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Abstract

Traditional embedding approaches associate a real-
valued embedding vector with each symbol or data
point, which is equivalent to applying a linear trans-
formation to “one-hot” encoding of discrete sym-
bols or data objects. Despite simplicity, these meth-
ods generate storage-inefficient representations and
fail to effectively encode the internal semantic
structure of data, especially when the number of
symbols or data points and the dimensionality of
the real-valued embedding vectors are large. In
this paper, we propose a regularized autoencoder
framework to learn compact Hierarchical K-way
D-dimensional (HKD) discrete embedding of sym-
bols or data points, aiming at capturing essential se-
mantic structures of data. Experimental results on
synthetic and real-world datasets show that our pro-
posed HKD embedding can effectively reveal the
semantic structure of data via hierarchical data vi-
sualization and greatly reduce the search space of
nearest neighbor retrieval while preserving high ac-
curacy.

1 Introduction

Data embedding methods have been successfully deployed
in many real-world applications, including unsupervised and
supervised data visualization [Maaten and Hinton, 2008;
Min et al., 2010; Min et al., 2017], natural language un-
derstanding [Mikolov et al., 2013; Pennington er al., 2014;
Shen et al., 2018], computer vision [Frome et al., 2013], in-
formation retrieval [Clinchant and Perronnin, 2013], bioin-
formatics analysis [Du et al., 2018], and many others.

These embedding strategies, however, fail to sufficiently
reveal essential semantic structures of the data in the embed-
ded space. Typically, these methods associate a real-valued
embedding vector with each symbol or data point, which is
equivalent to applying a linear transformation to “one-hot”
encoding of discrete symbols or data points. Despite their
simplicity, these methods are incapable of encoding the in-
ternal semantic structure of data, failing to effectively pre-
serve the interplay of the symbols/data points in the embed-
ded space, such as the hierarchical relationship of the symbols
or data samples. Hierarchical clusters of data will allow one
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to know how the symbols/data points are grouped and how
lower layer groups form upper layer clusters. Such structural
information is, therefore, critical for data understanding and
fast information retrieval.

To cope with the aforementioned challenge, in this paper,
we propose a regularized autoencoder framework for data
embedding. Our approach is capable of capturing essential
semantic structures of the data, thus leading to both hierarchi-
cal data visualization/exploration and efficient nearest neigh-
bor retrieval. Our method builds on the success of the recent
K-way D-dimensional discrete encoding [Chen et al., 2018;
Shu and Nakayama, 2018]. These discrete encoding algo-
rithms encode, through deep neural networks, data points
with discrete codes, thus being able to significantly reduce
the storage space when compared to real-valued embedding.
In this paper, we aim at enforcing the discrete codes to have
structural information: different bits of a code are used to
identify their relationships with other data points. In de-
tail, we here leverage a regularized autoencoder to learn
compact hierarchical K-way D-dimensional discrete embed-
ding of symbols or data points. We employ an autoencoder
framework with a discrete embedding layer regularized by a
stochastic exemplar-centered neighborhood preserving loss,
in which we combine different dimensions of a discrete code
vector using exponentially decaying weights to achieve hi-
erarchical K-way D-dimensional embedding (HKD). Conse-
quently, the HKD embedding codes have a tree structure,
where similar symbols tend to have the same codes in front
bits while the back codes are different from each other to sep-
arate them. In addition, the autoencoder is regularized to pre-
serve exemplar-centered neighborhoods, resulting in embed-
dings with similar codes tightly close to each other.

Experimental results on synthetic and real-world datasets
show that, our proposed HKD embedding can, in addition to
storage efficiency, reveal the semantic structure of data via hi-
erarchical data visualization and greatly reduce search space
of nearest neighbor retrieval while preserving high accuracy.

To the best of our knowledge, we are the first to propose
a method to learn hierarchical discrete embedding, thus en-
abling hierarchical data visualization and fast nearest neigh-
bor retrieval in addition to embedding storage efficiency.
These salient features make our embedding strategy particu-
larly attractive in practice, where both the computation power
and storage resources may not be abundant.
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Figure 1: An illustration to the framework in the HKD method.

