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Abstract
Adversarial examples induce model classification
errors on purpose, which has raised concerns on
the security aspect of machine learning techniques.
Many existing countermeasures are compromised
by adaptive adversaries and transferred examples.
We propose a model-agnostic approach to resolve
the problem by analysing the model responses to
an input under random perturbations, and study the
robustness of detecting norm-bounded adversarial
distortions in a theoretical framework. Extensive
evaluations are performed on the MNIST, CIFAR-
10 and ImageNet datasets. The results demonstrate
that our detection method is effective and resilient
against various attacks including black-box attacks
and the powerful CW attack with four adversarial
adaptations.

1 Introduction
Machine learning techniques are core to many real-world sys-
tems. With their prevalent application and wide deployments,
there are increasing concerns of machine learning in adversar-
ial settings where an intelligent attacker may compromise a
learning-based decision maker and disfunction the depending
system. For instance, machine learning models are found to
be susceptible to adversarial examples – those inputs crafted
with non-random adversarial perturbations to intentionally
cause model misclassification, known as evasion attacks at
test time [Biggio et al., 2013]. Surprisingly, the amount of
adversarial perturbation required to fool complex models like
deep neural networks (DNNs) is small and often impercepti-
ble to human eyes [Szegedy et al., 2014].

Existing approaches to alleviate the adversarial problem
can be roughly categorized into 1) defenses that aim at mak-
ing the underlying model more robust to adversarial attacks,
and 2) detections that attempt to distinguish adversarial exam-
ples from normal inputs. In this paper, we focus on devising
an effective detection method that maximizes the chance of
allowing only the legitimate input to the intended model.

By directly dealing with the learning model or not, adver-
sarial detection methods may be further classified into model-
∗Corresponding Author

dependent and model-agnostic approaches. The model-
dependent schemes often leverage the underlying model
properties or internal states to detect the adversarial class
such as by adding detection layers/subnetworks [Lu et al.,
2017] or changing the loss/activation functions [Madry et
al., 2018]. The model-agnositic detectors are mainly built
based on analysing the input and/or output feature character-
istics without requiring access to the model under protection
[Grosse et al., 2017; Xu et al., 2017; Guo et al., 2017].

However, many existing defenses are defeated by adver-
sarial adaptations when the attack is no longer assumed
oblivious of defenses being deployed [Carlini and Wagner,
2017a]. In adaptive white-box attacks, for example, it was
shown possible to incorporate specific model information into
constructing more powerful adversarial examples to evade
both the classifier and the adversarial detector at the same
time. Adversarial perturbations are also transferrable across
models and transformations [Szegedy et al., 2014]. The re-
sulting black-box attacks often perform better than white-box
attacks against defenses that are based on breaking gradient
descents [Athalye et al., 2018; Tramèr et al., 2018].

In this paper, we propose a simple yet effective method for
detecting adversarial image examples, which can be easily
deployed into all off-the-shelf deep learning models. Our in-
tuition stems from the observations that decision boundaries
of adversarial subspaces tend to lie closely to the submanifold
of legitimate data in adversarial directions [Ma et al., 2018].
Thus, expanding the adversarial subspace by additive random
perturbation can result in a certain probability of landing an
adversarial example back to the data manifold. On the other
hand, small random noise does not usually cause misclassifi-
cation due to the robustness of deep learning models [Fawzi
et al., 2016].

The difference of classifiers’ robustness to “noisy” inputs
motivated us to extract statistical features from the model re-
sponses under multiple random perturbations. We note that
there are recent work that also use random noise in improving
robust training against adversarial examples such as [Lecuyer
et al., 2018]. Our approach has the following novelty in terms
of the use of random noise:

• We take relative variation of confidence as the discrimi-
native feature for adversarial detection, instead of taking
the expectation of the prediction scores for robustness
evaluation of the target classifier.
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• Our method is Model-agnostic property, which does not
require knowledge of the protected model details and
hence can be applied blindly to all models.

• We develop our own theoretical analysis by relating the
tail bound of random perturbation to the norm-bounded
adversarial distortions.

