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Abstract
We introduce argument-incomplete Abstract Argu-
mentation Frameworks with dependencies, that ex-
tend the traditional abstract argumentation reason-
ing to the case where some arguments are uncertain
and correlated through logical dependencies (such
as mutual exclusion, implication, etc.). We char-
acterize the complexities of the problems DSAT of
deciding the satisfiability of the dependencies and
PDVERσ(S) of verifying extensions under the pos-
sible perspective. We show how they depend on the
forms of dependencies and, for PDVERσ(S), also
on the semantics of the extensions.

1 Introduction
Incomplete Abstract Argumentation Frameworks (iAAF) are
an extension of Dung’s Abstract Argumentation Frameworks
(AAFs) enabling a “qualitative” representation of the uncer-
tainty involving arguments and attacks. Basically, an iAAF
is an AAF where the set of arguments (resp., attacks) is
partitioned into the sets of certain and uncertain arguments
(resp., attacks): certain arguments/attacks are those whose
presence in the argumentation is sure, while uncertain ar-
guments/attacks may not occur in the argumentation. As
observed in [Baumeister et al., 2018; Coste-Marquis et al.,
2007; Cayrol et al., 2007], iAAFs are well-suited for model-
ing a number of situations. For instance, when representing a
dispute that may be participated by several agents, it is natural
to model the arguments claimed by agents whose participa-
tion is not guaranteed as uncertain. Analogously, arguments
encoding alternative interpretations of the same claim should
be considered as uncertain, when it is not known which of
them catches the intended meaning of the claim.

An iAAF compactly encodes the set of the alternative com-
binations of arguments and attacks that can actually occur in
the argumentation. Each combination is called “completion”
and is an AAF containing all the certain arguments/attacks
of the iAAF plus a subset of its uncertain arguments/attacks.
In order to take into account the possibility of different sce-
narios for the argumentation (as represented by the comple-
tions), the traditional notion of extension for an AAF has
∗Contact Author

been re-formulated in terms of i∗-extension [Fazzinga et al.,
2020]: A set of arguments S is a possible (resp., necessary)
i∗-extension of the iAAF IF if, for some (resp., every) com-
pletion F of IF , the set S is an extension of F .

Example 1 Consider the iAAF IF over the arguments
a, b, c, d and the attacks (a, b), (c, d), (d, c) depicted in Fig. 1
(disregard the dotted edges for now). Arguments a, b, c are
the only uncertain terms of the argumentation, so IF has 8
completions (denoted as pairs 〈 arguments, attacks 〉):
F1 = 〈{d}, ∅〉; F2 = 〈{a, d}, ∅〉; F3 = 〈{a, b, d}, {(a, b)}〉;
F4 = 〈{a, c, d}, {(c, d), (d, c)}〉;
F5 = 〈{a, b, c, d}, {(a, b), (c, d), (d, c)}〉; F6 = 〈{b, d}, ∅〉;
F7 = 〈{b, c, d}, {(c, d), (d, c)}〉;
F8 = 〈{c, d}, {(c, d), (d, c)}〉.
The set {a, c} is a possible i∗-extension (under the admissi-
ble semantics), since it is an admissible extension in at least
one completion of IF (such as F4 and F5). It is easy to see
that, among others, also {b, d} and {b, c} are possible admis-
sible i∗-extensions. Under the necessary perspective, the only
admissible i∗-extensions are ∅ and {d}.

A limit of the reasoning paradigm over iAAFs is that it
does not take into account possible correlations between ar-
guments/attacks. In fact, there can be dependencies between
the arguments/attacks implying that some completions repre-
sent scenarios that cannot actually occur, and this may deeply
affect the reasoning process, as shown in Example 2.

Example 2 Assume that the iAAF IF of Example 1 models
the arguments that can be introduced during a trial, and that
the uncertain arguments a, b, c are not independent. In par-
ticular, b and c are alternative interpretations of the same fact
given by the two expertsXb andXc, and the defendant has to
choose who betweenXb andXc will testify: thus, exactly one
argument in {b, c} will occur in the argumentation. More-
over, the analyst knows that if b occurs in the argumentation,
also a will occur, since a is claimed by an expert Xa that the
prosecutor always uses to disqualify what said by Xb. The
analyst thinks that the prosecutor may put Xa on the stand
even if Xb is not called by the defendant, thus the implica-
tion between b and a in one way only. These dependencies
can be formally written as CHOICE(b, c) and b ⇒ a, and are
depicted in Fig. 1 as suitably labeled dotted edges.

