
Counting Query Answers over a DL-Lite Knowledge Base

Diego Calvanese1,2 , Julien Corman1 , Davide Lanti1 and Simon Razniewski3
1 Free University of Bozen-Bolzano, Italy

2 Umeå University, Sweden
3 Max-Planck-Institut für Informatik, Germany

{calvanese, corman, lanti}@inf.unibz.it, srazniew@mpi-inf.mpg.de

Abstract
Counting answers to a query is an operation sup-
ported by virtually all database management systems.
In this paper we focus on counting answers over a
Knowledge Base (KB), which may be viewed as
a database enriched with background knowledge
about the domain under consideration. In particu-
lar, we place our work in the context of Ontology-
Mediated Query Answering/Ontology-based Data
Access (OMQA/OBDA), where the language used
for the ontology is a member of the DL-Lite family
and the data is a (usually virtual) set of assertions.
We study the data complexity of query answering,
for different members of the DL-Lite family that
include number restrictions, and for variants of con-
junctive queries with counting that differ with respect
to their shape (connected, branching, rooted). We
improve upon existing results by providing P and
coNP lower bounds, and upper bounds in P and
LogSpace. For the LogSpace case, we have devised
a novel query rewriting technique into first-order
logic with counting.

1 Introduction
Counting answers to a query is an essential operation in data
management, and is supported by virtually every database
management system. In this paper, we focus on counting
answers over a Knowledge Base (KB), which may be viewed
as a database (DB) enriched with background knowledge about
the domain of interest. In such a setting, counting may take
into account two types of information: grounded assertions
(typically DB records), and existentially quantified statements
(typically statistics).

As a toy example, the following is an imaginary KB storing
a parent/child relation, where explicit instances (e.g., Alice is
the child of Kendall) coexist with existentially quantified ones
(e.g., Parker has 3 children):

hasChild(Kendall,Alice)
hasChild(Jordan,Alice)
hasChild(Parker,Bob)
hasChild(Parker,Carol)

"Kendall has 2 children"
"Parker has 3 children"
"A child has at most

2 parents"
The presence of both types of information is common when
integrating multiple data sources. One source may provide

detailed records (e.g., one record per purchase, medical visit,
etc.), whereas another source may only provide statistics (num-
ber of purchases, of visits, etc.), due to anonymization, access
restriction, or simply because the data is recorded in this way.
In such scenarios, counting answers to a query over a KB

may require operations that go beyond counting records. E.g.,
in our example, counting the minimal number of children that
must exist according to the KB (where children can be explicit
or existentially quantified elements in the range of hasChild)
requires some non-trivial reasoning. The answer is 4: Bob or
Carol may be the second child of Kendall, but Alice cannot
be the third child of Parker (because Alice has two parents
already), so a fourth child must exist.
One of the most extensively studied frameworks for query

answering over a KB is Ontology Mediated Query Answering
(OMQA)1 [Calvanese et al., 2008a; Bienvenu and Ortiz, 2015].
In OMQA, the background knowledge takes the form of a set
of logical statements, called the TBox, and the records are a
set of facts, called the ABox. TBoxes are in general expressed
in Description Logics (DLs), which are decidable fragments
of First-Order logic that typically can express the combination
of explicit and existentially quantified instances mentioned
above. Therefore OMQA may provide valuable insight about
the computational problem of counting over such data (even
though, in practice, DLs may not be the most straightforward
way to represent such data).

For Conjunctive Queries (CQs) and Unions of CQs (UCQs),
DLs have been identified with the remarkable property that
query answering over aKBdoes not induce extra computational
cost (w.r.t. worst-case complexity), when compared to query
answering over a relational DB [Xiao et al., 2018]. This key
property has led to the development of numerous techniques
that leverage the mature technology of relational DBs to
perform query answering over a KB. In particular, the DL-
Lite family [Calvanese et al., 2007; Artale et al., 2009] has
been widely studied and adopted in OMQA/OBDA systems,
resulting in the OWL2QL standard [Motik et al., 2012].
Yet the problem of counting answers over a DL-Lite KB

has seen relatively little interest in the literature. In particular,
whether counting answers exhibits desirable computational
properties analogous to query answering is still a partly open

1Also referred to as OBDA (for Ontology Based Data Access),
when emphasis in placed on mappings connecting external data
sources to a TBox [Xiao et al., 2018].

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1658

question for such DLs. A key result for counting over DL-
Lite KBs was provided by Kostylev and Reutter [2015], who
also formalized the semantics we adopt in this paper (which
we call count semantics). For CQs interpreted under count
semantics, they show a coNP lower bound in data complexity,
i.e., considering that the sizes of the query and TBox are fixed.
However, their reduction relies on a CQ that computes the
cross-product of two relations, which is unlikely to occur in
practice. Later on, it was shown2 by Nikolaou et al. [2019] that
coNP-hardness still holds (for a more expressive DL) using
a branching and cyclic CQ without cross-product. Building
upon these results, we further investigate how query shape
affects tractability.
Another important question is whether relational DB tech-

nologies may be leveraged for counting in OMQA, as done
for boolean and enumeration queries. A key property here
is rewritability, extensively studied for DL-Lite and UCQs
[Calvanese et al., 2007], i.e., the fact that a query over a KB
may be rewritten as an equivalent UCQ over its ABox only,
intuitively “compiling” part of the TBox into this new UCQ.
An important result in this direction was provided by Nikolaou
et al. [2019], but in the context of query answering under
bag semantics. For certain DL-Lite variants, it is shown that
queries that are rooted (i.e., with at least one constant or answer
variable) can be rewritten as queries over the ABox. Despite
there being a correspondence between bag semantics and count
semantics, they show that these results do not automatically
carry over to query answering under count semantics, due the
way bag answers are computed in the presence of a KB.

So in this work, we further investigate the boundaries of
tractability and rewritability for CQs with counting over a DL-
Lite KB, with an emphasis on DLs that can express statistics
about missing information. As is common for DBs, we focus
on data complexity, i.e., computational cost in the size of the
ABox (likely to grow much faster than the query or TBox).

Due to space limitations, the techniques used to obtain our
results are only sketched, but full proofs are available in the
extended version of this paper [Calvanese et al., 2020].

2 Preliminaries and Problem Specification
We assume mutually disjoint sets NI of individuals (a.k.a. con-
stants), NE of anonymous individuals (induced by existential
quantification), NV of variables, NC of concept names (i.e.,
unary predicates, denoted with �), and NR of role names (i.e.,
binary predicates, denoted with %). In the following, boldface
letters, e.g., c, denote tuples, and we treat tuples as sets.
Functions, Atoms. dom(5) and range(5) denote the do-
main and range of a function 5 . Given � ⊆ dom(5),
the function 5 restricted to the elements in � is denoted
5 |� . A function 5 is constant-preserving iff 2 = 5 (2) for
each 2 ∈ dom(5) ∩ NI. If (⊆ dom(5), we use 5 (() for
{ 5 (B) | B ∈ (}. If t = 〈C1, . . . , C=〉 is is a tuple with elements
in dom(5), we use 5 (t) for 〈 5 (C1), . . . , 5 (C=)〉.
An atom 0 has the form �(B) or %(B, C), with � ∈ NC,

% ∈ NR, and B, C ∈ NI ∪ NE ∪ NV.