2 Related Work
The literature is seeing a fast growing number of attacks and
countermeasures for adversarial machine learning based on
some understanding of adversarial examples and characteri-
zation of the surrounding subspaces [Papernot et al., 2018;
Carlini and Wagner, 2017a]. For instance, [Goodfellow et
al., 2015] attributed adversarial perturbations to the linearity
hypothesis of neural networks and proposed the fast gradi-
ent sign method (FGSM). It was then extended to generate
more powerful attacks such as the iterative version of BIM
[Kurakin et al., 2017], Jacobian-based Saliency Map Attack
(JSMA) [Papernot et al., 2016]. [Madry et al., 2018] consid-
ered the whole class of gradient-based methods as the first-
order adversary and proposed an optimization view towards
adversarial robustness. In fact, it was shown that iterative
optimization-based attacks seem to produce near-optimal ad-
versarial examples in terms of minimal distortions [Carlini
and Wagner, 2017a]. Attack examples of this strategy include
the CW attack [Carlini and Wagner, 2017b] and DeepFool
[Moosavi-Dezfooli et al., 2016].

Most of the existing attacks are constructed with explicit
model information, e.g., the loss gradients, in generic white-
box settings. A natural remedy is to conceal such knowl-
edge or mislead the attacker. [Athalye et al., 2018] identified
three ways to obfuscate the gradients: 1) shattered gradients
caused by a non-differentiable defense function, 2) stochastic
gradients due to randomization – either randomized network
or randomized input, and 3) vanishing/exploiding gradients
with extremely deep or cascaded networks. Accordingly, the
authors proposed alternative gradient estimation techniques
for each of these obfuscation strategies and demonstrated that
it is possible to defeat most of the existing defenses.

On the other hand, the intrinsic property of adversarial
transferrability is an obstacle for building robust countermea-
sures [Tramèr et al., 2018]. Without knowing details of the
model under protection, model-agnostic approaches have in-
herent advantages in dealing with transferred examples. Such
detectors are often built on features extracted from the input
sample statistic [Grosse et al., 2017] or the prediction dif-
ference w.r.t. an input transformation [Akhtar et al., 2018;
Xu et al., 2017]. For example, feature squeezing [Xu et al.,
2017] compares the model output before and after “squeez-
ing” the input features by some operations to differentiate the
normal and adversarial examples.

Unfortunately, many existing detectors are still not immune
to adversarial adaptations when the attacker is not assumed
oblivious of the defense [Carlini and Wagner, 2017a]. In the
so-called adaptive white-box attacks, it was shown possible
to construct more powerful adversarial examples to evade the
classifier and the detector at the same time. The key to suc-
cess in such adaptive attacks is to incorporate differentiable

loss functions of both models into the objective function of
an attack. Therefore, it was highly recommended that de-
tector evaluations should involve the threat model of adaptive
attacks and demonstrate the detector robustness against attack
transferrability [Carlini and Wagner, 2017b].

3 Proposed Approach
Adversarial examples generated by all attack methods are of
the form xadv = x + δ, inherently constrained by the fact
that δ is bounded by some small constant. We propose to
apply some “disturbance” signal of appropriate magnitude to
the input example. If the input is indeed an adversarial exam-
ple, we may have a non-negligible probability of pushing the
resulting input back to the manifold of the original class. If
this happens, there will be a clear change of class labels and
their associated scores. Therefore, we can gauge the model
responses and summarize certain statistics to distinguish xadv

from normal x. In the following, we introduce the main steps
of our approach followed by a theoretical uncertainty analysis
of the model responses to random perturbations over adver-
sarial examples.

3.1 Main Steps
Given an input x, let ĉ be its predicted class by model F , i.e.,
ĉ = arg maxi F (x)[i]. We apply a random perturbation η
drawn i.i.d. from the Gaussian distribution N(0, diag(σ)),
and measure the relative score difference for ĉ as

rĉ =
F (x)[ĉ]− F (x + η)[ĉ]

F (x)[ĉ]

To account for the stochastic nature of such raw signals, we
decide to repeat the process m times and extract statistically
robust feature from such sampled distribution. For example,
we extract an 17-dimensional feature vector by taking the
10%, 15%, 20%, . . . , 90% quantiles of m samples so that it
can be more robust to noise and outliers.