It is easy to see that some of the completions enumerated
in Example 1 encode scenarios that cannot occur. Specifi-
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Figure 1: Grey nodes are uncertain arguments. IMPLY- and CHOICE-
labeled edges represent dependencies, the other edges are attacks

cally, F1, F5, F7 are not possible, since they violate the fact
that exactly one expert will be called by the defendant (i.e.
CHOICE(b, c)), and F6 is not possible as well, since it vio-
lates the constraint that if b occurs, also a occurs (i.e. b⇒ a).
Hence, the only “valid” completions are F3, F4 and F8.

This entails that some of the conclusions drawn in Ex-
ample 1 must be revised: when verifying if a set is an i∗-
extension, one should focus only on the valid completions.
Hence, under the possible perspective, {b, d} is not an admis-
sible i∗-extension, since in all the valid completions where b
and d occur together, the attack from a to b is not counterat-
tacked. Analogously, {b, c} is not an admissible i∗-extension,
since there is no valid completion containing b and c.

Example 2 shows that disregarding the correlations be-
tween the terms of the argumentation can yield wrong assess-
ments: for instance, under the possible perspective, it may
happen that the completions witnessing that a set S is an i∗-
extension are not scenarios that can occur in practice. Hence,
disregarding the correlations may lead the analyst to wrongly
consider S as a reasonably “robust” set of arguments (as hap-
pens in examples 1 and 2 for {b, d} and {b, c}).

The main contribution of this paper is a study of funda-
mental problems supporting the reasoning over iAAFs in the
presence of correlations. In particular, we focus on the case
of argument-incomplete AAFs (aiAAFs) [Baumeister et al.,
2015], i.e. iAAFs where the uncertainty involves only the
arguments, as in examples 1, 2. Starting from them, we in-
troduce “aiAAFs with dependencies” (daiAAFs), where the
analyst is allowed to specify correlations involving the uncer-
tain arguments. We consider a practical setting, where cor-
relations can be expressed in a user-friendly manner: the an-
alyst can specify a set of logical dependencies, where each
dependency is the application of one n-ary logical connective
(namely, OR, CHOICE, NAND, or⇒) over a set of arguments.
This way of specifying the correlations is prone to be imple-
mented in an intuitive visual interface: binary dependencies
(like the CHOICE and⇒ of Example 2) can be naturally de-
picted as (possibly oriented) labeled edges between the in-
volved arguments, while more general n-ary correlations can
be depicted by circling the involved sets of arguments (see
Fig. 2).

Given this, we characterize the complexity of two prob-
lems:
– DSAT: is there a “valid” completion (i.e. where no depen-

dency is violated) of a given daiAAF? This means deciding
if the specified correlations “make sense”;

– PDVERσ(S): the verification problem for possible i∗-
extensions for a daiAAF under a semantics σ.

In particular, we study the sensitivity of the complexity of
the two problems to the form of dependency used to specify
the correlations, and, for the case of PDVERσ(S), also to the
semantics of extensions (we consider admissible, complete,

grounded, stable and preferred semantics). Table 1 summa-
rizes our results. Interestingly, after observing that DSAT is
itself a source of complexity of PDVERσ(S), we show that
when DSAT is trivial or polynomial-time solvable, the com-
plexity of PDVERσ(S) depends on the combination 〈 depen-
dency, semantics 〉. For some combinations, the complexity is
P , the same as the verification problem over iAAFs in the ab-
sence of correlations, while for others the complexity moves
to NP -complete.

2 Preliminaries
An abstract argumentation framework (AAF) is a pair
〈A,D〉, where A is a finite set, whose elements are called ar-
guments, and D ⊆ A× A is a binary relation over A, whose
elements are called defeats or attacks. Given a set of argu-
ments S and an argument a, we say that “S attacks a” if there
is an argument b in S such that b attacks a, and that “a attacks
S” if there is an argument b ∈ S such that a attacks b. More-
over, we say that a is acceptable w.r.t. S if every argument
attacking a is attacked by S, and say that S is conflict-free if
there is no attack between its arguments.