2The result was stated for the related setting of bag semantics, but
the same reduction holds for count semantics as well.

' −→ % | %− � −→ � | ≥1' � −→ � | ≥='

Figure 1: Syntax of DL-Litecore roles ', basic concepts �, and
concepts �, where = denotes a positive integer, i.e., = ∈ N+.

Interpretations, Homomorphisms. An interpretation I is
a FO structure 〈ΔI , ·I〉, where the domain ΔI is a non-empty
subset of NI ∪ NE, and the interpretation function ·I is a
function that maps each constant 2 ∈ NI to itself (i.e., 2I = 2,
in other words, we adopt the standard names assumption),
each concept name � ∈ NC to a set �I ⊆ ΔI , and each role
name % ∈ NR to a binary relation %I ⊆ ΔI × ΔI .

Given an interpretationI and a constant-preserving function
5 with domain ΔI , we use 5 (I) to denote the interpretation
defined by Δ 5 (I) = 5 (ΔI) and � 5 (I) = 5 (�I) for each � ∈
NC ∪NR. Given two interpretations I1, I2, we use I1 ⊆ I2 as a
shortcut for ΔI1 ⊆ ΔI2 and �I1 ⊆ �I2 , for each � ∈ NC ∪ NR.
A homomorphism ℎ from I1 to I2 is a constant-preserving
function with domain ΔI1 that verifies ℎ(I1) ⊆ I2. We note
that a set (of atoms with arguments in NI ∪ NE uniquely
identifies an interpretation, which we denote with inter(().
KBs, DLs, Models. A KB is a pair K = 〈T ,A〉, where A,
called ABox, is a finite set of atoms with arguments in NI, and
T , called TBox, is a finite set of axioms. We consider DLs of
the DL-Lite family [Artale et al., 2009], starting with the logic
DL-Litecore, where each axiom has one of the forms (i) � v �
(concept inclusion), (ii) � v ¬� (concept disjointness), or
(iii) ' v '′ (role inclusion), where now and in the following,
the symbols ', �, and � are defined according to the grammar
of Figure 1, and are called respectively roles, basic concepts,
and concepts. Concepts of the form ≥=' are called number
restrictions. DL-Litepos allows only for axioms of form (i),
with the requirement that the number = in number restrictions
may only be 1. In this work we study extensions to this logic
along three orthogonal directions: (1) allowing also for axioms
of form (ii), indicated by replacing the subscript pos with core;
(2) allowing also for axioms of form (iii), indicated by adding
a superscript H ; (3) allowing for arbitrary numbers in number
restrictions, but only on the right-hand-side (RHS) of concept
inclusion, indicated by adding a superscript N– . We also use
the superscript H− for logics with role inclusions, but with the
restriction on TBoxes defined by Nikolaou et al. [2019], which
disallows in a TBox T axioms of the form � v ≥='1 if T
contains a role inclusion '1 v '2, for some '2 ≠ '1.

The semantics of DL constructs is specified as usual [Baader
et al., 2003]. An interpretation I is a model of 〈T ,A〉 iff
inter(A) ⊆ I, and �I1 ⊆ �

I
2 holds for each axiom �1 v �2

in T . A KB is satisfiable iff it admits at least one model. For
readability, in what follows we focus on satisfiable KBs, that
is, we use “a KB” as a shortcut for “a satisfiable KB”. We use
the binary relation vT over DL-Lite concepts and roles �1, �2
to denote entailment w.r.t. a TBox T , defined by �1 vT �2 iff
�I1 ⊆ �

I
2 for each model I of the KB 〈T , ∅〉.

A key property of a DL-Lite KB K is the existence of a
so-called canonical model IKcan, unique up to isomorphism,
s.t. there exists a homomorphism from IKcan to each model of
K. This model can be constructed via the restricted chase
procedure by Calvanese et al. [2013], Botoeva et al. [2010].

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1659

Finally, we observe that axioms of the form � v ≥=' can
be expressed in the logic DL-LiteHcore, but with a possibly
exponential blowup of the TBox (assuming = is encoded in
binary). For instance, the axiom � v ≥2% can be expressed
as {� v ∃%1, � v ∃%2, %1 v %, %2 v %, ∃%−1 v ¬∃%

−
2 }, with

%1, %2 fresh DL roles.
CQs. A Conjunctive Query (CQ) @ is an expression of
the form @(x) ← ?1 (t1), . . . , ?= (t=), where each ?8 ∈ NC ∪
NR, x ⊆ NV, each t8 ⊆ NV ∪ NI, and ?1 (t1), . . . , ?= (t=) is
syntactic sugar for the duplicate-free conjunction of atoms
?1 (t1) ∧ · · · ∧ ?= (t=). Since all conjunctions in this work are
duplicate-free, we sometimes treat them as sets of atoms. The
variables in x, called distinguished, are denoted by dist(@),
head(@) denotes the head @(x) of @, and body(@) denotes
the body {?1 (t1), . . . , ?= (t=)} of @. We require safeness, i.e.,
x ⊆ t1 ∪ · · · ∪ t=. A query is boolean if x is the empty tuple.
Answers, Certain Answers. To define query answers under
count semantics, we adapt the definitions byCohen et al. [2007]
and Kostylev and Reutter [2015]. A match for a query @ in
an interpretation I is a homomorphism from body(@) to I.
Then, an answer to @ over I is a pair 〈l, :〉 s.t. : ≥ 1,
and there are exactly : matches d1, . . . , d: for @ in I that
verify l = d8 |dist(@) for 8 ∈ {1, . . . , :}. We use ans(@,I)
to denote the set of answers to @ over I. Similarly, if Q is
a set of queries, we use ans(Q,I) to denote the set of all
pairs 〈l, ℓ〉 s.t. 〈l, :〉 ∈ ans(@,I) for some : and @ ∈ Q,
and ℓ =

∑{: | 〈l, :〉 ∈ ans(@,I), @ ∈ Q}. Answering a
query over an interpretation (i.e., a DB) is also known as query
evaluation. Finally, a pair 〈l, :〉 is a certain answer to a query
@ over a KB K iff : ≥ 1 is the largest integer such that, for
each model I of K, 〈l, :I〉 ∈ ans(@,I) for some :I ≥ : .
We use certAns(@,K) to denote the set of certain answers to
@ over K.
Decision Problem. The decision problem defined by
Kostylev and Reutter [2015] takes as input a query @,
a mapping l, a KB K, and an integer : , and decides
〈l, :〉 ∈ certAns(@,K). It is easy to see that an instance of this
problem can be reduced (in linear time) to an instance where @
is a boolean query and l is the empty mapping, by introducing
constants in body(@). We will use the following simplified
setting for the complexity results below: if @ is a boolean query
and Y the empty mapping, we use : = certCard(@,K) as an
abbreviation for 〈Y, :〉 ∈ certAns(@,K). Then, the problem
Count is stated as follows:

Count Input: DL-Lite KB K, boolean CQ @, : ∈ N+
Decide: : = certCard(@,K)