We then train a binary classifier 1 for the adversarial exam-
ple detection. The training data of detector classifier consists
of the original training data, labelled as the normal examples,
and those generated from the normal examples using a spe-
cific attack algorithm, labelled as adversarial examples. Once
the detector classifier has been trained, it can be viewed as
a probability generator and output a confidence score for a
given sample. We apply a simple thresholding to the detector
confidence score such that, the greater the probability is, the
more likely the sample is considered as adversarial.

While the above detection algorithm alone can work fairly
well, as will be shown in Section 4.2, here we also propose a
complementary step that can significantly enhance the adver-
sarial detection performance. We encourage the target model
to classify a randomly perturbed normal example to be in the
same class as the non-perturbed one. This can be done by
simply injecting similar noise perturbations into model train-
ing. In this way, the retrained model will be more robust to a
legitimate input with benign noise, which helps to enlarge the
difference of patterns between model responses to the normal
and adversarial inputs. We refer to the complementary step
as noise augmentation in the following sections.

1We use an SVM (with RBF kernel) classifier in our experiments.
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(a) Perpendicular Case (b) General Case

Figure 1: Illustration of calculating cross-boundary probability for
our random perturbation η

3.2 Cross-Boundary Probability
By the definition of adversarial examples, we know that the
predicted class labels of x and xadv are different. Assuming
we are fed with an adversarial example xadv, we would like to
compute the probability that the predicted class label of our
randomly perturbed example xadv + η is the same as that of
x (i.e., successfully recover the clean label by crossing the
class boundary). This probability strongly correlates with the
changes in the scores, and serves as a means both to determine
the parameter σ and to understand the underlying principle of
our detection methods.

Unfortunately, the probability cannot be computed with-
out additional information or assumption, as we do not know
the location and the shape of the class boundary. We make a
mild assumption that the class boundary is a d− 1 dimension
hyperplane incident on x. The local linearity assumption is
not unusual in other studies such as [Moosavi-Dezfooli et al.,
2016]. We also make an additional assumption that the hyper-
plane is perpendicular to δ. See Fig. 1(a) for an illustration.
We will relax this assumption later.

Let η = [η1, . . . , ηd], where ηi ∼ N(0, σ2) is sampled
i.i.d.. Consider the projection of X onto a fixed unit vector
u

def
= −δ
||δ|| . As Gaussian variables 2-stable, let t def

= u>η, we
know t follows σ · v where v ∼ N(0, 1). In other words,
t
σ ∼ N(0, 1).

If we repeat this process m times, the probability that at
least one such η reaches the other class is

pcross
def
= 1− (1− Pr{t ≥ δ})m .

We only need to let Pr{t ≥ δ} ≥ 1
m , such that pcross is at

least 1− 1
e ≈ 0.6321.

Remarks. Since Φ−1(x) =
√

2erf−1(2x− 1), to ensure

Pr{t ≥ δ} = 1− Φ

(
δ

σ

)
≥ 1

m
,

one of the following conditions should be met:

Dataset Model Top-1 Top-5
Accuracy Accuracy

MNIST LeNet 99.2% -
CIFAR-10 ResNet-20 91.2% -
ImageNet ResNet-101 76.4% 92.9%

Table 1: Summary of target models

• If δ and σ are fixed, we only need m ≥ 1
1−Φ(δ/σ) .

• If σ andm are fixed, the maximum δmax that at least one
of our m perturbations can cross over with a probability
of at least κ · σ, where κ =

√
2erf−1(1 − 2

m ). When
m = 50, κ = 2.0537.

General Case
If the class boundary is not perpendicular to δ, we denote
the vector starting from xadv and perpendicular to the class
boundary as v. Obviously ||v|| ≤ ||δ|| as shown in Fig. 1(b).
Following the same argument as in the perpendicular case,
we only need

Pr

{
v

||v||
>
η ≥ ||v||

}
≥ 1

m

to ensure pcross ≥ 1− 1
e . Since ||v|| ≤ ||δ||, hence

Pr

{
v

||v||
>
η ≥ ||v||

}
≥ Pr

{
u>η ≥ ||η||

}
.