Several semantics for AAFs have been proposed to iden-
tify “reasonable” sets of arguments, called extensions [Dung,
1995]. A set S ⊆ A is: an admissible extension (ad) iff S
is conflict-free and all its arguments are acceptable w.r.t. S; a
stable extension (st) iff S is conflict-free and S attacks each
argument inA\S; a complete extension (co) iff S is admissi-
ble and S contains all the arguments that are acceptable w.r.t.
S; a grounded extension (gr) iff S is a minimal (w.r.t. ⊆)
complete set of arguments; a preferred extension (pr) iff S is
a maximal (w.r.t. ⊆) complete set of arguments.

We recall the notion of argument-incomplete Abstract Ar-
gumentation Framework (aiAAF) [Baumeister et al., 2015].

Definition 1 (aiAAF) An argument-incomplete Abstract Ar-
gumentation Framework is a tuple 〈A,A?, D〉, where A and
A? are disjoint sets of arguments and D is a set of attacks be-
tween arguments in A ∪ A?. The arguments in A (resp., A?)
are said to be certain (resp., uncertain), i.e. they are guaran-
teed (resp., not guaranteed) to occur in the argumentation.

An aiAAF compactly represents the alternative scenarios
for the argumentation, i.e. all the possible combinations of
arguments and attacks that can occur according to what is
certain and uncertain. Each scenario is called completion.

Definition 2 (Completion) Given an aiAAF IF =
〈A,A?, D〉, a completion for IF is an AAF F = 〈A′, D′〉
where A ⊆ A′ ⊆ (A ∪A?) and D′ = D ∩ (A′ ×A′).

In [Fazzinga et al., 2020], i∗-extensions were introduced to
adapt the notion of extension to the case of iAAFs (and, con-
sequently, to aiAAFs). Specifically, since an iAAF encodes
several alternative scenarios, i∗-extensions were defined un-
der both the possible and the necessary perspective, where the
condition of being extension is required to be true in at least
one and every scenario, respectively. Example 1 contains ex-
amples of possible and necessary i∗-extensions over aiAAFs.

Definition 3 (i∗-extension) Given an aiAAF IF and a se-
mantics σ, a set S is a possible (resp., necessary) i∗-extension
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for IF (under σ) if, for at least one (resp., for every) comple-
tion F of IF , the set S is an extension of F under σ.

3 Specifying Correlations over aiAAFs
The reasoning paradigm based on i∗-extensions considers the
uncertain arguments as “independent”: the presence/absence
of an argument is not supposed to influence the presence of
other arguments. In fact, when addressing the verification
problem, every completion is a potential witness (resp.,
counter-witness) of the fact that S is an i∗-extension under
the possible (resp., necessary) perspective. However, the
independence assumption may not be reasonable, since some
correlation is known to exist between uncertain arguments,
and this has important consequences, as discussed below.

Impact of the correlations on the reasoning. As shown
in Example 2, introducing dependencies may have the effect
of discarding some completions, as they turn out to describe
scenarios that cannot occur. This has a strong impact on the
reasoning. In fact, under the possible perspective, a set that
is an i∗-extension when dependencies are not considered
may be no longer an i∗-extension when dependencies are
taken into account (Example 2 shows that this happens
with {b, c} and {b, d}, since the completions witnessing
that they are extensions are impossible scenarios, according
to the CHOICE- and IMPLY- dependencies). Under the
necessary perspective, a set that, with no dependency, is
not an i∗-extension may become an i∗-extension when the
dependencies are considered. For instance, consider an
aiAAF consisting in a conflict-free set S of certain arguments
and two uncertain arguments a and b attacking each other. If
no dependency is considered, S is not a necessary complete
i∗-extension, as there are two completions F1 and F2 where
S is not complete (i.e. the completions where either b or
a is missing). Consider now the two IMPLY-dependencies
a ⇒ b and b ⇒ a. It is easy to see that, considering these
dependencies, F1 and F2 cannot be considered as possible
scenarios, and S becomes a necessary complete i∗-extension.

Embedding correlations into aiAAFs. We now introduce
the forms of dependency that we allow to use for encoding the
known correlations. In order to make the task of specifying
them easy and intuitive, we consider dependencies expressed
by commonly used logical connectives.

Definition 4 (Dependency) A dependency δ over an aiAAF
IF = 〈A,A?, D〉 is an expression X ⇒ Y (IMPLY∨-
dependency) or OP(X) (OP-dependency), where OP ∈ {OR,
NAND, CHOICE} and X , Y are non-empty subsets of A?.

Imposing dependencies allows the user to distinguish
“valid” completions from “invalid” completions (i.e. scenar-
ios that can actually occur from impossible scenarios).

