elections WD-MAV, WD-
CCAV, and WD-PAV are all NP-hard [Aziz et al., 2015;
LeGrand, 2004; Betzler et al., 2013], which sparks much
study of these problems in restricted elections. In particu-
lar, Peters [2018] proved that WD-PAV and WD-CCAV are
polynomial-time solvable when restricted to CI elections 1.
As α-VTR is a subdomain of CI, the polynomial-time solv-
ability directly transfers to α-VTR elections. In addition,
WD-CCAV restricted to VI elections is also polynomial-time
solvable [Elkind and Lackner, 2015]. However, whether WD-
PAV restricted to VI elections is polynomial-time solvable re-
mained as an open question so far. We are not able to resolve

1The first polynomial-time algorithm for WD-CCAV is attributed
to Betzler et al. [2013] and is based on the dynamic-programming
technique. Peters [2018] showed the result by providing a totally
unimodular integer linear programming for the problem.
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this open question, but based on the dynamic-programming
technique we show that this problem is polynomial-time solv-
able when restricted to a subdomain of VI, namely the α-TR
domain. In fact, we show this result for a large class of rules.

An a-PAV rule is characterized by a non-increasing vector
a = 〈a1, . . . , ak〉 of k non-negative real numbers. The score
of a k-committee w from a vote v is

∑|v∩w|
i=1 ai if v ∩ w 6= ∅

and is 0 otherwise. This rule selects a k-committee with
the maximum total score. Therefore, CCAV and PAV are
〈1, 0, . . . , 0〉-PAV and 〈1, 12 , . . . , 1k 〉-PAV, respectively.

Theorem 3. WD-a-PAV restricted to α-TR elections is
polynomial-time solvable.

Proof Sketch. Let (C, V ) be an α-TR election. Due to The-
orem 2, we can construct an α-TR tree T of this election
in polynomial time. Let x denote the root of T . For a
candidate c, let P (c) be the set of all candidates in the
unique path from x to c except x and c. Let Tc be the
subtree rooted at c, V (Tc) the multiset of votes approving
at least one candidate in Tc, and C(Tc) the set of candi-
dates in Tc. A crucial observation is that there exists an
optimal k-committee such that if some candidate c is in the
committee then all candidates in P (c) are also in this com-
mittee. Based on this observation, we develop a dynamic-
programming algorithm as follows. For each candidate c and
a non-negative integer i ≤ |C(Tc)|, let sc(c, i) denote the
a-PAV score of an optimal (|P (c)| + i)-committee consist-
ing of exactly i candidates from Tc with respect to the sub-
election (P (c) ∪ C(Tc), V (Tc)). Updating sc(c, i), i ≥ 1,
can be reduced to a variant of the classic Knapsack prob-
lem. In particular, let c1, . . . , ct be the children of c. Note
that for any cx and cy such that 1 ≤ x 6= y ≤ t, it holds
that V (cx) ∩ V (cy) = ∅. The question is then to find a
vector 〈i1, i2, . . . , it〉 of non-negative integers such that (1)∑t
j=1 ij = i − 1; (2) ij ≤ |C(Tcj )| for every 1 ≤ j ≤ t;

and (3)
∑t
j=1 sc(cj , ij) is maximized among all vectors sat-

isfying the first and second conditions. Such a vector can be
found in polynomial time using a similar dynamic program-
ming algorithm for the Knapsack problem [Kellerer, 2016].
Given such a vector 〈i1, i2, . . . , it〉, let

sc(c, i) =
t∑

j=1

sc(cj , ij)+

∣∣∣∣∣∣V (Tc) \
⋃
x∈[t]

V (Tcx)

∣∣∣∣∣∣ ·
|P (c)|+1∑
j=1

1

j
.

The score of an optimal k-committee is then sc(x, k) (regard-
ing x as a candidate not approved by anyone).

For WD-MAV, Liu and Guo [2016] derived a polynomial-
time algorithm for CI and VI elections, implying that WD-
MAV is also polynomial-time solvable in α-TR and α-VTR
elections. We show that when restricted to a slightly ex-
panded domain, the complexity of the problem changes. An
election is a star/comb PTR (or other domains studied in this
paper) election if it admits a PTR representation where the
underling tree is a star/comb.

Theorem 4. WD-MAV and WD-PAV restricted to star PTR
elections are NP-hard.