The perpendicular turns out to be the worst case, so our above
conditions/conclusions still apply in the general case.

The above calculation, especially δmax, gives us a rule of
thumb to set our random perturbation parameter σ. Our em-
pirical evaluation shows that this theoretical analysis is highly
accurate (see Fig. 3). The uncertainty analysis can also be ex-
tended to other norm objectives such as l∞ in a similar way.

Here we only analyze the case when the input is indeed
an adversarial example. Thus, we rely on the robustness of
deep learning models to random noises [Fawzi et al., 2016].
Empirically, we found most models are reasonably robust
and, with additional noise augmentation training, the result-
ing models demonstrate high robustness.

4 Evaluations
We evaluate the performance of our approach on detect-
ing adversarial examples for the task of image classification
over three benchmark datasets: MNIST, CIFAR-10, and Im-
ageNet. In the following, we introduce our experimental set-
tings including setups of the target model, attack methods,
and threat models. Under each threat model, we evaluate and
compare the adversarial detection performance. In particular,
we examine the robustness of our detector against adaptive
adversaries and transferred attacks – either across different
attack forms or across different target models.

4.1 Experimental Settings
Target models. For MNIST and CIFAR-10, we used the
designated training set for training and the designated test set
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Figure 2: ROC curves against the BIM (l∞) attack over (a) MNIST, (b) CIFAR-10, (c) ImageNet. The proposed method is compared with
two represenative schemes of Detector I: SafetyNet that is model dependent, and Detector II: Feature Squeezing that is model agnostic. The
model classifier is trained without noise augmentation.

for testing. For ImageNet, we used a pretrained DNN clas-
sifier and the first 10, 000 samples of validation set as our
test examples for evaluation. Table 1 summarizes the stan-
dard classification accuracy measures of the targets, which
are comparable with state-of-the-art results considering size
of the model.

Attack methods. For each target model, we generate ad-
versarial examples from test samples and use only those that
can attack successfully before deploying any countermeasure
to the target model in all of our experiments. We conduct un-
targeted attacks to each target model with five representative
attack algorithms, namely FGSM, BIM, JSMA, DeepFool,
and CW attacks, as introduced in Section 2. In particular, the
iterative optimization-based approaches of DeepFool and CW
attacks are considered stronger with higher success rates un-
der the same norm objective in the white-box setting [Athalye
et al., 2018]. On the other hand, the FGSM methods transfer
better [Su et al., 2018]. BIM can be viewed as a PGD inside
an l∞ ball, which is among the strongest attack in the first-
order family [Cisse et al., 2017]. Our implementations are
based on the Cleverhans2.0 library 2.

Threat models. Denote the target classifier by F and the
detector by D. We consider the following threat models by
knowledge and capability of the adversary:

• Oblivious Adversary follows the generic white-box set-
ting that assumes a full access and knowledge to F but
is not aware of D in place.

• Adaptive Adversary knows the model details of both F
and D but cannot decide the test-time randomness. In
our context, the test-time randomness is η sampled m
times i.i.d. from Dnoise. The adversary may use his
knowledge about F and D to construct more powerful
adaptive white-box attacks.

• Transferred Adversary exploits the transferrability of ad-
versarial examples. Here, we consider two scenarios:
1) The adversary knows F but cannot access D trained
with an attack strategyA. Alternatively, he may generate

2https://github.com/tensorflow/cleverhans

BIM DeepFool CW
Detector l∞ l2 l2

MNIST
I) 0.931 0.908 0.890
II) 0.997 0.995 0.995
Ours 0.986 0.995 0.998

CIFAR-10
I) 0.814 0.814 0.820
II) 0.897 0.898 0.916
Ours 0.928 0.984 0.957

ImageNet
I) 0.656 0.423 0.685
II) 0.461 0.898 0.827
Ours 0.919 0.910 0.869

Table 2: AUC scores of ROC on adversarial detection comparing
the proposed method with two other detectors: I) SafetyNet and II)
Feature Squeezing. The best results are highlighted in bold.

adversarial examples using another strategy B to attack
F . Ideally, D should still be able to detect those unseen
examples generated by B. We refer to this scenario as
the generalizability analysis of the detector.
2) The adversary cannot access F . Alternatively, he may
build adversarial examples from another model F̃ to at-
tack F . Ideally, D should still able to detect those un-
seen examples generated targeting F̃ . We refer to this
scenario as the black-box attack across target models.