Definition 5 (Valid completion) A completion F =
〈A′, D′〉 is valid w.r.t a dependency δ (written F |= δ) iff

– δ is OR(X) and X ∩A′ 6= ∅,
– δ is NAND(X) and X ∩A′ ⊂ X ,
– δ is CHOICE(X) and |X ∩A′| = 1,
– δ is X ⇒ Y and, if X ⊆ A′, then Y ∩A′ 6= ∅.

F is valid w.r.t. a set of dependencies ∆ if ∀δ ∈ ∆ F |= δ.

Thus, an OR- (resp., CHOICE-) dependency imposes that at
least (resp., exactly) one of the specified arguments is in the
completion; a NAND-dependency imposes that the specified
arguments cannot occur all together; IMPLY∨ means that
if a completion contains all the arguments on the left-hand
side, then it must contain at least one of the arguments of
the right-hand side. We did not consider AND and NOR as
here they make no sense: an AND- (resp., NOR-) dependency
requires that each (resp., none) of the specified arguments
is in the completion, but this can be done by putting these
arguments in A (resp., removing these arguments from A?).

Definition 6 (daiAAF) An argument-incomplete Abstract
Argumentation Framework with dependencies (daiAAF) is a
pair DIF = 〈IF,∆〉, where IF is an aiAAF and ∆ a set of
dependencies over IF .

The completions of a daiAAF DIF = 〈IF,∆〉 are the com-
pletions of IF , and the valid completions of DIF are the
completions valid w.r.t. ∆. The notion of i∗-extension is nat-
urally adapted to daiAAFs to take into account in the reason-
ing only the valid completions.

Definition 7 (i∗-extensions over daiAAFs) Given a daiAAF
DIF and a semantics σ, a set of arguments S is a possible
(resp., necessary) i∗-extension for DIF (under σ) if, for at
least one (resp., for every) valid completion F of DIF , the
set S is an extension of F under σ.

Motivation of the forms of the dependencies and their
expressiveness. In the context of abstract argumentation,
since the structure of arguments is not modeled, it is reason-
able to model correlations as propositional formulae over sets
of variables representing the presence of arguments. Now,
any propositional formula Φ of this kind can be expressed as
a set of dependencies of our form. In fact, every clause C of a
CNF Φ can be translated into a single dependency, reasoning
by cases on the form of C:
– C = x1 ∨ · · · ∨ xn (i.e. C contains only positive literals):
C is equivalent to OR(x1, · · · , xn),

– C = ¬x1 ∨ · · · ∨ ¬xn (i.e. C contains only negative liter-
als): C is equivalent to NAND(x1, . . . , xn),

– C = ¬x1 ∨ · · · ∨ ¬xm ∨ xm+1 ∨ · · · ∨ xn (i.e. C con-
tains both positive and negative literals): C is equivalent
to x1, . . . , xm ⇒ xm+1, . . . , xn

Thus, a first motivation for considering these forms of depen-
dency is that they are “maximally” expressive (w.r.t. what is
reasonably supposed to be expressible).

Observe that what said above means that CHOICE-
dependencies are not strictly necessary, as they could be
translated into sets of dependencies of the other forms. How-
ever, our choice to include CHOICE as a form of dependency
is aligned with the rationale of expressing the correlations as
a set of dependencies rather than as a propositional formula
with ∧, ∨, ¬ and brackets: providing the analyst with a set
of “intuitive” primitives, whose name explicitly describes the
semantics of the correlations. Furthermore, in practical cases,
encoding the correlations into the set ∆ gives the possibil-
ity to distinguish the various forms of correlations imposed
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by the analyst, which could be otherwise “hidden” if a gen-
eral propositional formula were used. This allows us to pro-
vide the contribution presented in the next section: a fine-
grained analysis of the impact of correlations on the compu-
tational complexity of the fundamental reasoning problems
over aiAAFs. This contribution is still of interest if a propo-
sitional formula is used to encode correlations instead of the
set of dependencies: our study can be viewed as a sensitivity
analysis of the complexity of the reasoning tasks w.rt. some
syntactic restrictions of practical interest.

4 Reasoning over daiAAFs
We first introduce two fundamental problems that support the
reasoning over daiAAFs and that are the object of our study.

Definition 8 (DSAT) DSAT is the problem of verifying the
existence of a valid completion of a given daiAAF DIF .

