Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Deep Multi-Agent Reinforcement Learning with Discrete-Continuous Hybrid
Action Spaces

Haotian Fu' , Hongyao Tang', Jianye Hao'*, Zihan Lei?, Yingfeng Chen?, Changjie Fan?
ICollege of Intelligence and Computing, Tianjin University
Fuxi AI Lab in Netease
{haotianfu, bluecontra, jianye.hao} @tju.edu.cn,
{leizihan, chenyingfengl, fanchangjie} @corp.netease.com

Abstract

Deep Reinforcement Learning (DRL) has been ap-
plied to address a variety of cooperative multi-agent
problems with either discrete action spaces or con-
tinuous action spaces. However, to the best of
our knowledge, no previous work has ever suc-
ceeded in applying DRL to multi-agent problems
with discrete-continuous hybrid (or parameterized)
action spaces which is very common in practice.
Our work fills this gap by proposing two novel
algorithms: Deep Multi-Agent Parameterized Q-
Networks (Deep MAPQN) and Deep Multi-Agent
Hierarchical Hybrid Q-Networks (Deep MAH-
HQN). We follow the centralized training but de-
centralized execution paradigm: different levels
of communication between different agents are
used to facilitate the training process, while each
agent executes its policy independently based on
local observations during execution. Our empiri-
cal results on several challenging tasks (simulated
RoboCup Soccer and game Ghost Story) show that
both Deep MAPQN and Deep MAHHOQN are ef-
fective and significantly outperform existing inde-
pendent deep parameterized Q-learning method.

1 Introduction

Reinforcement learning (RL) has recently shown a great suc-
cess on a variety of cooperative multi-agent problems, such as
multiplayer games [Peng e al., 2017], autonomous cars [Cao
et al., 2013] and network packet delivery [Ye et al., 2015].

In many such settings, it is necessary for agents to learn de-
centralized policies due to the partial observability and lim-
ited communication. Fortunately, we can learn such policies
using the paradigm of centralized training and decentralized
execution. Forester et al. [2016] developed a decentralized
multi-agent policy gradient algorithm; Lowe et al. [2017] ex-
tended DDPG [Lillicrap et al., 2016] to multi-agent setting
with a centralized Q-function; Rashid et al. [2018] employs
a Qmix network that estimates joint action-values as a com-
plex non-linear combination of per-agent action values that
condition on local observations only.

*Corresponding author

2329

These popular multi-agent reinforcement learning methods
all require the action space to be either discrete or continuous.
However, very often the action space in real world is discrete-
continuous hybrid, such as Robot soccer [Hausknecht, 2016;
Masson et al., 2016] and Real Time Strategic games [Xiong
et al., 2018]. In such settings, each agent usually needs to
choose a discrete action and continuous parameters associ-
ated with it at each time step. An obvious approach to han-
dling this is to simply approximate hybrid action spaces by
a discrete set or relax it into a continuous set [Hausknecht
and Stone, 2016]. However, such approaches suffer from a
number of limitations. Discrete approximation needs to bal-
ance the trade-off between learned policy quality and discrete
action space explosion. If the continuous action space is dis-
cretized coarsely, the learned policy quality would decrease
significantly; otherwise, the discrete action space would in-
crease exponentially. If using continuous relaxation, it would
be difficult to map the learned optimal actions in the relaxed
continuous space to the feasible and optimal discrete actions.

An alternative and better solution is to learn directly
over hybrid action spaces. Following this direction, Xiong
et al. [2018] proposed Parameterized Deep Q-Network (P-
DQN) for single-agent learning in hybrid action spaces with-
out approximation or relaxation by seamlessly integrating
DQN [Mnih et al., 2013] and DDPG [Lillicrap et al., 2016].
However P-DQN cannot be directly applied to multi-agent
settings due to the non-stationary property in multi-agent en-
vironments. In multi-agent settings, explicit coordination
mechanism among agents’ hybrid action spaces needs to be
introduced.