4.2 Adversarial Detection Performance
We regard adversarial examples as the positive class and nat-
ural images as the negative class, and randomly select 80%
of samples from each class to train the detector classifier, and
use the remaining 20% for test. By changing the threshold
value of the detector classifier, we provide a detection capa-
bility with varying trade-off between the false positive rate
(FPR) and the false negative rate (FNR). The true positive
rate (TPR) is computed as (1-FNR).

We first evaluate under the oblivious adversary model. For
illustration, Fig. 2 plots the ROC curves against the BIM
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(l∞) attack. We compare the performance of the proposed
approach without noise augmentation with two other detec-
tors: I) SafetyNet [Lu et al., 2017] and II) Feature Squeezing
[Xu et al., 2017]. For the latter, we use the best attack-specific
single squeezer for each dataset and the recommended detec-
tion threshold value as reported in the paper. Both compar-
ing methods are representative in adversarial detection. In
particular, SafetyNet represents the few approaches that are
resilient against adaptive adversaries. As reviewed in Sec-
tion 2, many other detection methods work well under obliv-
ious white-box attacks, i.e., assuming an access to the tar-
get classifier but not aware of the detector in place. How-
ever, they are often defeated by adaptive attacks that use full
knowledge of both models [Carlini and Wagner, 2017a]. Fea-
ture Squeezing is a well-known model-agnostic approach that
treats the underlying classifier as a black box, which is in-
herently more robust to transferred examples. The detector
is built based on the input-and-output analysis in the same
paradigm as ours.

In Fig. 2, the two model-agnostic approaches work very
well on the MNIST dataset, while the proposed approach out-
performs the comparing detectors over CIFAR-10 and Im-
ageNet. This can be seen more clearly in Table 2 which
summarizes the AUC scores of ROC for adversarial detection
performance against more attacks over the three benchmark
datasets. The best results are highlighted in bold. It is worth
noting that the results in Fig. 2 and Table 2 are performed
without noise augmentation. In terms of both measures, the
proposed approach either outperforms or is on a par with the
other two detectors.

In adversarial detection, the cost of admitting an adversar-
ial example from the positive class is far more severe than that
of rejecting a legitimate one from the negative class. For con-
venience, it is sometimes desirable to report the adversarial
detection accuracy (TPR) at a tolerable FPR. As introduced
in Section 3.1, our detection performance can be significantly
improved by noise augmentation for small FPR as shown in
Fig. 2. We evaluated the adversarial detection performance
using our approach with the complementary step. The results
of TPR at 5% FPR are show in Table 3.

Although noise augmentation is included, the difference of
relevance score by additive random perturbation still plays the
most critical part in the proposed detection framework. To
show this, we have further conducted an ablation test based
on the experiment settings in Table 3. Without noise aug-
mentation, for example, the detection accuracy drops to about
0.771 against the CW attack over CIFAR-10. We believe that
the performance reduction is related to the inherent classifi-
cation accuracy of the CIFAR-10 model (see Table 1). As
discussed in Section 3.1, in such cases, the complementary
step of noise augmentation can help to stabilize the model
prediction on legitimate inputs with benign noise.