Definition 9 (PDVERσ(S)) Let DIF be a daiAAF, S a set
of arguments, and σ a semantics. PDVERσ(S) is the problem
of verifying if S is a possible i∗-extension for DIF under σ.

Basically, DSAT is the problem of deciding if the set of
dependencies specified in a daiAAF is not contradictory, and
is somehow preliminary to the reasoning task encoded by the
verification problem PDVERσ(S). As for the latter, observe
that we focus on the possible perspective, and defer the study
of the verification of necessary i∗-extensions to future work.

We thoroughly analyze the complexity of DSAT and
PDVERσ(S): we investigate its sensitivity to the form of de-
pendencies appearing in the daiAAF and, for PDVERσ(S),
also to the semantics σ. In order to obtain fine-grained in-
sights on the sources of complexity, we include in our anal-
ysis two restrictions of the dependencies of Definition 4,
namely CHOICE2-dependency (i.e. an CHOICE over a pair of
arguments) and IMPLY-dependency (i.e. a⇒ with a singleton
on the right-hand side, thus no disjunction in the head).

The results are summarized in Table 1. Here, EMPTY
means ∆ = ∅, and the corresponding row is a result from
[Fazzinga et al., 2020], where the verification problem over
iAAFs (with no dependencies) was shown to be in P for
σ ∈ {ad,st,co,gr} and Σp2-complete for σ = pr.
ANY OTHER stands for “any combination of 2, 3, or more
forms of dependencies different from the combinations in the
other rows”. The combinations summarized in ANY OTHER
are those whose complexity is implied by the other rows. This
does not happen, for instance, for OR+NAND, that is in a dis-
tinguished row: in this case, the NP -completeness of DSAT
and of PDVERσ(S) under σ ∈ {ad,st} is not implied by the
polynomiality of these problems with only OR or only NAND.

The relevance of our sensitivity analysis is that, besides
giving an insight on the sources of complexity of DSAT and
PDVERσ(S), it highlights the presence of restrictions (to the
set of logical connectives) that are of practical interest (as
they still allow the analyst to model several scenarios) and
that make reasoning over daiAAFs an efficient task.

Complexity of DSAT. The correctness of the results in Ta-
ble 1 on DSAT is stated in the following theorem. Observe
that, in Table 1, “Trivial” means that DSAT is always true.

DSAT PDVERσ(S)

ad,st co gr pr

1 EMPTY Trivial P P P Σp2
2 OR Trivial P P NP Σp2
3 NAND Trivial P NP NP Σp2
4 IMPLY∨ Trivial NP NP NP Σp2
5 IMPLY Trivial P NP NP Σp2
6 CHOICE NP NP NP NP Σp2
7 CHOICE2 P P NP NP Σp2
8 OR+NAND NP NP NP NP Σp2
9 OR+CHOICE2 NP NP NP NP Σp2
10 NAND+CHOICE2 NP NP NP NP Σp2
11 IMPLY+CHOICE2 NP NP NP NP Σp2
12 IMPLY∨+OR Trivial NP NP NP Σp2
13 IMPLY+OR Trivial NP NP NP Σp2
14 IMPLY∨+NAND Trivial NP NP NP Σp2
15 IMPLY+NAND Trivial P NP NP Σp2
16 ANY OTHER NP NP NP NP Σp2

Table 1: Complexity of DSAT and PDVERσ(S), where NP means
NP -complete and Σp2 means Σp2-complete

This is obvious for the case where ∆ = ∅, and can be straight-
forwardly seen in the other cases: when at most IMPLY∨

and OR are allowed, the completion containing all the un-
certain arguments is always valid; when at most IMPLY∨ and
NAND are allowed, the completion where all the uncertain ar-
guments are discarded is valid.

Theorem 1 The complexity of DSAT, for the various restric-
tions on the set of allowed forms of dependencies, is that re-
ported on the second column of Table 1.

Complexity of PDVERσ(S). We first introduce general
upper bounds for PDVERσ(S) that are independent from the
allowed forms of dependencies.

Theorem 2 PDVERσ(S) is inNP for σ ∈ {ad,st,co,gr}
and in Σp2 for σ = pr.

The following two theorems distinguish two cases where
this upper bound is not strict, as PDVERσ(S) is in P .

Theorem 3 PDVERσ(S) is in P if σ ∈ {ad,st} and
only IMPLY+NAND or only one among OR, NAND, IMPLY,
CHOICE2 is allowed.