2 Hierarchical K-way D-dimensional Codes

Our Hierarchical K-way D-dimensional Discrete Embedding
method (denoted as HKD encoding) leverages an autoen-
coder framework, where data features/embeddings are first
encoded into the HKD embeddings which are then required
to be able to decode (reconstruct) the original given data fea-
tures/embeddings. Two novel components are devised to at-
tain the goals of the HKD encoding, as follows. First, the
HKD embedding codes have a tree structure, where similar
symbols tend to have the same codes in front bits while the
back codes are different from each other to separate them.
Second, the autoencoder is regularized to preserve exemplar-
centered neighborhoods, resulting in embeddings with simi-
lar codes tightly close to each other. We will discuss in detail
the two novel components next.

2.1 HKD with an Autoencoder

The aim of the proposed HKD encoding method is to asso-
ciate every symbol (data point) with a K-way D-dimensional
discrete code. The whole process from embedding to discrete
codes and verse vice are illustrated in Figures 1, and will be
discussed in detail next.

Suppose, the discrete code for the i symbol (data point)
is denoted by ¢; = (¢;,1,¢i2,-.-,¢i,p), Where ¢; 4 is a set
of code bits with cardinality K. Consider c; 4 is a one-hot
vector.

With this setting, given a symbol/data point ¢’s embedding
e;, the HKD first uses an encoder to learn its discrete codes
¢;. Next, a decoder in the HKD framework is then deployed
to reconstruct the embedding €, to approach the real embed-
ding e; as much as possible. The encoding and decoding pro-
cesses are formally formulated as follows.

HKD Encoding As illustrated in Figure 1, given the embed-
ding e;, the hidden layers of the neural network first transfer
the embedding into the K*D dimensional values h;:

where M denotes the weights of the hidden layer and f is a
nonlinear activation function with multiple hidden layers.
Subsequently, the hidden layer’ outputs are equally split
into D partitions, where each partition has K values and each
corresponds to exactly one dimension in the final discrete
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codes. Letl; 4(d = 1,2, ..., D) denote the d™ partition and
lj.i,a denote the exact j™ value in the d™ partition, the code
probabilities p; , are then calculated via a Softmax function
on every partition, as follows.

D; 4 = softmax(l; q)
exp(li,a) )
Sy exp(lyia)

The computed code probabilities p;, ; are used to form the
discrete encodes by first passing through an argmax function
and then representing by a one-hot vector:

¢; ¢ = one_hot (arg max {pj’i,d}> =12 ..,K. (3
J

To cope with the possible gap between the discrete codes

and continuous variables, we use a temperature 7 to approx-

imate the discrete codes during training as in [Chen et al.,
2018],

T

h;
¢i,q ~ softmax (’d> . 4)

Similar techniques have been introduced in a Gumbel-
Softmax trick [Jang et al., 2016; Maddison et al., 2016].
HKD Decoding After the encoding phase, a decoder is ap-
plied on the discrete codes generated by the encoder to re-
construct the original embeddings, as follows.

é; = de g(Proj (A; acia)), )
d

where g(+) is a sub-neural network with one or more hidden
layers shared by all code dimensions as in Figure 1, A; 4 is
the transformation weights for the 7" symbol in the d" dimen-
sion, and wy is the decayed weight for dimension d, which
will be presented in the next subsection. Proj(x) is a projec-
tion function, which is shown as follows,

—r— if >1
Proj(gg) = { [l]|+e 1 ||£L'|| - (6)

x otherwise
The loss of the autoencoder here is to minimize the recon-

struction error, which is defined by the mean squared error,

RN
E= HZ”e" —eil?, (7)

where n denotes the number of data points in the dataset.

To further capture hierarchical semantic structures of the
given data in the embedding space, we leverage a regularizer
to force the model to consider data neighborhood information
during the encoding process, which is discussed next.

2.2 Regularized Autoencoder

Our adopted regularization method aims at enabling the gen-
erated discrete KD codes to capture the semantic informa-
tion in the data. To this end, we leverage the parametric t-
distributed stochastic exemplar-centered embedding (pt-SEE)
strategy [Min et al., 2018], by extending pt-SEE to weight
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different dimensions of the KD codes, to model the neigh-
borhood information of the data points. Pt-SEE is an exten-
sion of t-SNE [Maaten and Hinton, 2008], which is an ef-
fective method to preserve the neighboring information when
learning low-dimensional embeddings. pt-SEE significantly
reduces the computational complexity of t-SNE. In specific,
unlike t-SNE, pt-SEE does not compute pairwise neighbor-
ing probabilities. Instead, it chooses an enough number z
exemplars to represent the distribution of raw data (z < n).
The z exemplars can be formed in two ways, one is chosen
by running some iterations of k-means on the raw data fea-
tures/embeddings and the other is randomly chosen from the
dataset. Promisingly, it has at most linear computational com-
plexity with respect to the size of the whole dataset.