We also tested the proposed approach by training the de-
tector classifier on different types of attacks. For example,
the detection accuracy (TPR@5%FPR) of CW examples over
the CIFAR-10 dataset drops only slightly from 0.987 to 0.95
when the detector is trained on BIM instead of CW. This is
in fact a type of Transferred Adversary as described in Sec-
tion 4.1. We will report more about the robustness of our

MNIST CIFAR-10
Attacks ||δ|| TPR ||δ|| TPR

FGSM
l∞ 0.1 0.968 0.001 0.985
l2 2.0 0.872 0.05 0.772

BIM
l∞ 0.1 0.996 0.001 0.912

EOT 0.1 0.940 0.001 0.967
l2 2.0 0.998 0.05 0.826

JSMA l∞ 0.5 1.0 0.30 0.984

DeepFool
l2 1.97 1.0 0.31 0.998

EOT 1.86 1.0 0.32 0.944
CW l2 1.96 1.0 0.29 0.987

Table 3: Detection accuracy (TPR@5%FPR) of our approach
against various attack forms. The model classifier is trained with
the complementary step of noise augmentation.
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Figure 3: Detection robustness to increasing ||δ||2 over CIFAR-10.

detector under this threat in Section 4.4.

4.3 Adaptive Adversary
In this section, we consider under the threat model of adaptive
adversary four possible methods to modify the evasion attack
over the proposed detector.

Increasing Adversarial Distortion
In this scenario, the adversary may increase the distortion
level to attack a pretrained detector at test time. Thus, we con-
duct experiments to see if our detector is robust to the change.
According to Remarks in Section 3.2, our approach can detect
adversarial perturbation δ ≤ κ · σ in l2 norm given detector
parameters σ and m that generate the random perturbations.
Fig. 3 plots the detection accuracy w.r.t. an increasing ||δ||2.
Here, κ = 2.0537 for m = 50 and σ = 0.05 for CIFAR-10.

The experimental result shows that our detector is robust
for δ ≤ 0.1, which coincides with the theoretical result. The
detection accuracy then scales down linearly with ||δ||2. To
deal with a larger distortion, we may increase the σ value.
However, the additive random noise after increasing to some
level may decrease the standard classification accuracy albeit
enhancing the model with noise augmentation. There seems
to be a fundamental trade-off between adversarial robustness
and standard accuracy requirements of a model [Su et al.,
2018]. In our experiments, installing the robustness to ran-
dom noise with σ = 0.05 is at a cost of about 1-3% on normal
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classification accuracy over the datasets.

Increasing Prediction Confidence
Many previous detection methods failed on high-confident
adversarial examples generated by CW attacks [Carlini and
Wagner, 2017a]. In Table 3, for example, the CW examples
have an average score of 0.73 for their prediction confidence
by the CIFAR-10 model. To test the robustness of our detec-
tor, we tuned the CW function parameters to generate 2000
new adversarial examples such that the mean of their predic-
tion score is set at 0.97. We then used these CW examples of
high confidence to test our detector previously trained on the
BIM examples. The detection accuracy drops by about 12%
to 0.837, which is quite resilient comparing with other detec-
tion methods such as those reported in [Carlini and Wagner,
2017a].

Attacking Randomized Detector
It was suggested that defenses employing randomized input
tranformations may be defeated by applying the technique of
Expectation of Transformation (EOT) to overcome the prob-
lem of stochastic gradients [Athalye et al., 2018]. Here, we
demonstrate that the adversarial adaptation is not effective to
our detector.

EOT works as follows [Athalye et al., 2018]. Let D ran-
domly transform the input example x according to some func-
tion t(·) sampled from a distribution of transformations T .
To attack F with a loss function JF (·), the adversary com-
putes gradients over the expectation of sampled transforma-
tions Et∼TJF (t(x)) instead of JF (x). In our case, t(·) is the
additive random perturbation ηi ∼ Dnoise, for i = 1, . . . ,m.
Take BIM (l∞) for example. In each step of iterations, we
update the gradient estimation with EOT by

g(x) =
1

m

m∑
i=1

∇xJF (x + ηi) (1)

and compute the adversarial example as usual. The results
are reported in Table 3. It can be seen that the detector per-
formance is even higher than that without EOT. Similar result
can be observed for DeepFool with l2 norm. This indicates
that the EOT estimated gradient is not effective and hence the
attack fails in the adaptive setting.