The proof is adapted from the reductions in [Aziz et al.,
2015; LeGrand, 2004] by introducing a candidate being the
center of the star and being approved by all votes.

For CCAV, the above adaption does not work, because in
this case if a candidate is approved in all votes, then any k-
committee including this candidate is a winning k-committee.
Nevertheless, via a completely different reduction, we show
that WD-CCAV remains NP-hard even when restricted to star
β-PTR elections, a special case of PTR.

In a graph, we say a vertex covers an edge if this vertex is
one of the endpoints of this edge.

PARTIAL VERTEX COVER (PVC)

Given: A graph G = (U,F ) with vertex set U and edge
set F , two positive integers p and `.

Question: Is there a subset S ⊆ U of p vertices which to-
gether cover at least ` edges in G?

It is known that PVC remains NP-hard even when the input
graph G is a bipartite graph [Caskurlu et al., 2017].

Theorem 5. WD-CCAV restricted to star β-PTR elections is
NP-hard.

Proof. Let (G = (A ∪ B,F ), p, `) be a PVC instance
where G is a bipartite graph with the bipartition (A,B).
Let n = |F | be the number of edges. For each vertex
u ∈ A∪B, we create a candidate c(u). In addition, we create
a candidate d. For each edge e = (u, u′) ∈ F where u ∈ A
and u′ ∈ B, we create a vote v(e) which approves d, c(u),
and c(u′). Moreover, for each vertex u ∈ A ∪B, we create a
multiset V (u) of n votes each of which approves only c(u).
It is easy to see that the election admits a star β-PTR, where
there is an arc from every candidate c(u), u ∈ A, to the candi-
date d, and an arc from d to every candidate c(u), u ∈ B. We
complete the construction by setting k = p and R = `+p ·n.

(⇒) Assume that there exists an S ⊆ A ∪ B of p vertices
in G which covers at least ` edges. Let w = {c(u) : u ∈ S}.
We claim that w has CCAV score at least R. First, w inter-
sects all p · n votes in

⋃
u∈S V (u). In addition, if an edge

e = (u, u′), u ∈ A, u′ ∈ B, is covered by some vertex
in S, at least one of c(u) and c(u′) is in w; hence, w inter-
sects the corresponding vote v(e). Since S covers at least `
edges,w intersects at least ` votes corresponding to these cov-
ered edges. In total, w intersects at least p · n+ ` = R votes.

(⇐) Suppose that the constructed election has a k-
committee w of score at least R. Observe that the candi-
date d cannot be in w, since otherwise w can intersect at most
n+(k−1)·n = k·n < R votes. So,w ⊆ {c(u) : u ∈ A∪B}.
Let S = {u ∈ A ∪ B : c(u) ∈ w} be the set of ver-
tices corresponding to w. Clearly, w intersects all k · n votes
in
⋃
u∈S V (u). AsR = k ·n+`, this implies thatw intersects

at least ` edge-votes in G. Due to the construction, vertices
in S cover all edges corresponding to these edge-votes.

We show that the polynomial-time solvability for VI elec-
tions does not extend to VTR elections with even specific un-
derling tree structures.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

648



α-TR β-PTR PTR TR α-VTR β-VPTR VPTR VTR

PAV P [Thm. 3] ? NP-h (star) ← P [Peters, 2018] ? ? NP-h [Thm. 6]
[Thm. 4] (star, comb)

CCAV P [Thm. 3] NP-h (star) ← ← P [Peters, 2018] → P (star) NP-h [Thm. 6]
[Thm. 5] [Thm. 7] (star, comb)

MAV P P (star) NP-h (star) ← P → P (star) NP-h [Thm. 6]
[Liu and Guo, 2016] [Thm. 8] [Thm. 4] [Liu and Guo, 2016] [Thm. 7] (star, comb)

Table 1: Entries marked with← (→) mean that the results are the same as the one immediately on the left (right) side.

v1

v(u1)

v2

v(u2)

v3

v(u3)

v4

v(u4)

v3κ−1

v(u3κ−1)

v3κ

v(u3κ)

Figure 5: An illustration of the proof of Theorem 6. Dark nodes
correspond to the votes approving a candidate c(s) such that s =
{u2, u3, u3κ} ∈ S.