Theorem 4 PDVERσ(S) is in P when σ = co and only OR
dependencies are allowed.

We now move to the cases not covered by Theorems 3, 4,
showing that the upper bounds of Theorem 2 become strict.
For some rows of Table 1 (i.e. 6, 8, 9, 10, 11, 16), this is
implied by the following proposition, entailing that if DSAT
is NP - hard, also PDVERσ(S) is NP -hard.

Proposition 1 For any σ ∈ {ad,st,co,gr,pr}, there is
a Karp-reduction from DSAT to PDVERσ(S), where the de-
pendencies allowed in PDVERσ(S) and DSAT are the same.
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Proof. Given an instance Isat of DSAT consisting in the da-
iAAF 〈IF,∆〉, consider the instance Iver of PDVERσ(S)
consisting in the pair

〈
〈IF ′,∆〉, S

〉
, where IF ′ is IF aug-

mented with a new argument x attacking all the arguments in
IF , and S = {x}. It is easy to see that the answer of Isat
coincides with the answer of Iver for any σ. 2

We now consider the cases where DSAT is not NP -hard,
thus the NP lower bound for PDVERσ(S) must be proved.

Theorem 5 If only OR-dependencies are allowed,
PDVERσ(S) is NP -hard under σ = gr.

Proof. We show a reduction from SAT. Let Φ be a 3CNF and
DIF (Φ) =

〈
〈A,A?, D〉,∆

〉
be the daiAAF constructed as

follows. For each variable xi in Φ, A contains the pair of
arguments i, i′ and A? the pair of arguments xi, ¬xi, while
D contains the four attacks (xi, i), (i,¬xi), (¬xi, i′), (i′, xi),
and ∆ contains the dependency OR(xi,¬xi). Moreover, for
each clause Cj = lj1∨ l

j
2∨ l

j
3 in Φ (where every lji is a literal),

∆ contains OR(lj1, l
j
2, l

j
3). See the left-hand side of Fig. 2 for

an example of construction. We prove the equivalence: “Φ
is satisfiable” ⇔ “S = {1, 1′, 2, 2′, . . . , n, n′} is a possible
i∗-extension of DIF (Φ) under σ = gr”.
⇒: Given a truth assignment ta making Φ true, let F be the
completion of IF (Φ) containing, for each i ∈ [1..n], the ar-
gument xi if ta(xi)= true, and ¬xi otherwise. Obviously, F
is a valid completion. Moreover, S is the grounded extension
for F since, for each i ∈ [1..n], one of the arguments i, i′ is
attacked by no argument, and defends the other one.
⇐: Let F be a valid completion whose grounded extension is
S. Since S contains, for each i ∈ [1..n], both i and i′, at least
one of the arguments xi,¬xi must not belong to F . Com-
bining this with what imposed by dependency OR(xi,¬xi),
we have that F contains exactly one of these arguments, for
each i ∈ [1..n]. Hence, F encodes a truth assignment ta for
x1, . . . , xn, where ta(xi) = true iff xi belongs to F . As F
is valid, the OR-dependencies encoding the clauses of Φ are
satisfied, thus ta is a truth assignment making Φ satisfied. 2

Theorem 6 If only IMPLY-dependencies are allowed,
PDVERσ(S) is NP -hard under σ ∈ {co,gr}.
Proof. We prove the case σ = co (the same reasoning works

x1

x1

11'

x2

x2

22'

x3

x3

33'

x4

x4

44'

OR

OR

OR

OR

OR

OR

x1

x1

na1

C1

IMPLY

x2

x2

na2

IMPLY

C2

x3

x3

IMPLY

na3

IMPLY
IMPLY

2v1 2v2 2v3

Figure 2: Left: construction of Theorem 5 for Φ = (x1 ∨ ¬x2 ∨
x3) ∧ (¬x1 ∨ ¬x3 ∨ x4); Right: construction of Theorem 6 for
Φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3)

for σ = gr). We show a reduction from SAT. Let Φ be
a 3CNF and DIF (Φ) =

〈
〈A,A?, D〉,∆

〉
the daiAAF con-

structed as follows. For each variable xi, A? contains the two
arguments xi, ¬xi, and the argument 2vi (meaning that two
truth values have been assigned to xi), while A contains the
argument nai (meaning that xi has not been assigned a truth
value). In turn,D contains the attacks (xi, xi), (¬xi,¬xi), as
well as (xi, nai) and (¬xi, nai). Moreover, for each clause
Cj = lj1 ∨ l