Incorporating Detector Loss
Following the approach in [Carlini and Wagner, 2017a], we
modify the CW attack by introducing to its adversarial objec-
tive an additional loss term JD(x + δ) for penalizing being
detected:

min{||δ||p + α · JF (x + δ) + β · JD(x + δ)} (2)

where JF is the loss of F and

JD(x + δ) = max{0, 1 +D(x + δ)}

such that x+δ aims to foolF as an adversarial example andD
as a normal example simultaneously. In practice, we mount
this attack in two phases. First, we solve the original CW
formulation to obtain xadv which typically will be detected
by D. Then, we use xadv to initialize x in solving (2).

The above optimization problem is typically solved by gra-
dient descents if all parts are differentiable. However, the de-
tector gradients w.r.t. the input, i.e., ∇xJD, cannot be easily
estimated in our case. There are two obstacles. First, our de-
tector relies on the statistical feature drawn from m random
vectors created by model responses to random perturbations
ηi ∼ Dnoise on the input x. Second, the statistical feature is
based on quantile discretization. To estimate ∇xJD, the ad-
versary has to overcome the stochastic and shattered gradients
at the same time. Both components obfuscate the actual gra-
dient information required in the gradient-based optimization
method [Athalye et al., 2018].

Alternatively, we try to solve (2) by gradient checking
where the computation of ∇xJD is approximated with nu-
merical differentiations incident on the input x for each of its
dimensions as

gi(x) =
J(x + ∆ · ei)− J(x−∆ · ei)

2∆
≈ ∂JD(x)

∂xi
(3)

where ei denotes the i-th elementary basis.
In practice, the coordinate-wise gradient estimation is very

computationally expensive as each step of the gradient check-
ing algorithm involves an update of (3) over each pixel of x.
Here, we only constructed the adapted attacks on MNIST for
test. We found that JD(x) has a non-negligible expectation
of variation (0.018) even when ∆ = 0. We consider it due
to the stochastic nature of classifier scores in response to the
random perturbations in our approach. Therefore, any small
∆ (e.g., < 10−4) tends to amplify this inherent stochastic
variation and cause randomized gradient estimates. Indeed, it
turns out that our detector cannot be easily defeated by incor-
porating the detector loss in this way. The detection accuracy
remains as high as 95.6% against the adaptive attack with per-
fect knowledge of D.

4.4 Transferred Adversary
Generalizability Analysis
Figure 4 shows the generalizability heatmaps by our approach
comparing with Detector I. The detectors are trained with one
of the attack forms listed in the columns and tested against
one another listed in the rows with different norm objec-
tives (49 pairs in total). The detection rate is measured by
TPR@5%FPR under the same setting as for running Table 3.
Unlike Detector I that performs relatively better on the first-
order family, the proposed approach is more robust to trans-
ferred examples deliberately constructed by the more com-
plex iterative methods of JSMA, DeepFool and CW attacks.
It is also interesting to see that our detector trained with one-
step FGSM (l∞) generalizes particular well against various
attack forms generated with different algorithms and norm
objectives. This may be related to the previous observation
that the plain FGSM has relatively better transferrability [Su
et al., 2018].

Black-Box Attacks
It was observed that adversarial examples tend to transfer
better within the same model family, and that models with
lower capacity and higher test accuracy are endowed with
stronger capability for transfer-based attacks [Su et al., 2018].
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JSMA(L∞)
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CW(L2)

0.20 0.24 0.25 0.26 0.18 0.21 0.23
0.19 0.22 0.24 0.24 0.18 0.21 0.22
0.18 0.22 0.24 0.24 0.16 0.20 0.21
0.16 0.19 0.21 0.20 0.16 0.19 0.19
0.22 0.30 0.25 0.29 0.76 0.43 0.47
0.10 0.13 0.13 0.13 0.15 0.18 0.18
0.11 0.14 0.14 0.15 0.18 0.21 0.24

(b)

Figure 4: Generalizability analysis of detection across different attacks: (a) Ours and (b) SafetyNet. Both detectors are trained with one attack
(column) and tested by another (row) over CIFAR-10.