RESTRICTED EXACT COVER BY THREE SETS (RX3C)

Given: A universe U = {u1, u2, . . . , u3κ}, a collection S
of 3-subsets of U such that every u ∈ U occurs in
exactly three elements in S. (So, |S| = 3κ)

Question: Is there an S′ ⊆ S such that |S′| = κ and every
u ∈ U occurs in exactly one element of S′?

Theorem 6. WD-PAV, WD-CCAV, and WD-MAV restricted to
comb/star VTR elections are NP-hard.

Proof. We give only the proof for PAV in Comb VTR elec-
tions. Let (U, S) be an instance of the RX3C problem such
that |U | = |S| = 3κ. For each s ∈ S, we create a can-
didate c(s). Concerning the votes, we first create 3κ votes
v1, v2, . . . , v3κ. Then, for each u ∈ U , we create one
vote v(u). Importantly, we let the candidate c(s) correspond-
ing to s ∈ S be approved by all votes vi such that 1 ≤ i ≤ 3κ,
and by every vote v(u) such that u ∈ s. Hence, every can-
didate is approved by 3k + 3 votes. Finally, we set k = κ
and R = 3k + 3k(1 + 1

2 + · · · + 1
k ). Figure 5 depicts the

construction. We show the correctness as follows.
(⇒) Let S′ ⊆ S be an exact 3-set cover. Let w be the

k-committee consisting of every c(s) such that s ∈ S′. Due
to the construction, all the 3κ votes vi, 1 ≤ i ≤ 3κ, approve
all candidates. Moreover, as S′ is an exact 3-set cover, every
vote v(u), u ∈ U , approves exactly one candidate c(s) ∈ w
such that u ∈ s and s ∈ S′. It is then easy to verify that the
score of the committee w is exactly R.

(⇐) Let w be a k-committee with score at least R. As all
the 3κ votes vi, 1 ≤ i ≤ 3κ, approve all candidates, the score
of the committee w with respect to the votes in {v(u) : u ∈
U} is at leastR−3k(1+ 1

2+· · ·+ 1
k ) = 3k. It is fairly easy to

check that this is the case only when every vote v(u) where
u ∈ U approves exactly one candidate in w, which implies
that {s : s ∈ S, c(s) ∈ w} is an exact 3-set cover.

We fill the gaps by the following theorems.
Theorem 7. WD-CCAV and WD-MAV restricted to star
VPTR elections are polynomial-time solvable.

Proof. We give only the proof for CCAV. Let (C, V ) be the
election in a given instance. Observe that if there are two can-
didates c, c′ ∈ C such that V (c) ⊆ V (c′), removing c does
not change the answer to the instance. Hence, hereinafter,
we assume that no such two candidates exist. Let v0 ∈ V
denote the center and v1, . . . , vn−1 the leaves in the VPTR
representation of (C, V ). Observe that if v0 does not approve
any candidate, all k-committees have the same score under
the above assumption. Otherwise, let C ′ be the set of candi-
dates approved by three votes (one of them is v0). Under the
above assumption, if |C ′| < k, any optimal k-committee con-
tains C ′ and any arbitrary k − |C ′| candidates from C \ C ′;
we are done. If |C ′| ≥ k, we solve the problem by reduc-
ing it to the PARTIAL EDGE COVER (PEC) problem which is
polynomial-time solvable [Plesnı́k, 1999]. In particular, for
each vote vi, 1 < i ≤ n− 1, we create a vertex, denoted still
by vi for simplicity. Then, for every candidate c ∈ C ′ such
that V (c) = {v0, vi, vj} where 1 ≤ i 6= j ≤ n− 1, we create
an edge between vi and vj . Now, the question is equivalent
to finding a subset of k edges that cover as many vertices as
possible. This is exactly a PEC instance.

Theorem 8. WD-MAV restricted to star β-PTR elections is
polynomial-time solvable.

6 Conclusion
We studied several restricted domains of dichotomous prefer-
ences, where candidates/votes are mapped into vertices of a
(rooted, oriented) tree, and votes/candidates induce some spe-
cific structures. Particularly, we studied the relations among
these domains and the ones in [Elkind and Lackner, 2015]
(Figure 4), the complexity of recognizing them, and the com-
plexity of WINNER DETERMINATION restricted to these do-
mains (Table 1). Except DUE, all domains shown in Figure 4
can be recognized in polynomial time. The complexity of de-
termining whether an election satisfies DUE remained open.
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