Data complexity. As usual for query answering over DBs
[Vardi, 1982] or KBs [Calvanese et al., 2007], we distinguish
between combined and data complexity. For the latter, we
adopt the definition provided by Nikolaou et al. [2019], i.e.,
we measure data complexity in the cumulated size of the ABox
and the input integer : (encoded in binary).
Query Shape. As we will see later, the shape of the input
CQ may play a role for tractability. We define here the
different query shapes used throughout the article. Because
our focus is on queries with unary and binary atoms, we

can use the Gaifman graph [Bienvenu et al., 2017] of a CQ
to characterize such shapes: the Gaifman graph G of a CQ
@ is the undirected graph whose vertices are the variables
appearing in body(@), and that contains an edge between G1
and G2 iff %(G1, G2) ∈ body(@) for some role %.3 We call @
connected (denoted with @ ∈ CQC) if G is connected, linear
(@ ∈ CQL) if the degree of each vertex in G is ≤ 2, and acyclic
(@ ∈ CQA) if G is acyclic. We note that none of these three
notions implies any of the other two. In addition, following
Nikolaou et al. [2019], we call a CQ rooted (@ ∈ CQR) if each
connected component in G contains at least one constant or
one distinguished variable. Finally, a CQ @ is atomic (@ ∈ AQ)
if | body(@) | = 1.
Rewritability. Given a query language Q, a Q-rewriting of
a CQ @ with respect to a KB K = 〈T ,A〉 is a Q query @′
whose answers over inter(A) alone coincides with the certain
answers to @ overK . For instance, for OMQA with boolean or
enumeration queries, Q is traditionally the language of domain
independent first-order queries, the logical underpinning of
SQL. As for queries with counting, it has been shown by
Grumbach and Milo [1996], Nikolaou et al. [2019] that count-
ing answers over a relational DB can be captured by query
languages with evaluation in LogSpace (data complexity).

3 Related Work
Query answering under count semantics can be viewed as
a specific case of query answering under bag semantics, in-
vestigated notably by Grumbach and Milo [1996] and Libkin
and Wong [1997], but for relational DBs rather than KBs.
Instead, in our setting, and in line with the OMQA/OBDA
literature, we assume that the input ABox is a set rather than
a bag. The counting problem over sets has also been stud-
ied recently in the DB setting [Pichler and Skritek, 2013;
Chen and Mengel, 2016], but from the perspective of com-
bined complexity, where the shape of the query (e.g., bounded
treewidth) plays a prominent role.
As for (DL-Lite) KBs, Calvanese et al. [2008b] define an

alternative (epistemic) count semantics, which counts over
all grounded tuples (i.e., over NI) entailed by the KB. Such a
semantics does not account for existentially implied individuals,
and thus cannot capture the statistics motivating our work.

Instead, the work closest to ours, and which first introduced
the count semantics that we adopt here, is the one of Kostylev
and Reutter [2015], who first showed coNP-hardness of the
Count problem for data complexity for DL-Litepos, with a
reduction that uses a disconnected and cyclic query. coNP-
membership is also shown for DLs up to DL-LiteHcore.
Nikolaou et al. [2019], Cima et al. [2019] have studied

query answering over a KB under bag semantics, and provide
a number of complexity results (including coNP-hardness) and
query answering techniques (including a rewriting algorithm).
Such semantics is clearly related to the count semantics, but
there are notable differences as argued byNikolaou et al. [2019].
In short, one cannot apply the intuitive idea of treating sets as
bags with multiplicities 1. Hence algorithms and complexity

3This definition implies that the Gaifman graph of @ has an edge
from G to G if %(G, G) ∈ body(@).

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1660

results cannot be transferred between the two settings, and this
already holds for ontology languages that allow for existential
restrictions on the LHS of ontology axioms (note that all the
logics considered in this paper allow for such construct). The
following example by Nikolaou et al. [2019] illustrates this.
Example 1. Consider the KB K = 〈{�1 v ∃%, ∃%− v �},
{�1 (0), �1 (1)}〉 and the query @() ← �2 (H). If we evaluate
this query in the count setting, then the answer is the empty
tuple 〈〉 with cardinality 1, because of the following model:

0

�1

D

�2

1

�1

%%

However, such structure does not accurately represent a bag
interpretation. In fact, under bag semantics every concept and
property is associated to a bag of elements. Such bag can be
seen as a function that returns, given an element, the number of
times such element occurs in the bag. We build now a (minimal)
bag interpretationI forK . To satisfyA, we set �I1 (0) = 1 and
�I1 (1) = 1 To satisfy �1 v ∃%, we introduce a single element
D (as above) and obtain %I (0, D) = 1 and %I (1, D) = 1.
Therefore, (%−)I (D, 0) = 1 and (%−)I (D, 1) = 1, which,
according to the semantics by Nikolaou et al. [2019], imply
that (∃%−)I (D) = 2. Therefore, to satisfy ∃%− v �2, it must
be that �I2 (D) = 2. In fact, the certain answer to @ over I
under bag-semantics is the empty tuple 〈〉 with multiplicity 2.⊳

4 Tractability and Intractability
We investigate now conditions for in/tractability (in data com-
plexity) of Count, focusing on the impact of the shape of the
query. We observe that the queries used by Kostylev and Reut-
ter [2015] and Nikolaou et al. [2019] to show coNP-hardness
are cyclic, and either disconnected or branching. Building
upon these results, we further investigate whether cyclicity is
necessary for intractability. Our results indicate that for certain
DLs, non-connectedness or branching alone is a sufficient
condition for intractability, whereas cyclicity is not. We start
with a membership result:
Proposition 1. Count is in P in data complexity for DL-
LiteH–N–

pos and connected, linear CQs (CQCL).

Proof (Sketch). We start with DL-LiteH−pos , and then discuss
how to extend the proof to DL-LiteH–N–

pos . If K = 〈T ,A〉 is
a DL-LiteH–N–

pos KB and @ a boolean query in CQCL, consider
the set match(@,IKcan) of all matches for body(@) over the
canonical model IKcan of K. Then viewing match(@,IKcan)
as a relation (i.e., a set of tuples), let �min be the set of all
constant-preserving functions, whose domain is the set of all
arguments in match(@,IKcan) and that minimize the number of
resulting tuples when applied to match(@,IKcan). Because @ is
connected and linear, and thanks to the limited expressivity of
DL-LiteH–N–

pos , it can be shown that there must be some 5 ∈ �min

that verifies | 5 (match(@,IKcan)) | = |match(@, 5 (IKcan)) |. Since
every modelI ofK verifies match(@,I) ⊆ ℎ(match(@,IKcan))
for some homomorphism ℎ, and because 5 (IKcan) is a model
of K, it follows that certCard(@,K) = | 5 (match(@,IKcan)) |.

Then it can also be shown that | 5 (match(@,IKcan)) | can be
computed in time polynomial in |A|.