Formally, let e; denote the raw embedding of the g ex-
emplar chosen by k-means or random sampling, where j €
[1, z]. Same as before, e; denotes the raw embedding/feature
vector of the 7" data point. The neighboring probability in the
raw data feature/embedding space is estimated by a Gaussian
distribution.

exp(—d(ei, e;)/207)

P i en(—dlenen) 200 )
_ Py
Pili ==,

Here, d(-) is a problem-specific distance function, for e.g.,
squared Euclidean distance or Poincaré distance, ¢ € [1,7n],
and j € [1,z]. Variance of the Gaussian distribution o; is
set such that the perplexity of the conditional distribution p;|;
equals to a user-specified perplexity u that can be interpreted
as the expected number of nearest exemplars of data point .

In our HKD encoding approach, because discrete codes
cannot be directly used to calculate the neighboring proba-
bilities, we use the code probabilities instead. In detail, to
compute the neighboring probabilities in the code space, we
use a t-distribution:

- (1+dy)~!
T Y (U di) T )
dij = [|p; — pe,|I>-

where p, . denotes the code probabilities of the j t exemplar.

In this way, the neighboring probabilities in the discrete
code space are obtained. However, doing so, the KL diver-
gence strategy simply treats every KD code equally. To attain
a hierarchical coding, we consider a weighted version of dis-
tance calculation, which makes the front codes more impor-
tant than the back codes, resulting in the following distance
calculation formula,

dij = ||lw o (p; — p,,)II% (10)

where o denotes element-wise multiplication, and w is a
weight vector with the same size as p,, in which all the
weights for the d*" dimension of p, have the same values wgy
calculated by a decay function,

wg = woexp(—Ad), an
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where wy is the initial starting weight. And the exemplar-
based KL divergence is computed as follows,

KL = Zzpj|i1ogq{:_. (12)
J\t

i=1 j=1

The final cost function of our HKD approach consists of
two parts: the reconstruction error plus the exemplar-based
KL divergence.

J=al + BKL, (13)

where [ is the penalty coefficient for the KL divergence reg-
ularization term.

3 Experiments

3.1 Settings and Baselines

We evaluate our proposed method in terms of its capability to
hierarchically organize codes for speeding up nearest neigh-
bor search and visualizing the semantic structure of the given
data. To evaluate the method, we adopt the following two
metrics. First, we examine the percentage of nearest neigh-
bor entities that share the same code in the first N (out of
D) codes and the reduced percentage of entities that are not
neighbors and have different codes. Second, we visualize
how the embedding codes correspond to the clusters of the
given data.

We compare our approach against the state-of-the-art KD
code learning method [Shu and Nakayama, 2018] on three
datasets: a synthetic dataset, Poincaré embedding [Nickel and
Kiela, 2017] on WORDNET [Miller, 1995] and embedding on
the CIFAR100 dataset [Krizhevsky, 2009]. We first use a syn-
thetic dataset, aiming at better understanding the behavior of
our HKD encoding schema. For the synthetic data, we gen-
erate the data using two-dimensional independent Gaussian
distributions. There are in total 16 clusters, which is shown
in Figure 2(a). Second, we evaluate our encoding schema
using the Poincaré embedding, with the aim of investigating
how our method can keep the hierarchy in the code space.
Our last experiment uses the widely used CIFAR100 dataset.

In the evaluation, the examplars are made by two parts,
one is the centers generated by k-means, and the other is cen-
ters combined with 10 nearest neighbors of every point. It
means different points’ examplars are different. The num-
ber of examplars are 10~20% of the number of training data
points. We train our network using RMSprop [Tieleman and
Hinton, 2012] with learning rate of 0.0001 and mini-batch of
size 128. The whole model is built using PyTorch [Paszke
et al., 2017] and is trained using a GTX 1080 Ti GPU. The
hyperparameters are chosen based on the validation data by
comparing the magnitude of different loss terms. They are
different in different models, which will be presented in the
their experimental results. Due to space limit, here we only
present the results on the test datasets, and the results on the
training datasets are available in the supplementary material.
Additional experimental results on the widely used CIFAR10
dataset [Krizhevsky, 20091, which is closely related to the CI-
FAR100 dataset, are included in the supplementary material'.