In this work, we propose two approaches to address co-
operative multi-agent problems in discrete-continuous hybrid
action spaces based on centralized training and decentralized
execution framework. The first approach, Deep Multi-Agent
Parameterized Q-networks (Deep MAPQN), extends the ar-
chitecture of P-DQN to multi-agent settings by leveraging the
idea of Qmix [2018]. Our algorithm utilizes a joint action-
value function to update policies of hybrid actions for all
agents. However, Deep MAPQN requires to compute contin-
uous parameters for all the discrete actions of all agents and
thus may suffer from high computational complexity when
the discrete part of hybrid action space has large dimensions.
To alleviate this problem, we propose the second approach,
Deep Multi-Agent Hierarchical Hybrid Q-networks (Deep

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

MAHHQN). In contrast to Deep MAPQN, Deep MAHHQN
only needs to calculate continuous parameters of the optimal
discrete action for each agent. In addition, it further allevi-
ates the non-stationary issue of multi-agent environments by
realizing centralized training fashion at both action levels and
augmenting each centralized training framework with infor-
mation about policies of other action levels. Empirical results
on standard benchmark game Half Field Offense (HFO) and a
large-scale video game Ghost Story show the superior perfor-
mance of our approaches compared to independent P-DQN.

2 Background

2.1 Cooperative Stochastic Game

In this work, we consider a Cooperative Stochastic
Game [Wei et al., 2018al in partially observable settings
modeled as a tuple {S,U,r, P,v, H, N} . This game for N
agents is defined by a set S of states describing the possible
configurations of all agents, a set of observations O, ..., On
for each agent and a joint action space of N agents defined as
U= A x---x Ay. Ateach time step, each agent ¢ chooses
an action a; € A; using policy 7; and constitutes a joint ac-
tion @ € U, which produces the next state s’ following the
state transition function P(s’|s,@): S x U x S — [0,1]. All
agents share the same reward function r(s,d): S x U — R.
~ is the discount factor and H is the time horizon.

2.2 Deep Multi-agent Reinforcement Learning

Multi-agent learning has been investigated comprehensively
in both discrete action domains and continuous action do-
mains under framework of centralized training and decentral-
ized execution.

MADDPG [Lowe et al., 2017] mainly focuses on multi-
agent problems with continuous action spaces. The core
idea is to learn a centralized critic Q% (x, a1, -+ ,an)
for each agent which conditions on global information.

QY (z,aq,--- ,an) takes as input the actions of all agents,
ai,--- ,an, in addition to global state information z (i.e.,
x = (01, - ,on)) and outputs the centralized action-value
for agent 7.

Qmix [Rashid er al., 2018] employs a mixing network
that estimates joint action-values Q.+ as a complex non-
linear combination of per-agent action value that conditions
only on local observations. The weights of the mixing net-
work are produced by separate hypernetworks which take the
global state information as input. Importantly, Qmix ensures
a global argmax performed on Q;,; yields the same result
as a set of individual argmax operations performed on each
agent’s action-value (); by a monotonicity constraint:

aCgtot

Unfortunately, such multi-agent algorithms cannot be ap-
plied to hybrid action spaces. Qmix belongs to the class
of value-based reinforcement learning approaches that are
commonly considered suitable for discrete action space prob-
lems. But they cannot be applied to continuous settings [Sut-
ton and Barto, 1988; Silver et al., 2014]. MADDPG be-
longs to the class of policy-based approaches which directly

2330

learn deterministic policies over either discrete action spaces
or continuous action spaces. But such approaches cannot
learn a policy over hybrid action spaces [Mnih er al., 2016;
Schulman et al., 2017].

2.3 Parameterized Deep Q-Networks

To handle reinforcement learning problems with hybrid ac-
tion space, Xiong et al. [2018] propose a new framework
called Parameterized Deep Q-Networks (P-DQN). The core
idea is to update the discrete-action and continuous-action
policies separately combining the structure of DQN [Mnih
et al., 2013] and DDPG [Lillicrap et al., 2016]. P-DQN first
chooses low-level parameters associated with each high level
discrete action, then figures out which hybrid action pair max-
imizes the action-value function.