Now for DL-LiteH–N–
pos , to account for cardinality restrictions,

we associate in every interpretation I a cardinality cardI (4)
to each 4 ∈ ΔI : cardinality 1 for elements of NI, and possibly
more than 1 for elements of NE. E.g., if K implies that an
element 0 ∈ NI has 4 %-successors for some role %, and if
there is only one 1 ∈ NI s.t. (0, 1) ∈ %A , then (0, 4) ∈ %I

K
can

for some 4 ∈ NE, and cardIKcan
(4) = 4 − 1 = 3. Applying

a function 5 to an interpretation I affects these cardinali-
ties: for each 4 ∈ Δ 5 (I) , card 5 (I) (4) = max{cardI (4′) |
5 (4′) = 4}. Then we extend cardinality to a tuple t of
elements, as cardI (t) =

∏
4∈t cardI (4), and to a set) of

tuples, as cardI ()) =
∑

t∈) cardI (t). In this extended setting,
certCard(@,K) = card 5 (I) (match(@,IKcan)) for some func-
tion 5 that minimizes card 5 (I) (match(@,IKcan)). And this
value can still be computed in time polynomial in |A|. �

We now show that disconnectedness alone leads to in-
tractability, i.e., cyclicity is not needed.
Proposition 2. Count is coNP-hard in data complexity for
DL-Litepos and acyclic, linear, but disconnected CQs (CQAL).
Proof (Sketch). The proof is a direct adaptation of the one
provided by Kostylev and Reutter [2015]. We use a reduction
from co-3-colorability to an instance of Count. Let G =

〈+, �〉 be an undirected graph with vertices + , edges � , and
without self-loops. The ABox is A = {Vertex(E) | E ∈ +} ∪
{edge(E1, E2) | (E1, E2) ∈ �} ∪ {Blue(b),Green(g),Red(r),
hasColor(a, b), hasColor(a, g), hasColor(a, r), edge(a, a)}
for some fresh constants a, b, r, and g. The TBox is T =

{Vertex v ∃hasColor, ∃hasColor− v Color}. And the (acyclic,
non-branching) query is @() ← Color(2), edge(E1, E2),
hasColor(E1, 21), hasColor(E2, 22), Blue(21), Blue(22),
edge(E3, E4), hasColor(E3, 23), hasColor(E4, 24), Green(23),
Green(24), edge(E5, E6), hasColor(E5, 25), hasColor(E6, 26),
Red(25), Red(26). Then it can be verified that 4 =

certCard(@, 〈T ,A〉) iff G is not 3-colorable. �

Next we show that linearity is required for tractability:
Proposition 3. Count is coNP-hard in data complexity for
DL-LiteHpos and acyclic, connected, but branching CQs (CQAC).

Finally, we observe that the coNP upper bound provided
by Kostylev and Reutter [2015] for DL-LiteHcore extends to
DL-LiteHN–

core ,4 since number restrictions can be encoded in
DL-LiteHcore, as explained in Section 2.
Proposition 4. Count is in coNP in data complexity for DL-
LiteHN–

core and arbitrary CQs (CQ).

5 Rewritability and Non-rewritability
We now investigate conditions for rewritability. We start
by showing P-hardness for DLs with role inclusions and
disjointness, and atomic queries.
Proposition 5. Count is P-hard in data complexity for
DL-LiteHcore and atomic queries (AQ).

4With a technicality: the input integer : is not included in the
notion of data complexity used by Kostylev and Reutter [2015].

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1661

Proof (Sketch). We show a LogSpace reduction from the
co-problem of evaluating a boolean circuit where all gates are
NAND gates [Greenlaw et al., 1991] to Count. We view such
a circuit as an interpretation C whose domain consists of the
circuit inputs and gates.)� , �� , and)$ are unary predicates
interpreted in C as the positive circuit inputs, the negative
circuit inputs and the (unique) target gate respectively. % is a
binary predicate s.t. (@, 6) ∈ %C iff gate 6 has input @ (where
@ can be either a circuit input or another gate).
The TBox T is defined by T = P ∪ T1 ∪ T2, where P =

{%) v %, %� v %}, T1 = {�� v �,)� v),)$ v),) v ¬�}
and T2 = {) v ∃%�−, � v (≥2 %)

−), ∃%) v), ∃%� v �}.5
Intuitively, the unary predicates) and � correspond to gates
that evaluate to true and false respectively in the circuit, and
binary predicates %) and %� specialize % to positive and
negative inputs. T2 encodes constraints pertaining to NAND
gates: a positive gate must have at least one negative input, and
a negative gate must have two positive inputs. Then T1 enforce
that no gate can be both positive and negative, and that the
circuit inputs and the output gate have the desired truth values.
Finally, as a technicality, the ABox A is an extension

of C, i.e., C ⊆ inter(A). The domain of A contains
3 additional individuals t1, t2 and f , and it extends %C

with
⋃
8∈()�)C {%(f , 8), %(t1, 8)},

⋃
8∈(��)C {%(t1, 8), %(t2, 8)},

and {%(t1, f), %(t2, f), %(f , t1), %(f , t2), %(t2, t1), %(t1, t2)}.
Then it can be verified that C is a valid circuit iff there

exists a model I of 〈T ,A〉 s.t. |%I | = |%A |. Now let @ be the
query @() ← %(G1, G2). It follows that C is not a valid circuit
iff |%A | + 1 = certCard(@, 〈T ,A〉). �

Assuming P * LogSpace, this implies that for such DLs,
even atomic queries cannot be rewritten into a query language
whose evaluation is in LogSpace, which is sufficient to capture
counting over relational databases. Interestingly, the reduction
can be adapted so that it uses instead a query that is rooted,
connected and linear (but not atomic).
Proposition 6. Count is P-hard in data complexity for
DL-LiteHcore and rooted, connected, linear queries (CQCLR).

We now focus on positive results, and rewriting algorithms.

5.1 Universal Model
We follow the notion of universal model proposed by Nikolaou
et al. [2019]: a model I of a KB K is universal for a class of
queriesQ iff ans(@,I) = certAns(@,K) holds for every @ ∈ Q.
Nikolaou et al. [2019] and Cima et al. [2019] investigated the
existence of a universal model for queries evaluated under
bag semantics. As we discussed in Section 3, these results
carry over to the setting of count semantics, but only for
ontology languages that disallow existential restriction on the
LHS of ontology axioms. The existence of such model was
proved over the class CQR, for the DL-Lite1 members up to
DL-LitebR− [Nikolaou et al., 2019] and DL-LitebF [Cima et al.,
2019], with some syntactic restrictions. It was also shown
that CQR queries can be rewritten into (BCALC) queries to
be evaluated over the (bag) input ABox. Neither of these
logics is able to encode numbers in the TBox though, therefore

5The axiom≥2 %)
− can be encoded intoDL-LiteHcore, as explained

in Section 2.