'The supplementary materials are available at https://sites.
google.com/view/hkd-supplementary/.
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First N code (s) 1 2 3 4 5 6 7 8
KNN=5 Shu et al. 0.57 1 039 | 0.31 024 | 023 | 022 | 0.20 0.2
HKD 1.0 1.0 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.968
KNN=10 Shu et al. 0521031 | 023 | 0.14 | 0.13 | 0.12 | 0.11 | 0.10
HKD 1.0 1.0 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.962
KNN=15 Shu et al. 049 | 028 | 0.19 | 0.10 | 0.09 | 0.07 | 0.06 | 0.06
HKD 1.0 1.0 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.958
KNN=20 Shu et al. 043 1019 | 015 | 0.10 | 0.06 | 0.05 | 0.05 | 0.05
HKD 1.0 1.0 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.953
Search complexity reduction (%) | 64.3 | 77.1 | 85.3 89.1 90.7 91.4 923 93.6

Table 1: Nearest neighbor preserving percentage by KD codes on the test set of the synthetic data
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Figure 2: Two datasets in this paper

3.2 Results on the Synthetic Dataset

The synthetic dataset is split into two parts, training and test.
The code performance on the test set is shown in Tables 1,
while the performance on the training dataset is available in
the supplementary material. In this dataset, the number of
hidden units is set 20 considering there are only 2 dimen-
sions in the raw data. The value of D is set 16 and K is 16.
The value of o is 0.1. The two KL divergences’ weights are
both 1 and the perplexities in the two KL divergences are 5
and 11 respectively. We evaluate the hierarchical property by
the accuracy of the same first N codes in every entity’s near-
est neighbors. The accuracy is defined by the percentage of
same codes in the first NV codes in the nearest neighbors. We
also evaluate how smaller the search space can be reduced
in finding nearest neighbors, which is defined by the average
percentage of the number of entities that have the same first
N codes to the total number of entities. This metric indicates
that we can reduce the research space from the whole entities.

We also explore the data visualization using generated
HKD codes. If two codes are exactly the same in the first N
dimensions, they have the same color. The results are shown
in Figure 3. The figures in Figure 3 clearly show that the
HKD codes can form hierarchical clusters which are consis-
tent with the known clusters of the synthetic data. For exam-
ple, with the first layer code (sub-figure (a)), the embeddings
are clustered into 2 clusters, which are consistent with the
known super clusters as shown in Figure 2(a). When mov-
ing down the hierarchical structure of codes formed, more
and more sub-clusters are formed by the HKD codes. As an
example, on the second layer of the codes (sub-figure (b)),
the two clusters from sub-figure (a) are perfectly divided into
four clusters. These four clusters are further divided into 8
clusters when moving down one more layer of the HKD code
hierarchy, as shown in sub-figure (c). When moving down to
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Figure 3: Results in the synthetic dataset

the either layer of the HKD codes (sub-figure (h)), 16 sub-
clusters are formed.

We also did ablation study on the synthetic data by the fol-
lowing variants: no reconstruction error, no KL divergence,
and no decay weights. The results in Tables 2 clearly in-
dicate that the HKD model can accurately retrieval nearest
neighbors via searching codes step by step along the hierar-
chical structure formed, significantly outperforming the vari-
ants. For example, our method with the first two layers of
codes can cover 100% of all the data points, which are mean-
ingfully better than about 50% achieved by the best variant.
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First N code (s) 1 2 3 4 5 6 7 8

No reconstruction | 0.51 | 0.19 | 0.16 0.12 0.08 0.07 0.06 0.06

KNN=5 No KL divergence | 0.17 | 0.12 | 0.07 0.06 0.05 0.05 0.05 0.05
No decay weights | 0.45 | 0.28 | 0.17 0.11 0.11 0.08 0.07 0.07