j
2 ∨ l

j
3, A? contains the argument ¬Cj , and ∆ the

dependency lj1, l
j
2, l

j
3 ⇒ ¬Cj , where ljk is the argument rep-

resenting the negation of ljk, for each k ∈ [1..3]. Finally, ∆
contains xi,¬xi ⇒ 2vi, for each i ∈ [1..n]. See the right-
hand side of Fig. 2 for an example of construction. We prove
the equivalence: “Φ is satisfiable” ⇔ “∅ is a complete i∗-
extension for DIF (Φ)”.
⇒: Given a truth assignment ta for x1, . . . , xm making Φ
true, let F be the completion ofDIF (Φ) containing, for each
i ∈ [1..n], the argument xi if ta(xi) = true, and ¬xi other-
wise, but no other argument from A?. Obviously, F is valid,
since: 1) putting in F exactly one between xi and ¬xi does
not trigger any implication xi,¬xi ⇒ 2vi (which would have
required the presence of 2vi in F ); 2) as ta makes Φ true, no
implication lj1, l

j
2, l

j
3 ⇒ ¬Cj is triggered in F . Moreover, F

admits no admissible extension other than ∅: an admissible
extension S can contain no argument of the form xi or ¬xi
(since they are self-attacking arguments), and no argument
nai (since these arguments cannot be defended from the at-
tacks from xi or ¬xi).
⇐: Let F be a valid completion whose complete extension is
S = ∅. The validity of F and the fact that S = ∅ imply that,
for each i ∈ [1..n], F contains at most one between xi and
¬xi (otherwise, the dependency xi,¬xi ⇒ 2vi would have
implied the presence of 2vi in F , and since this argument is
not attacked, it should belong to S). Moreover, since ∅ is
complete, there can be no unattacked nai. Since the only at-
tacks towards nai in D are from xi and ¬xi, this means that
F , for each i ∈ [1..n], contains exactly one between xi and
¬xi. Hence, F encodes a truth assignment ta for x1, . . . , xn,
where ta(xi) = true iff xi belongs to F . Since ∅ is a com-
plete extension, it means that F contains no argument ¬Cj (if
there were some ¬Cj in F , it would be not attacked and thus
present in S). This means that, for every clause Cj , no IM-
PLY-dependency with ¬Cj on its right-hand side is triggered
in F , thus ta makes all the clauses true. 2

The remaining NP -hard cases are stated in the Theorem 7.

Theorem 7 If only NAND- or only CHOICE2- dependen-
cies are allowed, PDVERσ(S) is NP -hard under σ ∈
{co,gr}. If only IMPLY∨- or only IMPLY+OR- depen-
dencies are allowed, PDVERσ(S) is NP -hard under σ ∈
{ad,st,co,gr}.

Finally, we consider the preferred semantics. Here, the
lower bound is implied by the literature of aiAAFs without
dependencies [Baumeister et al., 2018].

Theorem 8 PDVERσ(S) is Σp2-hard under σ = pr.
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4.1 Summary and Discussion of the Results
As for DSAT, the satisfiability for some forms of dependen-
cies (see rows 1-5, 12-15 of Table 1) is always guaranteed, for
others (CHOICE2) it can be checked in polynomial time, and
for all the other cases DSAT is NP -complete. Observe that
the expressiveness of the (combined) forms of dependencies
for which DSAT isNP -complete is not necessarily the same:
for instance, it is easy to see that our CHOICE-dependencies
(for which DSAT is NP -complete) are not sufficient to ex-
press some correlations encoded by a propositional formula.

As for PDVERσ(S), our analysis highlights three sources
of complexity: 1) the forms of dependencies, 2) the seman-
tics of extensions, and 3) the combination of 1) and 2). In
fact, when DSAT is NP -hard, also PDVERσ(S) is NP -
hard. However, even for the (combined) forms of depen-
dencies making DSAT trivial or in P , PDVERσ(S) may
be hard. Specifically, whatever the form of dependency
is, PDVERσ(S) is Σp2-complete under σ = pr, and NP -
complete under σ = gr. However, the Σp2-hardness under
σ = pr is independent from the presence of dependencies
(since it holds even over “traditional” aiAAFs, where ∆ = ∅),
while under σ = gr PDVERσ(S) is in P if ∆ = ∅. The re-
maining combinations 〈 form of dependency, semantics 〉 are
more intricate. Specifically, under σ = co, PDVERσ(S) is
in P only if we restrict ∆ to contain only OR-dependencies.
Under σ ∈ {ad,st}, PDVERσ(S) is in P only if we restrict
∆ to contain OR-dependencies, or CHOICE2-dependencies, or
combinations of IMPLY- and NAND- dependencies. Allowing
combinations of dependencies behind these polynomial cases
makes the complexity explode.