they cannot capture statistical information about missing data.
And as discussed in the introduction, this information may
be important in some applications [Chen and Mengel, 2016],
and is one of the motivations behind our work. Note also that
both logics allow for existentials on the LHS of axioms, and
therefore these results do not carry over to count semantics.
Our first result shows the existence of a universal model

for CQCR and DL-LiteN–
core, and queries evaluated under count

semantics. Precisely, the canonical model IKcan obtained via
the restricted chase from Calvanese et al. [2013] and Botoeva
et al. [2010] is a universal model. From now on, we denote by
ch8 (K) the set of atoms obtained after applying the 8-th chase
step over the KB K, and by ch∞ (K) the (possibly infinite) set
of atoms obtained by an unbounded number of applications.
Proposition 7. DL-LiteN–

core has a universal model w.r.t.Count
over CQCR queries.
Proof (Sketch). Consider a CQCR query @ and a KB K,
and let match(@,IKcan) denote the set of all matches for
body(@) over the canonical model IKcan := ch∞ (K). Let
I be a model of K. Then there must exist a homo-
morphism g from IKcan to I. One immediately obtains
that g(match(@,IKcan)) ⊆ match(@, g(IKcan)), and therefore
(i) |g(match(@,IKcan)) | ≤ |match(@, g(IKcan)) |. Then relying
on the fact that @ is rooted, that the chase is restricted, and that
DL-LiteN–

core does not allow for role subsumption, it can proven
that (ii) |match(@,IKcan) | ≤ |g(match(@,IKcan)) |. So from
(i) and (ii) , |match(@,IKcan) | ≤ |match(@, g(IKcan)) | holds.
Then, since g is a homomorphism from IKcan to I, g(IKcan) ⊆ �
must hold, and therefore |match(@, g(IKcan)) | ≤ |match(@,I)|.
We conclude that |match(@,IKcan) | ≤ |match(@,I)|. �

5.2 Rewriting for DL-LiteN–
core

We introduce PerfectRefcnt, a rewriting algorithm for
DL-LiteN–

core inspired by PerfectRef [Calvanese et al., 2006],
and show its correctness. There is a fundamental complication
in our setting, of which we provide an example. Consider
a CQ @, a DL-LiteN–

core KB K, and a query @′ among those
produced by PerfectRef or any other rewriting algorithm for
CQs. Then, each match l′ for @′ in inter(A) can be extended
to the anonymous individuals so as to form a “complete” match
l for @ in inter(ch∞ (K)) in a certain number of ways (dictated
by the axioms in the ontology). From now on, we call such
number the anonymous contribution relative to @′. The follow-
ing example shows that the anonymous contribution is related
to the number restrictions occurring in K.
Example 2. Consider the query @(G) ← %(G, H), and the KB
K = 〈{� v ≥3%}, {�(0)}〉. Starting from @, PerfectRef will
produce, as part of the final rewriting, a query @′(G) ← �(G).
Note that there is a single match ` = {G ↦→ 0} for @′ over
inter(A), and that ` can be extended into exactly three matches
for @ in inter(ch∞ (K)), by mapping variable H into some
anonymous individual. ⊳

To deal with the fact that the anonymous contribution to
a count is a non-fixed quantity that depends on the axioms
in the ontology, our algorithm is substantially different from
PerfectRef and significantly more complicated. It is also

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1662

not related to the one by Nikolaou et al. [2019], which is
based on tree-witness rewriting [Kikot et al., 2012] rather than
on PerfectRef, and was not designed for settings where the
anonymous contribution is a non-fixed quantity.
Given a CQ @ and a TBox T , PerfectRefcnt produces a set
Q ′ of queries such that, for any ABoxA, ans(Q ′, inter(A)) =
certAns(@, 〈T ,A〉). Each query in Q ′ comes with a multi-
plicative factor that captures the anonymous contribution of
each match for that query. Queries in Q ′ are expressed in a
target (query) language, for convenience named FO(Count),
which is a substantial enrichment of the one introduced in
Section 2, but has a straightforward translation into SQL. Note
that we use FO(Count) only to express the rewriting, while
user queries over the KB are still plain CQs.
Following Cohen et al. [2007], FO(Count) allows one to

explicitly specify a subset of the non-distinguished variables,
called aggregation variables, for which we count the num-
ber of distinct mappings (so far, we implicitly assumed all
non-distinguished variables as aggregation variables). It also
allows for a multiplicative factor to be applied after the (count)
aggregation operator, a restricted use of disjunctions, equalities
between terms, atomic negation, and the use of nested aggre-
gation in the form of a special ∃=8 operator (which intuitively
corresponds to a nested aggregation plus a boolean condition
requiring the result of the aggregation to be equal to 8).

A query in FO(Count) is a pair 〈&(x, cnt(y) ·U),Π〉, where
variables x are called group-by variables, variables y are
called aggregation variables (intuitively, cnt(y) corresponds
to the SQL construct count distinct), x ∩ y = ∅, U ∈ N
is a positive multiplicative factor, and Π is a set of rules{
@: (x : y) ←k:

�� 1 ≤ : ≤ <
}
. The symbol ’:’ in the head6

of each rule is to distinguish between group-by and aggregation
variables. Eachk: inΠ is a conjunctionk:?>B∧k:=46∧k:4@∧k:∃
of positive atoms (k:?>B), negated atoms (k:=46), equalities
between terms (k:4@), and special atoms (k:∃), which we call
∃-atoms, of the form ∃=8I . %(F, I), where 8 ∈ N0, F ∈ x ∪ y,
and I is a variable that occurs only once in @.
A mapping d is a match for k: in an interpretation I if:
• d(k:?>B) ⊆ I;
• d satisfies all equalities in k:4@;
• there is no d′ ⊇ d such that d′(� (z)) ∈ I, for some
¬� (z) in k:=46;

• for each ∃=8H '(F, I) in k∃, there are exactly 8 mappings
d1, . . . , d8 such that, for 9 ∈ {1, . . . , 8} we have that
d 9 ⊇ d and d 9 ('(F, I)) ⊆ I.

A mapping d is a match for Π in an interpretation I, if for
some @(x : y) ←k in Π it is a match for k in I. A mapping l
is an answer to 〈&(x, cnt(y) · U),Π〉 over I with cardinality
: · U iff there are exactly : mappings [1, . . . , [: such that, for
8 ∈ {1, . . . , :}:

• l = [8 |x, and
• [8 can be extended to a match d for Π in I s.t. d |x∪y = [8 .
Note that our semantics also captures the case when the

operator cnt() is over an empty set of variables (in that case,
the : above would be equal to 1). This technicality is necessary
for the presentation of the algorithm.

6Head and body of a rule are defined as for CQs.

We are now ready to introduce PerfectRefcnt. Consider a
satisfiable knowledge base K = 〈T ,A〉, and a CQCR query
@(x) ←k(x, y). PerfectRefcnt takes as input @ and T and
initializes the result set Q as

{〈&(x, cnt(y) · 1), {@(x : y) ←k(x, y)}〉}.
Then the algorithm expands Q by applying the rules Atom-
Rewrite, Reduce, GEU, and GEV until saturation, with priority
for AtomRewrite and Reduce. The set Q ′ obtained at the end
of this process does not necessarily contain just queries (in
the sense of our definition above), and hence needs to be
normalized (see later).