HKD 1.0 1.0 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.968

No reconstruction | 0.55 | 0.23 | 0.19 0.13 0.09 0.08 0.08 0.08

KNN=10 No KL divergence 0.20 | 0.14 | 0.08 0.06 0.06 0.06 0.05 0.05
No decay weights | 0.50 | 0.31 | 0.19 | 0.14 | 0.14 | 0.10 | 0.09 | 0.08

HKD 1.0 1.0 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.962

No reconstruction | 0.55 | 0.23 | 0.19 0.13 0.10 0.08 0.08 0.08

KNN=15 No KL divergence | 0.20 | 0.14 | 0.09 0.06 0.06 0.06 0.05 0.05
No decay weights | 0.51 | 0.31 | 0.19 0.14 0.11 0.10 0.10 0.09

HKD 1.0 1.0 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.958

No reconstruction | 0.53 | 0.25 | 0.20 0.12 0.10 0.08 0.08 0.08

KNN=20 No KL divergence | 0.21 | 0.14 | 0.10 0.07 0.06 0.06 0.05 0.05
No decay weights | 0.52 | 0.31 | 0.20 0.15 0.15 0.11 0.10 0.08

HKD 1.0 1.0 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.953

Table 2: Ablation study results of HKD codes preserving nearest neighbors on the test set of the synthetic data

First N code (s) 1 2 3 4 5 6 7 8
KNN=5 Shu et al. 0.53 1 0.20 | 0.16 | 0.09 | 0.04 | 0.03 | 0.02 | 0.02
HKD 099 |1 099 | 0.98 | 0.97 | 0.97 | 0.96 | 0.95 | 0.93
KNN=10 Shu et al. 0.52 1020 | 0.15 | 0.09 | 0.04 | 0.02 | 0.2 | 0.01
HKD 0.99 | 098 | 0.97 | 0.96 | 0.95 | 0.94 | 0.92 | 0.90
KNN=15 Shu et al. 0.52 1020 | 0.15 | 0.09 | 0.04 | 0.02 | 0.2 | 0.01
HKD 099 | 096 | 0.95 | 094 | 0.94 | 0.92 | 0.92 | 0.89
KNN=20 Shu et al. 0.52 1020 | 0.15 | 0.09 | 0.04 | 0.02 | 0.1 | 0.01
HKD 098 | 096 | 093 | 092 | 0.90 | 0.89 | 0.87 | 0.86
Search complexity reduction (%) | 76.8 | 88.0 | 88.8 | 91.6 | 93.2 | 94.0 | 94.8 | 954

Table 3: Nearest neighbor preserving percentage by KD codes on the test set of Poincaré embedding dataset

We can see that the reconstruction, examplar-based KL diver-
gence and decay weights are important in our model.

3.3 Results on the Poincaré Embedding

Hierarchical embedding can be achieved by the Poincaré em-
bedding method [Nickel and Kiela, 2017]. We choose the
embedding generated by the Poincaré embedding method to
train our hierarchical codes to explore whether our codes can
maintain the hierarchical property.

In this task, we choose the mammal subtree in the WORD-
NET dataset. In the dataset, there are 1182 entities and 7724
semantic relations among them. We first train the Poincaré
embedding with 10 dimensions per entity for 30 epochs. We
then use the trained Poincaré embedding to encode the hier-
archical KD codes. The code size is 16x16. We use 200
centroids from K-means and 100 samples that are randomly
selected as the examplars. The value of o is 1. One KL di-
vergence is used, and its weight [ is 1 and perplexity is 10.

The results on the Poincaré embedding are shown in Table
3. We choose the first 8 codes and change the number of near-
est neighbors between 5 and 20. We can see that our method
can have about 100% of the 5 nearest neighbors having the
same first codes and the percentage maintains over 90% af-
ter searching the first 8 codes. Meanwhile, the search space
shrinks to only 5.6% of the whole dataset after looking for the

2970

first 6 codes.