More concretely, we can define the discrete-continuous hy-
brid action space A as:

A= {(k,zp)|zr € X forall k € [K]}, ()

where [K] = {1,---, K} is the discrete action set, X}, is a
continuous set for all k& € [K]. Then we can define a de-
terministic function which maps the state and each discrete
action k to its corresponding continuous parameter xy:

z = pi(s;0), 3)

where 6 are weights of the deterministic policy network. We
further define an action-value function @ (s, k, 2x;w) which
maps the state and hybrid actions to real values. Here w are
weights of the value network.

P-DQN updates the action-value function) by minimizing
the following loss:

1
where y = r + maxycx) YQ(s', K, pur(s';0);w), and s de-
notes the next state after taking hybrid action (k,xy). The
policy py, for the continuous part is updated by minimizing
the following loss with parameters w fixed:

K
1900) = =Y Qs, k, p(s:0);w) (5)

k=1

3 Methods

To handle hybrid action spaces in multi-agent settings,
one natural approach is to adopt the independent learning
paradigm and equip each agent with an independent P-DQN
algorithm. However, one major issue is that each agent’s pol-
icy changes during training, resulting in the non-stationarity
of environments. As we will show in our experiments in Sec-
tion 4, independent P-DQN does not perform well in practice.

In this paper, we propose two novel deep multi-agent learn-
ing methods for hybrid action spaces, Deep MAPQN and
Deep MAHHQN. By leveraging the current state-of-the-art
single-agent deep RL for hybrid action spaces and coordina-
tion techniques for multi-agent learning, both algorithms can
support multiple agents to learn effective coordination poli-
cies directly over the hybrid action spaces.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Figure 1: The overall Deep MAPQN structure

3.1 Deep Multi-Agent Parameterized Q-Networks
(Deep MAPQN)

The first algorithm is a natural extention of single-agent P-

DQN. We leverage Qmix [Rashid et al., 2018] architecture to

coordinate the policy update over hybrid action spaces among

agents. The overall structure of Deep MAPQN is shown in

Figure 1.

For each agent, we adopt the same settings in P-DQN. Con-
cretely, considering a game with N agents, each agent ¢ uses a
deterministic policy network p, (6;) and an action value net-
work @;(w;) to output hybrid action (£, 2}). The determin-
istic policy network uy, (6;) takes each agent’s observation o;
as input and outputs the optimal continuous parameters xy,
for all the discrete actions k; € {1,--- , K;}. Then the action
value network (Q; outputs the optimal hybrid action by:

(k7 xp,) = argmaz i, o, Qi (si, (kiy x,)iwi) . (6)
where w; are parameters for action value network of agent <.

To achieve coordinated update among agents’ action value
networks, we utilize a mixing network and produce a fully
centralized state-action value function (J¢,; which can facil-
itate the coordinated update of the decentralized policies in
hybrid action spaces. The mixing network consists of a feed-
forward neural network and separate hypernetworks. The hy-
pernetworks take the global state s as the input and output the
weights of the feedforward network. The feedforward net-
work takes each agent’s output (); as input and mixing them
monotonically, producing the joint action value denoted by
Qior.' Here we define the mixing network as a non-linear
complex function f and denote this process by:

Qtot = f(sa le te 7QN; wmiw) (7)

We update the mixing network weights w,,,;,, along with each
agent’s action value network weights w; by minimizing:

‘C(w) = E&E,a‘;’k’nsl,\/'p[ytms - Qtot(57 Ea fk)]2a (8)

!The detailed structure for the mixing network can be found at:
https://bit.ly/2Eaci2X.

2331

where 3" = r + ymaxy, 7 Qiot(s', k', Zp(0)), and

(k, &) is the joint action, §' are parameters of target policy
networks. Our framework for computing @y, ensures off-
policy learning updates while each agent can still choose the
greedy action with respect to its own (); in a decentralized
fashion. This is because a global argmax on ;. is equiva-
lent with argmax on each @); as explained in Section 2.2.