To define the rules of the algorithm, we first need to introduce
some notation. In the following, %− (F, I) stands for %(I, F).
Hence, also '(F, I) when ' = %− stands for %(I, F). We use
’_’ to denote a fresh variable introduced during the execution
of the algorithm. For a basic concept �, notation b (�, F)
stands for �(F) if � ∈ NC, or '(F, _), if � = ≥1'. Given a
setB of basic concepts, subcT (B) is defined as the set of basic
concepts {�′ | �′ vT �, � ∈ B}. If q, k are two conjunctions
of atoms and 0 is an atom in q, we use q[0/k] (resp., q[0/>])
to denote the conjunction identical to q, but where 0 is replaced
with k (resp., 0 is deleted from q). By extension, if A is a rule,
A [0/k] denotes the rule head(A) ← body(A) [0/k]. If � is a
basic concept and ' a role, cardT (�, ') denotes the maximal
= s.t. � v ≥=' ∈ T . A variable G is bound in a rule A if it is a
group-by variable, or if it occurs more than once in the set of
positive atoms of A. We say that G is U-blocked if it is bound,
or if it occurs more than once in head(A), or if it occurs in
some ∃-atom in body(A). Finally, G is V-blocked if it is bound,
or if it occurs more than once in head(A), or if it occurs in
some atom of the form ∃=8I '(F, I) with 8 > 0.
To ease the presentation, for the exposition of rules GEU

and GEV we will ignore details concerning the renaming of
variables, and assume that variables belong to the input query.
AtomRewrite (�'). {Bq1, . . . , q: } �' {q1, . . . , q:−1, q

′
:
}

if
• q: = 〈&(x, cnt(y) · U),Π〉;
• for some A ∈ Π, for some � (z) ∈ body(A), either:

– � (z) is of the form �(I), and � v � ∈ T , or
– � (z) is of the form '(F, I), � v ≥=' ∈ T , I is an
unbound variable, and if head(A) = @(s : t), then
I ∉ t;

q′: = 〈&(x, cnt(y) · U),Π ∪ {A [� (z)/b (�, F)]}〉.
Reduce ('). {q1, . . . , q: } ' {q1, . . . , q:−1, q

′
:
} if

• q: = 〈&(x, cnt(y) · U),Π〉;
• {�1 (z1), �z2)} ⊆ body(A) for some A ∈ Π;
• f is a most general unifier for � (z1) and � (z2); with the
following restrictions:

– a variable in x can map only to a variable in x;
– a variable in y can map only to a variable in x ∪ y;
– dom(f) ⊆ z1 ∪ z2 and range(f) ⊆ z1 ∪ z2.

• q′
:
= 〈&(x, cnt(y) · U),Π ∪ {f(A [� (z2)/>])}〉.

GEU (≥U). {q1, . . . , q: } ≥U {q1, . . . , q: } ∪ Q: if
• q: = 〈&(x, cnt(y) · U),Π〉
★ '(F, I), with F, I ∈ x ∪ y, is an atom such that

Π′ :=

{
'(F, I) ∈ body(A)

����� A ∈ Π and
H is a non-U–blocked
aggregation variable

}
≠ ∅

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1663

• Let k∃ be the conjunction of all exists-atoms in any rule
A ∈ Π (by construction, such conjunction is the same for
all rules inΠ). Then the conjunctionk∃∧∃0

H'(F, I) (seen
as a set) must not appear in other rules from {q1, . . . , q: };

• B: is the maximal set of basic concepts � such that
� v ≥=�' ∈ T , for some =�;
� Q: is defined as follows. First, let part(B:) denote the
set of all pairs 〈B1,B2〉 such that B1 ⊆ B: , B2 ⊆ B: ,
B1 ≠ ∅, and subcT (B1) ∩ subcT (B2) = ∅. Then, for a
set B of basic concepts, let cpT (B) denote the cartesian
product

∏
�∈B subcT (�). And if B, B ′ are two sets of

basic concepts, we call atomic decomposition the formula
ad(B,B ′), defined as:∧

�∈B b (�, F) ∧
∧
�∈B′,�′∈ subcT (�) ¬b (�′, F)

If k is a formula, let rpl(A, k) designate the rule:
@(s : t \ {H}) ← body(A) ['(F, I)/k]

Finally, if 9 is an integer, let qh(9) be the expression:
&(x, cnt(y \ {H}) · 9 · U)

We can now define Q: as:⋃
(B1 ,B2) ∈part(B:) ,
==max

�∈B1 card(�) ,
8∈[0..=−1]

{〈qh(=−8), {rpl(A, ad(B3,B2) ∧ ∃=8H '(F, I))
| B3 ∈ cpT (B1), A ∈ Π′}〉}

GEV (≥V). This rule is defined as ≥U , but with the
difference that conditions ★ and � are as follows:
★ '(F, I) is an atom such that:

Π′ :=

{
'(F, I) ∈ body(A)

����� A ∈ Π and
H is a non-V–blocked
aggregation variable

}
≠ ∅

� As item � for GEU, with the additional condition that all
atoms in which variable H occurs are removed.

Note that, once all rules have been applied to saturation, the
resulting set Q ′ is technically not yet a set of queries, because
of renamed variables, constants, or repetitions in the head of
a rule. To transform each element 〈&(x, cnt(y) · U),Π〉 of Q ′
into a query, we normalize it by renaming the variables in rules
in Π, based on their positions, according to x and y, and by
replacing constants and repeated variables in the head of a rule
with suitable equalities in its body.

The intuition behind PerfectRefcnt is the following. First of
all, we observe that the rewriting rulesAtomRewrite andReduce
are analogous to their counterparts in the original PerfectRef
algorithm. The restrictions on the unifier inReduce aremeant to
limit the possible renamings of variables. Rewriting rulesGEU
and GEV extend the way existential quantification is handled
in PerfectRef, and are the only ones eliminating aggregation
variables from the rules in Π. Each time one such variable
is eliminated, it can be potentially mapped in (=−8) different
ways into the anonymous part of the canonical model. The
∃-atoms, together with the relative atomic decompositions,
check the number 8 of mappings that are already present in
the ABox. The factor U keeps track of the number of ways
variables eliminated in previous steps can be mapped into the
anonymous part. Hence, the quantity (=−8) · U captures the
anonymous contribution relative to the query.

0

� 1
3

4

%1%1 %2
%2

%2

%2
%2

%2

Figure 2: Chase model of Example 3. Solid arrows represent the
information in the ABox, whereas dashed lines represent information
implied by the ontology.

Example 3. Consider the KB K = 〈T ,A〉, with

T =
{
� v ≥2 %1,
∃%−1 v ≥3 %2

}
, A =

{
�(0), %1 (0, 1),
%2 (1, 3), %2 (1, 4)

}
and the input CQ @(G) ← �(G), %1 (G, H1), %2 (H1, H2). The
chase model of K is represented in Figure 2. The
initialization step sets Q = {〈&(G, cnt(H1, H2) · 1),
{@(G:H1, H2) ← �(G), %1 (G, H1), %2 (H1, H2)}〉}. Since H2 is un-
bound, we can apply rule GEU, which produces the following
set Q ′:

〈&(G, cnt(H1, H2) · 1),
{@(G : H1, H2) ← �(G), %1 (G, H1), %2 (H1, H2)}〉,
〈&(G, cnt(H1) · 3 − 0),
{@(G : H1) ← �(G), %1 (G, H1), %1 (_, H1), ∃=0

I %2 (H1, I)}〉,
〈&(G, cnt(H1) · 3 − 1),
{@(G : H1) ← �(G), %1 (G, H1), %1 (_, H1), ∃=1

I %2 (H1, I)}〉,
〈&(G, cnt(H1) · 3 − 2),
{@(G : H1) ← �(G), %1 (G, H1), %1 (_, H1), ∃=2

I %2 (H1, I)}〉


Rule Reduce can now be triggered by the second, the third,
and the last rule in Q ′. In particular, an application of Reduce
on the second query leads to the query:

〈&(G, cnt(H1) · 3 − 0),
{@(G : H1) ← �(G), %1 (G, H1), %1 (_, H1), ∃=0

I %2 (H1, I),
@(G : H1) ← �(G), %1 (G, H1), ∃=0

I %2 (H1, I)}〉

On such query we can apply rule GEV producing, among
others, the following query:

〈&(G, 1 · (2 − 1) · 3), {@(G : 〈〉) ← �(G), ∃=1
I %1 (G, I)}〉

Let us analyze the queries produced byPerfectRefcnt that return
at least one answer. The query after the initialization step
returns the number of paths (G, H1, H2) inA conforming to the
structure dictated by the body of the input query. Since there
are two such paths, such query returns the answer 〈G ↦→ 0, 2〉.
The queries generated byGEU check for all sub-paths (G, H1) of
(G, H1, H2) such that G is an element of �, H1 is a %1-successor
of G, and H1 has less %2-successors in the ABox than what the
TBox prescribes. There is one such path in IKcan, namely the
one terminating in node 1 that has only two %2-successors in
A. This path is captured by the fourth query in Q ′, which
returns as answer 〈G ↦→ 0, 1〉: indeed, there is a single way
of extending this path into the anonymous part. The queries
generated by GEV are to be interpreted in a similar way. In
particular, the query we highlighted retrieves the individual
0, since this node has only one %1-successor in A but it
should have at least two %1-successors according to T . The
answer to such query is 〈G ↦→ 0, 3〉. Indeed, there are three

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1664

ways of extending the match G ↦→ 0 into the anonymous part.
Summing up the numbers, we get that our set of queries returns
the answer 〈G ↦→ 0, 6〉, which indeed is the answer to our input
query over the chase model from Figure 2. ⊳

The algorithm terminates because the application of Atom-
Rewrite and Reduce is blocked upon reaching saturation, and
each application of GEU and GEV reduces the number of vari-
ables in k by 1. The following lemmas show the correctness
of PerfectRefcnt.
Lemma 8. Consider a DL-LiteN–

core knowledge base K =

〈T ,A〉 and a connected, rooted CQ @. Consider a query
& ′ belonging to the output of PerfectRefcnt over @ and K.
Then, each match l′ for & ′ in inter(A) can be extended into
a match l for @ in inter(ch∞ (K)).
Proof (Sketch). The claim can be proved through a straight-
forward induction over the number of chase steps. �

The next lemma states that the opposite direction also holds,
i.e., that all matches are retrieved.
Lemma 9. Consider a DL-LiteN–

core knowledge base K =

〈T ,A〉 and a connected, rooted CQ @. Every match l for @
in inter(ch∞ (K)) is an extension of some match l′ for & ′ in
inter(A), where & ′ belongs to the output of PerfectRefcnt.
Proof (Sketch). The proof follows the one by Calvanese et
al. [2006], however one has to pay attention to the fact that
here we deal with matches rather than with assignments for
the distinguished variables. Another technical difference with
that proof is that in our case the nodes in the chase tree are
sets of atoms rather than single atoms. �

The last lemma tells us that our way of capturing the anony-
mous contribution is indeed correct.
Lemma 10. Consider a DL-LiteN–

core knowledge base K =

〈T ,A〉 and a connected, rooted CQ @. Consider a query
〈& ′(x, cnt(y) · U),Π〉 belonging to the output of PerfectRefcnt
over @ and K. Then, each match l′ for & ′ in inter(A) can
be extended into exactly U matches l for @ in inter(ch∞ (K))
with range(l \ l′) ⊆ NE.
Proof (Sketch). By induction on the number of applications
of GEU and GEV . It uses Lemma 8 and the fact that vari-
ables are never eliminated by AtomRewrite or Reduce. The
atomic decomposition in GEU and GEV guarantees that all
combinations of number restrictions are considered. �

Proposition 11. Consider a DL-LiteN–
core knowledge base K =

〈T ,A〉 and a connected, rooted CQ @. Let Q be the set of
queries returned by a run of PerfectRefcnt over @ andK . Then:

ans(Q, inter(A)) = certAns(@,K)
Proof (Sketch). The claim follows from Lemmas 9 and 10,
and by observing that the query& ′ in Lemma 10 is unique due
to ∃=8 expressions, atomic decompositions, and the restrictions
on GEU and GEV . Therefore, matches are not counted twice.�

The execution of PerfectRefcnt does not depend on the ABox.
Considering that the evaluation of FO(Count) queries is in
LogSpace in data complexity, this yields:
Proposition 12. Count is in LogSpace in data complexity for
DL-LiteN–

core and rooted, connected CQs.

AQ,CQCL CQAC CQCLR,CQCR CQAL CQ

DL-Litepos P coNP L coNP-c coNP-c
DL-LiteHpos P coNP-c coNP coNP-c coNP-c
DL-LiteH–N–

pos P coNP-c coNP coNP-c coNP-c
DL-Litecore coNP coNP L coNP-c coNP-c
DL-LiteN–

core coNP coNP L coNP-c coNP-c
DL-LiteHcore P-h/coNP P-h/coNP P-h/coNP coNP-c coNP-c

Table 1: Summary of complexity results (’-h’ stands for ’-hard’, and
’-c’ for ’-complete’). New bounds proved here are in blue, bounds
that directly follow in green, and already known bounds in black.

6 Conclusion and Perspectives
Table 1 summarizes our results for data complexity of query
answering under count semantics for variants of CQs and DL-
Lite. Among other observations, these results indicate that for
certain DLs, whether a CQ is connected and branching affects
tractability. An interesting open question in this direction
is whether the P-membership result for DL-LiteH–N–

pos and
AQ/CQCL is tight. Indeed, the P-hardness result provided for
AQ holds for amore expressiveDL (namelyDL-LiteHcore), which
allows for disjointness and arbitrary interactions between role
subsumption and existential quantification.
A main contribution of this work is the query rewriting

technique provided in Section 5. It shows that for connected
and rooted CQs, and for variants of DL-Lite with neither
disjointness nor role subsumption, rewritability into a variant
of SQL with aggregates can be regained. An interesting
open question is whether rewritability still holds for rooted
queries and DL-LiteH–N–

core , i.e., when allowing for restricted
role subsumption.
Finally, it must be emphasized that this work is mostly

theoretical, and does not deliver a practical algorithm for
query answering under count semantics over DL-Lite KBs. In
particular, the definition of data complexity that we adopted
does not take into account the cardinality restrictions that may
appear in the TBox. This is arguable: in scenarios where these
restrictions may encode statistics, it is reasonable to consider
that these numbers “grow” with the size of the data. The
rewriting defined in Section 5 may produce a query whose
size is exponential in such numbers (when they are encoded
in binary). Therefore a natural continuation of this work is to
investigate how arithmetic operations and nested aggregation
can be used to yield a rewriting whose size does not depend
on the numbers that appear in cardinality restrictions.

Acknowledgements
This research has been partially supported by the Wallenberg
AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation, by
the Italian Basic Research (PRIN) project HOPE, by the EU
H2020 project INODE, grant agreement 863410, by the CHIST-
ERA project PACMEL, and by the project IDEE (FESR1133)
through the European Regional Development Fund (ERDF)
Investment for Growth and Jobs Programme 2014-2020.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1665

References
[Artale et al., 2009] Alessandro Artale, Diego Calvanese, Ro-

man Kontchakov, and Michael Zakharyaschev. TheDL-Lite
family and relations. J. of Artificial Intelligence Research,
36:1–69, 2009.