FGSM(L∞) FGSM(L2) BIM(L∞) BIM(L2) JSMA(L∞) DeepFool(L2) CW(L2)

CifarNet

ResNet-56

1.00 1.00 1.00 1.00 0.79 0.97 0.96

1.00 1.00 1.00 1.00 0.52 1.00 1.00

(a)
FGSM(L∞) FGSM(L2) BIM(L∞) BIM(L2) JSMA(L∞) DeepFool(L2) CW(L2)

CifarNet

ResNet-56

0.38 0.37 0.36 0.37 0.52 0.54 0.52
0.38 0.40 0.39 0.42 0.53 0.45 0.57

(b)

Figure 5: Black-box detection against transferred attacks across different classifier models: (a) Ours and (b) Feature Squeezing. Our detector
was trained with FGSM (l∞) on ResNet-20 and tested by another attack (column) built on two substitute models, namely CifarNet (upper
row) and ResNet-56 (lower row) over CIFAR-10.

Therefore, we test the detection robustness by transferring
adversarial examples generated from two substitute models:
1) ResNet-56 with the same architecture but deeper, and
2) CifarNet with a different architecture and lower capac-
ity. For performance evaluation, we used only those trans-
ferred examples that can attack successfully before deploy-
ing any detection measure to the target model, i.e., ResNet-
20 for CIFAR-10. Figure 5 illustrates the detection accu-
racy (TPR@5%FPR) in heatmaps where the columns are the
black-box attacks. Our detector was trained with FGSM (l∞)
and DeepFool (l2) examples, respectively. We also evaluated
Detector II using the threshold values recommended in [Xu
et al., 2017]. We note that the transferred attacks often have
lower success rates and reduced strength on other target mod-
els. Our detector is able to catch the property and achieve
high accuracy in detecting such transferred examples in the
black-box setting.

5 Discussion
In Section 3.2 and Fig. 3, we apply the Gaussian perturba-
tion to make it easier for theoretical analysis and empirical
verifications. Nevertheless, the proposed approach can ac-
commodate other forms of random perturbations. We tested
by drawing random perturbations from Uniform(−0.2, 0.2)
and Laplace(0, 0.1) respectively without using the comple-
mentary step of noise augmentation. Our experimental results
on MNIST show that the detection accuracy (TPR@5%FPR)
by these non-Gaussian perturbations is very close to that ob-
tained by Gaussian perturbations under the attacks shown in
Table 3. We conjecture that our analytical bounds still hold
for all sub-Gaussian distributions. To accommodate non-
Gaussian perturbations in the theoretical analysis, we only

require to obtain the tail bound of L2 norm of the resulting
random perturbation vector.

6 Conclusion
We proposed a simple yet highly robust adversarial detection
method based on statistical analysis of model responses to the
input with additive random perturbations. Our method targets
at the inherent constraint on all adversarial examples whose
magnitude of the adversarial perturbation is bounded. Ac-
cordingly, we provided a theoretical analysis to understand
its effectiveness, which matches the empirical results well.
Our method has been demonstrated to be resilient to the pow-
erful CW attacks under four possible variations by an adap-
tive adversary. We have performed extensive experimental
evaluations to show that our method is more robust in dif-
ferent settings including transferred adversaries across differ-
ent target models and generalizes well to unseen attacks even
without noise augmentation in the training process. The pro-
posed approach does not rely on specific model architecture
nor data distribution, which is a salient property for being
model agnostic. Thus, it can be mounted to any target model
and possibly work in conjunction with a robust classifier or
model-based methods to provide comprehensive protections.
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las Papernot, Dan Boneh, and Patrick McDaniel. Ensem-
ble Adversarial Training: Attacks and Defenses. In Int.
Conf. Learn. Represent., pages 1–20, Vancouver, Canada,
May 2018.

[Xu et al., 2017] Weilin Xu, David Evans, and Yanjun Qi.
Feature Squeezing: Detecting Adversarial Examples in
Deep Neural Networks. In Netw. Distrib. Syst. Secur.
Symp., pages 1–15, San Diego, CA, USA, February 2017.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4696