Finally we need to compute gradients for deterministic pol-
icy network. We first take the sum of Q-values of all the dis-
crete actions for each agent 7:

K;
Qi = Z Qi (siy ki xr,;w;) , where k; € {1,2,--+ | K},

ki=1
9
and then feed them into the mixing network, producing the
value of ()7,,. This process can be denoted by:

Qfot = f(S, @17 o 7©N;wmim) (10)

We update all agents’ continuous policies y; (i € N) by max-
imizing ()7,, with parameters w; and w,;,, fixed, the gradient
can be written as:

Ve, 1(6;) =

ES,END [V91 Hk; (Ol)val Qfot (S, Ev Tk; w) |5EkL =[ik; (Oi)]
(11)

In this way we can update the policies of continuous param-
eters for all the different agents and different discrete actions
in one single training step.

However, this algorithm may result in high computational
complexity during both training and execution phases: ev-
ery time we compute the joint action value Q;.:, we need to
compute continuous parameters for all the K discrete actions
of all the agents. This is particularly severe when the discrete
part of hybrid action space has a large dimension. The same
problem exists in original P-DQN as well.

3.2 Deep Multi-Agent Hierarchical Hybrid
Q-Networks (Deep MAHHQN)

To address the problem we mentioned in previous section,
we propose another novel algorithm Deep MAHHQN, as
inspired by Hierarchical Learning [Kulkarni er al., 2016;
Tang et al., 2018].

The overall structure of Deep MAHHOQN is illustrated in
Figure 2. Different from Deep MAPQN, when choosing hy-
brid actions, a Deep MAHHQN agent first chooses a discrete
action through high-level network and then decides the cor-
responding continuous parameters conditioning on the given
discrete action and individual observation through low-level
network. This is consistent with human’s decision-making
process since in real world humans usually tend to decide
what to do before deciding to what extent to do it. We train
the high-level network and low-level network separately and
both of them follow the centralized training but decentralized
execution paradigm.

As for the high-level network, each agent utilizes the ba-
sic DQN [Mnih et al., 2015] framework to select a discrete

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Figure 2: The overall Deep MAHHQN structure

action k; given its own observation o;. The high-level poli-
cies among agents over discrete actions are coordinated by
using the mixing network structure [Rashid et al., 2018]. Im-
portantly, unlike Qmix which only takes global state s as
inputs for the hypernetworks to produce weights of mixing
networks, we further consider low-level network’s current
policies for each agent. This information is critical for co-
ordinating agents’ discrete actions since the hybrid action
spaces are highly correlated in determining the global opti-
mal policies. Concretely, at each training step, we first cal-
culate the continuous parameters x; related to each agent’s
high level action k; using the current low-level network’s pol-
icy (i.e., z; = p;(©(04,k;))). Then we combine them (i.e.,
x = {x1, -+ ,xn}) with the global state s and feed them
into the hypernetworks to generate weights for the mixing
network. The high-level networks’ parameters are updated
by minimizing the following loss:

E(Wh) = Es,ﬁ,nspr(yfot - Ilflot(s’ /;:, X))?, 12)

where k denotes the joint discrete action sampled from the
replay buffer, y*** = r + ymaxg, QL (s, K, x'), X is a set
of continuous parameters from low-level target policies.

For the low-level part, each agent ¢ chooses continuous pa-
rameters x; according to its new observation:

0; = @(Oiyki)y (13)

where k; is the discrete action obtained from the high-level
part. In our experiments, we simply concatenate o; and k; as
the new observation 0;. In order to learn a coordinated pol-
icy over the corresponding continuous parameters, we apply
Multi-agent Actor-critic framework [Lowe er al., 2017] and
further modify it with a centralized Q function for each agent.
Considering N agents with low-level policies parameterized
by 8 = {61, - ,0n}, and let p = {1, -,y } be the set
of all agents’ low-level policies. The gradient with expected

2332

return for agent ¢ with low-level policy p; can be written as:
Vo, 1(6;) =

Esykﬂ:""p[Veiui(é\i)vziQé(s’ kla L1,y kNa xN)‘xizﬂi(é\i)}

(14)
Here QL(s, k1,71, - ,kn,zy) is a centralized action-value
function that takes as input the hybrid actions of all
agents (ki,21), -+, (kn,2n), in addition to the global

state s, and outputs the low-level Q-value for agent
i. The experience replay buffer D contains the tuples
(s,ki,21, - ,kn,zn,71, - ,rN,S’). The centralized Q
function is updated as:

‘C(wi) = Es,k,z,7',s’~D [yz - Qé(s7 kla X1,

Yi =7Ti + ’YQi (Slvkllvxlla to 7k;\/7xl]v)|w_’j:u;(zi’)a
15)

: 7kNa'rN)]2a

where Qél denotes the low-level target Q network for agent :.
Note that k/ are derived from high-level target policies. Com-
bining (14) and (15) yields our proposed low-level network.