[Baader et al., 2003] Franz Baader, Diego Calvanese, Deb-
orah McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook:
Theory, Implementation and Applications. Cambridge
University Press, 2003.

[Bienvenu and Ortiz, 2015] Meghyn Bienvenu and Mag-
dalena Ortiz. Ontology-mediated query answering with
data-tractable description logics. In Reasoning Web: Web
Logic Rules – 11th Int. Summer School Tutorial Lectures
(RW), volume 9203 of LNCS, pages 218–307. Springer,
2015.

[Bienvenu et al., 2017] Meghyn Bienvenu, Stanislav Kikot,
Roman Kontchakov, Vladislav Ryzhikov, and Michael Za-
kharyaschev. On the parametrised complexity of tree-shaped
ontology-mediated queries in OWL 2 QL. In Proc. of the
30th Int. Workshop on Description Logics (DL), volume
1879 of CEUR Workshop Proc., http://ceur-ws.org/, 2017.

[Botoeva et al., 2010] Elena Botoeva, Alessandro Artale, and
Diego Calvanese. Query rewriting in DL-LiteHNhorn. In Proc.
of the 23rd Int. Workshop on Description Logics (DL),
volume 573 of CEUR Workshop Proc., http://ceur-ws.org/,
pages 267–278, 2010.

[Calvanese et al., 2006] Diego Calvanese, Giuseppe De Gia-
como, Domenico Lembo, Maurizio Lenzerini, and Riccardo
Rosati. Data complexity of query answering in descrip-
tion logics. In Proc. of the 10th Int. Conf. on Principles
of Knowledge Representation and Reasoning (KR), pages
260–270, 2006.

[Calvanese et al., 2007] Diego Calvanese, Giuseppe De Gia-
como, Domenico Lembo, Maurizio Lenzerini, and Riccardo
Rosati. Tractable reasoning and efficient query answering
in description logics: The DL-Lite family. J. of Automated
Reasoning, 39(3):385–429, 2007.

[Calvanese et al., 2008a] Diego Calvanese, Giuseppe De Gia-
como, and Maurizio Lenzerini. Conjunctive query contain-
ment and answering under description logics constraints.
ACM Trans. on Comp. Logic, 9(3):22.1–22.31, 2008.

[Calvanese et al., 2008b] Diego Calvanese, Evgeny Khar-
lamov, Werner Nutt, and Camilo Thorne. Aggregate queries
over ontologies. In Proc. of the 2nd Int. Workshop on On-
tologies and Inf. Systems for the Semantic Web (ONISW),
pages 97–104, 2008.

[Calvanese et al., 2013] Diego Calvanese, Giuseppe De Gia-
como, Domenico Lembo, Maurizio Lenzerini, and Riccardo
Rosati. Data complexity of query answering in description
logics. Artificial Intelligence, 195:335–360, 2013.

[Calvanese et al., 2020] Diego Calvanese, Julien Corman, Da-
vide Lanti, and Simon Razniewski. Counting query answers
over a DL-Lite knowledge base (Extended version). CoRR
Tech. Rep. arXiv:2005.05886, arXiv.org e-Print archive,
2020. Available at http://arxiv.org/abs/2005.05886.

[Chen and Mengel, 2016] Hubie Chen and Stefan Mengel.
Counting answers to existential positive queries: a com-
plexity classification. In Proc. of the 35th ACM Symp. on
Principles of Database Systems (PODS), pages 315–326,
2016.

[Cima et al., 2019] Gianluca Cima, Charalampos Nikolaou,
Egor V. Kostylev, Mark Kaminski, Bernardo Cuenca Grau,
and Ian Horrocks. Bag semantics of DL-Lite with func-
tionality axioms. In Proc. of the 18th Int. Sem. Web Conf.
(ISWC), volume 11778 of LNCS, pages 128–144. Springer,
2019.

[Cohen et al., 2007] Sara Cohen, Werner Nutt, and Yehoshua
Sagiv. Deciding equivalences among conjunctive aggregate
queries. J. of the ACM, 54(2):5, 2007.

[Greenlaw et al., 1991] Raymond Greenlaw, H. James
Hoover, and Walter L. Ruzzo. A compendium of prob-
lems complete for P. Technical report, Dep. of Computer
Science, Univ. of New Hampshire, 1991.

[Grumbach and Milo, 1996] Stéphane Grumbach and Tova
Milo. Towards tractable algebras for bags. J. of Computer
and System Sciences, 52(3):570–588, 1996.

[Kikot et al., 2012] Stanislav Kikot, Roman Kontchakov, and
Michael Zakharyaschev. Conjunctive query answering with
OWL 2 QL. In Proc. of the 13th Int. Conf. on Principles
of Knowledge Representation and Reasoning (KR), pages
275–285, 2012.

[Kostylev and Reutter, 2015] Egor V. Kostylev and Juan L.
Reutter. Complexity of answering counting aggregate
queries over DL-Lite. J. of Web Semantics, 33:94–111,
2015.

[Libkin and Wong, 1997] Leonid Libkin and Limsoon Wong.
Query languages for bags and aggregate functions. J. of
Computer and System Sciences, 55(2):241–272, 1997.

[Motik et al., 2012] Boris Motik, Bernardo Cuenca Grau, Ian
Horrocks, Zhe Wu, Achille Fokoue, and Carsten Lutz.
OWL 2 Web Ontology Language profiles (2nd ed.). W3C
Rec., W3C, 2012. http://www.w3.org/TR/owl2-profiles/.

[Nikolaou et al., 2019] Charalampos Nikolaou, Egor V.
Kostylev, George Konstantinidis, Mark Kaminski, Bernardo
Cuenca Grau, and Ian Horrocks. Foundations of ontology-
based data access under bag semantics. Artificial Intelli-
gence, 274:91–132, 2019.

[Pichler and Skritek, 2013] Reinhard Pichler and Sebastian
Skritek. Tractable counting of the answers to conjunctive
queries. J. of Computer and System Sciences, 79(6):984–
1001, 2013.

[Vardi, 1982] Moshe Y. Vardi. The complexity of relational
query languages. In Proc. of the 14th ACM Symp. on Theory
of Computing (STOC), pages 137–146, 1982.

[Xiao et al., 2018] Guohui Xiao, Diego Calvanese, Roman
Kontchakov, Domenico Lembo, Antonella Poggi, Riccardo
Rosati, and Michael Zakharyaschev. Ontology-based data
access: A survey. In Proc. of the 27th Int. Joint Conf.
on Artificial Intelligence (ĲCAI), pages 5511–5519. ĲCAI
Org., 2018.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1666

http://ceur-ws.org/
http://ceur-ws.org/
http://arxiv.org/abs/2005.05886
http://www.w3.org/TR/owl2-profiles/

	Introduction
	Preliminaries and Problem Specification
	Related Work
	Tractability and Intractability
	Rewritability and Non-rewritability
	Universal Model
	Rewriting for DL-LitecoreN–

	Conclusion and Perspectives