5 Related Work
i∗-extensions have been introduced in [Fazzinga et al., 2020]
as a revision of the i-extensions defined in [Baumeister et al.,
2018]. The difference between i∗- and i- extension is in the
set used to decide if S is an extension: in the latter, the pro-
jection of S over the completions is used, rather than S. This
projection can cause counter-intuitive side-effects, e.g., even
a conflicting set can be an i-extension. In fact, the notion of
accepted arguments used in the literature of iAAFs [Baumeis-
ter et al., 2021] corresponds to argument belonging to some
(or every) i∗-extension (and not i-extension). Our sensitivity
analysis does not apply to i-extensions as PDVERσ(S) in that
case is already NP -complete for σ = ad.

Constraints in argumentation have been little investigated.
In [Coste-Marquis et al., 2006], AAFs are augmented with
a propositional formula with the aim of refining the set of
extensions. They do not consider uncertain terms. In the dy-
namic scenario, [Wallner, 2020] considers constraints to limit
the admitted structural modifications when the sets of argu-
ments and attacks are updated on abstract dialectical frame-
works (ADFs) [Brewka et al., 2017]. In this regard, the
general relationship between argument-incomplete AAFs and
ADFs needs some further investigation as the latter may be
capable of encoding uncertain arguments and correlations.

Beside the already mentioned, other works dealing with
uncertainty in AAFs are the following. The Partial Argumen-
tation Framework (PAF) [Cayrol et al., 2007] mainly differs

from iAAFs since the semantics of extensions is not based on
completions, but on a revised notion of admissibility (where,
depending on the desired level of cautiousness, only certain
attacks or also uncertain attacks must be defended). Reason-
ing over iAAFs’ extensions is also related to revising AAFs to
enforce the existence of an extension [Baumann and Ulbricht,
2019], or to make a set an extension [Coste-Marquis et al.,
2015] (where, however, only minimal sets of changes are con-
sidered), and to the credulous/skeptical conclusion problems
in Control Argumentation Frameworks (CAFs) [Dimopoulos
et al., 2018]. In this regard, embedding correlations in CAFs
is an interesting research direction.

Several variants of AAFs where the uncertainty is quan-
titatively specified have been proposed. Some of them al-
low the specification of preferences and/or weights [Bench-
Capon, 2003; Amgoud and Vesic, 2011; Modgil, 2009;
Dunne et al., 2011; Coste-Marquis et al., 2012; Brewka et
al., 2014]. In other approaches, uncertainty is specified via
probabilities, according to the “epistemic” [Thimm, 2012;
Hunter and Thimm, 2014]), or the “constellation” paradigm
(prAAFs) [Hunter, 2014; Dung and Thang, 2010; Doder and
Woltran, 2014; Dondio, 2014; Hunter, 2012; Li et al., 2011;
Fazzinga et al., 2015]. The last ones are the most related to
our framework, as prAAFs can be seen as iAAFs where a
probability distribution (pdf) is defined over the completions.
Typically, the correlations are hidden in the specified pdf, that
is defined by enumerating the completions and explicitly as-
signing a probability to each of them. Up to our knowledge,
the only form of prAAF allowing the explicit specification of
correlations is IND-D [Fazzinga et al., 2019], but only mutual
exclusion and co-existence can be expressed.

6 Conclusions
An extension of argument-incomplete AAFs has been inves-
tigated, where the analyst is allowed to specify correlations
among the uncertain arguments by imposing different forms
of dependencies. The impact of the presence of correlations
on the complexity of the satisfiability and the verification
problems (under the possible perspective and for Dung’s se-
mantics) has been thoroughly investigated, by studying the
sensitivity of the complexity to the form of dependencies used
to define the correlations. Future directions of research stem-
ming from this work are extending our study to characterize
the complexity of the verification problem under the neces-
sary perspective, and the search for islands of tractability for
the NP -hard cases related to syntactic restrictions of the log-
ical connectives that are still of practical interest.
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