To have better insights into the encoding codes, we also
conduct a case study using the ‘dog’ category in the WORD-
NET dataset. Results are presented in Table 4. In this ta-
ble, we use the entity ‘dog.n.01’ as the base and calculate
other entities’ distances to it. Comparing the distance and
the codes in this table, we can see that, in our method, the
nearer the entity is to the ‘dog.n.01’ entity, the more sim-
ilar the codes are to those of the ‘dog.n.01’ entity. More
specifically, when the distance is closer, the more codes at
the first places are the same as those of the ‘dog.n.01” entity.
When the distance becomes further, the different codes may
become more front. For example, the first code that is differ-
ent between ‘hunting.dog.n.01’ and ‘dog.n.01” is at the 7" di-
mension while the first code that is different between ‘white-
tail prairie dog.n.01” and ‘dog.n.01” is at the 2”¢ dimension
because ‘whitetail prairie dog.n.01’ is further to ‘dog.n.01’.
Meanwhile, we choose ‘flying_fox.n.01’ to show entities at
different categories have totally different codes.

3.4 Results on the CIFAR100 Dataset

In the CIFAR100 dataset, there are 20 superclasses, and each
superclass has 5 classes. This dataset has 50000 training im-
ages and 10000 test images in total. We use the wide resnet
[Zagoruyko and Komodakis, 2016] to pre-train the dataset
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Entity Code Distance to ‘dog.n.01’
dog.n.01 [111370690156111341337 1] 0.00
hunting_dog.n.01 [1113706911156413413371] 0.05
coondog.n.01 [1113706913521113213371] 0.29
hearing_dog.n.01 [1113706412135111451337 11] 0.43
crab-eating_dog.n.01 [11137061551161013013389] 1.15
whitetail_prairie_dog.n.01 | [1112701311415101359 122 14] 2.35
flying_fox.n.01 [713781311161014463010] 1.92

Table 4: Code case studies on Poincaré embedding dataset

based on class information to get every image’s embedding.
In this dataset, the number of hidden units is set 100. The
value of D is set 16 and K is 16. The value of a is 0.01.
In this one, we only use the KL divergence on the centers
and nearest neighbors, whose weight is 1 and perplexity is
15. We choose two superclasses with 5 classes in each super-
class, which are shown in Fig. 2(b) after t-SNE. Two kinds
of colors denote two superclasses. We explore HKD codes in
two superclasses via visualization as shown in Fig. 4. In these
figures, dots in one color denote these points share the same
codes in the first N dimensions. Through the first code, we
can split one class from the two superclasses, which is shown
in Fig. 4(a). When moving down the hierarchical structure of
codes formed, more and more classes can be extracted, which
are shown from Fig. 4(b) to Fig. 4(h). More specifically, our
model can find smaller classes, which are grouped by only
a few nearest neighbors, which is shown in Fig. 4(h). The
retrieval results are available in the supplementary material.

4 Related Work

Conventional methods considering the hierarchical structure
in data retrieval are usually based on Huffman coding [Huff-
man, 1952]. But Huffman codes do not contain the seman-
tic information. The works most related to ours are the KD
code learning as introduced in [Shu and Nakayama, 2018;
Chen et al., 2018]. [Shu and Nakayama, 2018] provides an
autoencoder framework to learn the KD codes while [Chen et
al., 2018] proposes an end-to-end KD code learning frame-
work for different tasks. In contrast, we introduce a novel au-
toencoder regularizer to force the autoencoder for the hierar-
chical structures while generating discrete embedding codes.

Our autoencoder regularization schema builds on the pt-
SEE strategy [Min ef al., 2018], where forming embeddings
are encouraged to cluster around the prototypes or exemplars.
Nevertheless, this method treats all embedding dimensions
equally when computing their distance with the exemplars,
thus discard the semantic structures of those data points. Our
proposed approach here treats each embedding dimensions
with different weights which correspond to their closeness
with different exemplars. Those distances directly reflect
their relationship with other data points.

5 Conclusion

In this paper, we propose a regularized autoencoder frame-
work to generate hierarchical K-way D-dimensional codes
from symbol/data point embeddings. The generated codes
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Figure 4: Results in the CIFAR100 dataset

can significantly speed up the retrieval process by effectively
reducing the search space. Such reduction is attained by mak-
ing neighbor embeddings hold the same codes in the front di-
mensions. Experimental results on synthetic and real-world
datasets show that our method can successfully build a hier-
archical structure in the discrete KD codes, with over 90%
nearest neighbors sharing the same codes in the first several
dimensions. Our empirical studies also indicate that our ap-
proach reveals the semantic structure via hierarchical visual-
ization.
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