Compared with Deep MAPQN, Deep MAHHQN only
needs to calculate one discrete action with the optimal contin-
uous parameters for each agent. This would significantly re-
duce the algorithm’s computational complexities, which will
be validated in our experimental results. Moreover, both low-
level and high-level training frameworks of Deep MAHHQN
are augmented with extra information about policies of other
agents and policies of other action levels. In hybrid action
environments, we expect that such kind of communication
would better alleviate the non-stationary issue of the environ-
ments.

When training Deep MAHHQN, we let the low-level net-
work train alone for m steps and then start training high-level
and low-level network together. The main reason is that the
associated low-level continuous parameters play an important
role when our high-level network computes the value of Q7. ,.
Otherwise, the gradients for high-level network can be very
noisy and misleading since the low-level policies are still ex-
ploring at a high rate at the very beginning.

4 Experimental Results

In this section, we evaluate our algorithms in 1) the standard
benchmark game HFO, 2) 3v3 mode in a large-scale online
video game Ghost Story. We compare our algorithms, Deep
MAPQN and Deep MAHHQN, with independent P-DQN in
all our experiments.

4.1 Experiments with Half Field Offense (HFO)

Half field Offense (HFO) is an abstraction of full RoboCup
2D game. The environment features in a hybrid action space.
Previous work [Hausknecht and Stone, 2016; Wang et al.,
2018; Wei er al., 2018b] applied RL to the single-agent ver-
sion of HFO, letting one agent try to goal without a goal-
keeper (1v0). In this paper, we apply our proposed algorithms
on the challenging multi-agent problems of HFO , which in-
cludes 1v2 (two agents with the shared objective of defending
the goal against one opponent) and 2v1 (two agents with the

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

shared objective of scoring the goal against one goalie). The
opponent (or goalie) we play against are all built-in hand-
coded agents.

We use the high level feature set and each agent’s obser-
vation is a 21-d vector consisting of its position and orien-
tation; distance and angle to the ball and goal; an indicator
if the agent can kick etc. A full list of state information can
be found at the official website https://github.com/mhauskn/
HFO/blob/master/doc/manual.pdf.

In our experiments, we use a discrete-continuous hy-

brid action space. The full set of hybrid actions is:
Kick To (target,,target,, speed); Move To (target,,
target,); Dribble To (target,, target,); Intercept().
Valid values for target, , € [—1,1] and speed € [0,3]. In
this settings, acting randomly is almost unlikely to score or
successfully defend the goal and the exploration task proves
too difficult to gain traction on a reward that only consists of
scoring goals. Thus, we do reward engineering to our two
tasks respectively to alleviate the sparse reward problem,
which will be described in details in following sections.

1v2 Defense

In the defending scenario, our models control two agents with
the shared objective of defending the goal. Note that for de-
fensive agents, only two actions Move To and Intercept are
applicable since the defensive players do not control the ball.
The reward for each time step is calculated as a weighted sum
of the following three types of statistics:

e Move to ball reward: A reward proportional to the
change in distance between the agent and the ball.

e Punishment for no agent in goal area. We add a punish-
ment if there’s no defensive agent in the goal area.

e Bonus points for game result. Agents will get extra pos-
itive points if they successfully defend the goal and vice
versa.

We can see from Figure 3 that both Deep MAPQN and
Deep MAHHQN achieve much higher performance than P-
DQN. This demonstrates the benefits of explicitly coordinat-
ing the joint hybrid policies among agents. In addition, Deep
MAHHQN is found to outperform Deep MAPQN after con-
vergence. We attribute this to the improved communication
between different agents when we do centralized training for

08 /"A“"
2
L/

0.2 J — Deep MAHHQN
/
Deep MAPQN

=}
in

o=
IS

Defense_rate

=
w

P-DON

0 10000 20000 30000
Episodes

Figure 3: Successfully defense rates for Deep MAPQN, Deep MAH-
HQN and P-DQN in 1v2 defense mode of HFO

Deep MAHHQN. We further examine the learned behaviours
of policies in order to better understand the methods. The
agents of Deep MAPQN and Deep MAHHQN tend to play
different roles automatically when defending the ball: one
agent moves directly to the goal area and act like a goal-
keeper while the other one approaches the offensive player
trying to capture the ball. In contrast, the agents of P-DQN
tend to approach the offensive player or move to the goal area
together without cooperating with an appropriate division of
their roles. A video of our learned policies may be viewed at
https://youtu.be/ndJYZFLSBXE.

2v1 Offense

We further evaluate our algorithms on 2vl offense mode
which have larger action space and the coordination task is
expected to be more challenging. In this scenario, our models
control two agents aiming to score a goal against one goalie.
We add a discrete action Shoot() to our action list and there
are totally five types of actions for this experiment. The re-
ward for each time step is calculated as a weighted sum of the
following types of statistics:

e Move to ball reward: Similar to last section.

e Kick to goal reward: A reward proportional to change in
distance between the ball and the center of the goal.

e Additional punishment: To avoid long shot, we add an
additional punishment if the ball is too far away from
both agents when it is still outside the goal area.

e Bonus points for game result: Agents will get extra
points if they successfully score a goal.

As shown in Figure 4, in this challenging offense problem,
independent P-DQN fails to learn the coordination policy. In
practice, we observe that independent P-DQN agents first try
to approach the ball, then dribble it to somewhere and stop
without shooting. A primary reason for this may be the lack
of information of other teammates. In comparison, our pro-
posed methods Deep MAPQN and Deep MAHHQN perform
much better. Similar to the previous defense setting, the Deep
MAPQN agents learn policies a little faster than Deep MAH-
HQN in terms of the number of time steps required. The un-
derlying reason is that in Deep MAPQN we update policies of
continuous parameters associated with all the discrete actions

/‘r_,....._,__’—"\--w
0.4
z
it
_l
[}
o
@
0.z
P-DQM
— Deep MAHHON
0.0 T Deep MAPQN
0 10000 20000 30000
Episodes

Figure 4: Goal rates for Deep MAPQN, Deep MAHHQN and P-
DQN in 2v1 offense mode of HFO

2333

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

i\ teaml-agent2 (Fav

Figure 5: A screen shot of a 3v3 game mode in Ghost Story

at one single training step. However, such a framework also
introduces huge computational complexity since each train-
ing step of Deep MAPQN occupies much more computing
resources than Deep MAHHQN. This problem can be seen
more clearly in our second game (Ghost Story) with a more
complicated practical environment.

4.2 Experiments with Ghost Story

We evaluate the proposed algorithms with Ghost Story (or
QianNvYouHun) — a fantasy massive multiplayer online role-
playing game (MMORPG) from NetEase, in which each of
the learning agents controls an individual hero. We performed
our evaluation in the ”3v3” game mode, where 3 hero agents
cooperate with each other to fight against the other 3 built-in
Al on the opposite side. At each time step, every hero can
choose to move or use one of its own skills. The game ends
when all 3 heroes on the same side are killed.

The observation for each agent is a 97-d feature vector
which is manually constructed using output from the game
engine. Concretely, these features consist of some basic prop-
erties of the agents: agent’s Health Point (HP), value range of
attack, value range of defense?, carried skills and Cool Down
(CD), carried buffs?, relative positions etc.

We simplify the actions of each hero into five hybrid ac-
tion types: Move(z,y), move to a relative position(x,y); and
four skills, Tanlang(z,y), Siguai(x,y), Tianshou() and
Hegu(x,y). When a hero player chooses to use a skill, the
enemies near the relative position (x,y) will be attacked or
added some buffs depending on the specific types of selected
skills. Skill Tianshou has no parameters since it functions
as adding a buff on the hero agent itself. More details of our
experimental settings can be found at https://bit.ly/2Eaci2X.

At each time step, each agent receives a joint reward con-
sists of four parts: (1) the change in HP for all heroes; (2) a
punishment for the agents which did not do anything (e.g. No
enemy is near the skill’s target point; the selected skill’s CD
is not zero); (3) small bonus points for killing an enemy hero
and huge bonus points for winning the game.

’The agent’s true attack or defense value is uniformly distributed
on the given value range.

3Buffs can be beneficial, such as increase agent’s own defense
value, or harmful, such as decrease its own attack value, but buffs
can only exist for a short time period.

1.00

075

10.50

Win_rate

0.25

— P-DQN

— Deep MAHHQN
0.00 — Deep MAPQN

0 10000 20000 30000
Episodes

Figure 6: Win rates for Deep MAPQN, Deep MAHHQN and P-
DQN in 3v3 mode of Ghost Story

Figure 6 shows our experimental results. Clearly we can
see independent P-DQN fails to learn a coordinated policy
that can consistently defeat the enemies. Both Deep MAPQN
and Deep MAHHQN outperform independent P-DQN learn-
ing method and get a win rate over 75%. Moreover, we find
Deep MAHHQN method performs slightly better than Deep
MAPQN, which further validates that the improved commu-
nication between agents using information about policies of
other action levels can better stabilize the centralized train-
ing process. It indicates that Deep MAHHQN framework
provides a better way to handle problems with large hybrid
action space and number of agents. A final note is that the ac-
tual training time of Deep MAPQN is about three days while
Deep MAHHQN takes less than one day to train on the same
NVidia Geforce GTX 1080Ti GPU. This is quite reasonable
since each MAPQN agent need to compute continuous pa-
rameters for all the discrete actions at each single training
step while in Deep MAHHQN we only need to calculate low
level continuous parameters associated with the selected op-
timal high-level discrete action.

5 Conclusion

This paper should be seen as the first attempt at applying
deep reinforcement learning in cooperative multi-agent set-
tings with discrete-continuous hybrid action spaces. Two
novel approaches are proposed under the paradigm of cen-
tralized training and decentralized execution. The experi-
mental results show their superiority to independent param-
eterized Q-learning method under both the standard testbed
HFO and a large-scale MMORPG game. As future work, we
wish to extend our algorithms to competitive multi-agent set-
tings, and conduct additional experiments with more agents
and larger hybrid action space to further investigate the differ-
ence of performance between our two proposed algorithms.

Acknowledgments

The work is supported by the National Natural Science Foun-
dation of China (Grant Nos.: 61702362, U1836214), Special
Program of Artificial Intelligence and Special Program of Ar-
tificial Intelligence of Tianjin Municipal Science and Tech-
nology Commission (No.: 569 17ZXRGGX00150).

2334

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

References

[Cao et al., 2013] Yongcan Cao, Wenwu Yu, Wei Ren, and
Guanrong Chen. An overview of recent progress in the
study of distributed multi-agent coordination. I[EEE Trans-
actions on Industrial Informatics, 9:427-438, 2013.

[Foerster et al., 2016] Jakob N. Foerster, Yannis M. Assael,
Nando de Freitas, and Shimon Whiteson. Learning to
communicate with deep multi-agent reinforcement learn-
ing. In Proceedings of NeurIPS, pages 2137-2145, 2016.

[Hausknecht and Stone, 2016] Matthew J. Hausknecht and
Peter Stone. Deep reinforcement learning in parameter-
ized action space. In Proceedings of ICLR, pages 861-868,
2016.

[Hausknecht, 2016] Matthew J. Hausknecht. Half field of-
fense : An environment for multiagent learning and ad
hoc teamwork. In Proceedings of ALA, pages 1391-1398,
2016.

[Kulkarni ef al., 2016] Tejas D. Kulkarni, Karthik
Narasimhan, Ardavan Saeedi, and Josh Tenenbaum.
Hierarchical deep reinforcement learning: Integrat-
ing temporal abstraction and intrinsic motivation. In
Proceedings of NeurIPS, pages 3675-3683, 2016.

[Lillicrap et al., 2016] Timothy P. Lillicrap, Jonathan J.
Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yu-
val Tassa, David Silver, and Daan Wierstra. Continuous
control with deep reinforcement learning. Proceedings of
ICLR, pages 1052-1059, 2016.

[Lowe et al., 2017] Ryan Lowe, Yi Wu, Aviv Tamar, Jean
Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environ-
ments. In Proceedings of NeurlPS, pages 6382-6393,
2017.

[Masson et al., 2016] Warwick Masson, Pravesh Ranchod,
and George Konidaris. Reinforcement learning with pa-

rameterized actions. In Proceedings of AAAI, pages 1934—
1940, 2016.

[Mnih ef al., 2013] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Alex Graves, loannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with
deep reinforcement learning. CoRR, abs/1312.5602, 2013.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Fid-
jeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Toannis Antonoglou, Helen King, Dharshan
Kumaran, Daan Wierstra, Shane Legg, and Demis Has-
sabis. Human-level control through deep reinforcement
learning. Nature, 518:529-533, 2015.

[Mnih ef al., 2016] Volodymyr Mnih, Adria Puigdoménech
Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In
Proceedings of ICML, pages 1928-1937, 2016.

[Peng er al., 2017] Peng Peng, Quan Yuan, Ying Wen,
Yaodong Yang, Zhenkun Tang, Haitao Long, and Jun

2335

Wang.
learning to play starcraft combat games.
abs/1703.10069, 2017.

[Rashid et al., 2018] Tabish Rashid, Mikayel Samvelyan,
Christian Schroder de Witt, Gregory Farquhar, Jakob N.
Foerster, and Shimon Whiteson. Qmix: Monotonic value
function factorisation for deep multi-agent reinforcement
learning. In Proceedings of ICML, pages 42924301,
2018.

[Schulman er al., 2017] John Schulman, Filip Wolski, Pra-
fulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347,
2017.

[Silver er al., 2014] David Silver, Guy Lever, Nicolas Heess,
Thomas Degris, Daan Wierstra, and Martin A. Riedmiller.
Deterministic policy gradient algorithms. In Proceedings
of ICML, pages 387-395, 2014.

[Sutton and Barto, 1988] Richard S. Sutton and Andrew G.
Barto. Reinforcement learning: An introduction. IEEE
Transactions on Neural Networks, 16:285-286, 1988.

[Tang et al., 2018] Hongyao Tang, Jianye Hao, Tangjie Lv,
Yingfeng Chen, Zongzhang Zhang, Hangtian Jia, Chunxu
Ren, Yan Zheng, Changjie Fan, and Li Wang. Hierar-
chical deep multiagent reinforcement learning. CoRR,
abs/1809.09332, 2018.

[Wang et al., 2018] Qing Wang, Jiechao Xiong, Lei Han,
Peng Sun, Han Liu, and Tong Zhang. Exponentially
weighted imitation learning for batched historical data. In
Proceedings of NeurlPS, pages 6291-6300, 2018.

[Wei et al., 2018a] Ermo Wei, Drew Wicke, David Freelan,
and Sean Luke. Multiagent soft q-learning. In Proceedings
of AAAI 2018.

[Wei et al., 2018b] Ermo Wei, Drew Wicke, and Sean Luke.
Hierarchical approaches for reinforcement learning in pa-
rameterized action space. In Proceedings of AAAI, 2018.

Multiagent bidirectionally-coordinated nets for
CoRR,

[Xiong et al., 2018] Jiechao Xiong, Qing Wang, Zhuoran
Yang, Peter P Sun, Lei Han, Yang Zheng, Haobo Fu,
Tong Zhang, Ji Liu, and Hao Liu. Parametrized deep q-
networks learning: Reinforcement learning with discrete-
continuous hybrid action space. CoRR, abs/1810.06394,
2018.

[Ye er al., 2015] Dayong Ye, Minjie Zhang, and Yun Yang.
A multi-agent framework for packet routing in wireless
sensor networks. Sensors, 15(5):10026-10047, 2015.

