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Abstract
Given a knowledge base and an observation as a set
of facts, ABox abduction aims at computing a hy-
pothesis that, when added to the knowledge base,
is sufficient to entail the observation. In signature-
based ABox abduction, the hypothesis is further re-
quired to use only names from a given set. This
form of abduction has applications such as diagno-
sis, KB repair, or explaining missing entailments. It
is possible that hypotheses for a given observation
only exist if we admit the use of fresh individuals
and/or complex concepts built from the given sig-
nature, something most approaches so far do not
support or only support with restrictions. In this
paper, we investigate the computational complex-
ity of this form of abduction—allowing either fresh
individuals, complex concepts, or both—for vari-
ous description logics, and give size bounds on the
hypotheses if they exist.

1 Introduction
Description logics (DLs) are a powerful formalism to de-
scribe knowledge bases (KBs) containing both general do-
main knowledge from a DL ontology and a set of facts (the
ABox). Using a DL reasoner, we can then infer informa-
tion that is implicit in the data, and can be logically deduced
based on the ontology [Baader et al., 2017]. Sometimes it is
useful to not only reason about what logically follows from
a DL KB, but to reason also about what does not follow. In
abduction, we are given a KB as background knowledge, in
combination with a set of facts (the observation) that cannot
be deduced from the background knowledge. We are then
looking for the missing piece in the background knowledge
(the hypothesis) that is needed to make the observation logi-
cally entailed [Elsenbroich et al., 2006]. This form of reason-
ing has many applications: 1) it can be used to explain why
something cannot be deduced [Calvanese et al., 2013], 2) it
can be used for diagnosis tasks, giving the hypothesis as pos-
sible explanation for an unexpected observation [Obeid et al.,
2019], and 3) it can be used in KB repair to give hints on how
to fix missing entailments [Wei-Kleiner et al., 2014].

As a simplified application example from the geology do-
main, assume we have observed that in an area near a canal,

holes appeared in the street as a result of subsidence due to
an unstable ground. A possible explanation could involve
the presence of a formation of so-called evaporite below the
street, which dissolves when in contact with water [Fidelibus
et al., 2011]. Our background knowledge consists of a ge-
ology ontology together with data about the area. Among
others, it contains the following abbreviated axioms:

1. EvaFor u ∃bord.(Wat u ¬∃lin.WatPro) v ∃aff.Dis
2. EvaFor u ∃aff.Dis v ∀abov.Unst
3. (Wat t Str) u EvaFo v ⊥ 4. Wat(can) 5. Str(str)

which state that 1. an Evaporite Formation which borders to
a Waterway without Water-Proof lining will be affected by
Dissolution; 2. All ground above an evaporite formation af-
fected by dissolution is Unstable; 3. waterways and Streets
are not evaporite formations; 4. can is a waterway; 5. str is
a street. Our observation would be that the street is unstable:
Unst(a1), and a hypothesis based on our background knowl-
edge would be

H = { EvaFor(e), abov(e, str), bord(e, can), ∀lin.⊥(can) }
stating that there is an evaporite formation e below the street
that borders with the canal, and that the canal has no lining. A
team of geologists can then verify the hypothesis by analysing
the canal and the ground below the street. We highlight two
aspects of this hypothesis: 1) it refers to a previously un-
known individual, the evaporite formation, and 2) it uses a
complex (composed) DL concept (∀lin.⊥). We are interested
in hypotheses like this for signature based abduction, where
we are additionally given a signature Σ of abducibles—a vo-
cabulary of names to be used within the hypothesis [Koop-
mann et al., 2020]. The aim of Σ is to restrict to hypotheses
that have explanatory character. In the present example, we
would exclude aff and Dis from Σ, as the dissolution alone
would be a too shallow explanation, and Wat, because we al-
ready know the waterways in the area. Furthermore, we are
looking at ABox abduction, in which observations and hy-
potheses are ABoxes, in contrast to TBox abduction [Du et
al., 2017; Wei-Kleiner et al., 2014], KB abduction [Koop-
mann et al., 2020; Elsenbroich et al., 2006] or concept ab-
duction [Bienvenu, 2008].

While there are practical approaches to ABox abduction
without signature-restriction [Klarman et al., 2011; Halland
and Britz, 2012; Pukancová and Homola, 2017], works on
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signature-based ABox abduction often restrict hypotheses to
flat ABoxes with a given set of individuals [Ceylan et al.,
2020; Du et al., 2012]—which essentially means that state-
ments in a hypothesis can be picked from a finite set—or
they restrict to rewritable DLs which have limited expressiv-
ity [Du et al., 2014; Calvanese et al., 2013]. As with DLs,
we usually have the open-world semantics, in which not all
individuals are known, and DLs offer much more expressiv-
ity, it is a natural next step to look also at abduction allow-
ing for fresh individuals and complex concepts in the result.
This changes the nature of the abduction problem drastically
as there is now an unbounded set of axioms that may occur
in a hypothesis. Problems such as “Does axiom α belong to
some/every/an optimal solution?” [Calvanese et al., 2013;
Ceylan et al., 2020] become less helpful while new questions
become interesting, such as whether we can give bounds on
the number of individuals in a hypothesis, or on the overall
size of the hypothesis.

Without understanding the theoretical properties yet, prac-
tical methods for signature-based abduction that admit ex-
pressive DL concepts in the hypothesis are presented in
[Koopmann et al., 2020; Del-Pinto and Schmidt, 2019]. The
authors there consider hypotheses that we would call com-
plete in the sense that they cover all hypotheses at the same
time. To make this possible, solutions are represented in a
very expressive DL using non-classical operators such as fix-
points and axiom disjunction. In this setting, ABox abduction
can be reduced to uniform interpolation, which however may
produce solutions that are triple exponentially large [Zhao
and Schmidt, 2017; Lutz and Wolter, 2011]. A natural ques-
tion is whether this blow-up is really necessary, or whether
we can obtain smaller or simpler hypotheses if we drop the
requirement of completeness and look for hypotheses in a
classical DL that is sufficient to entail the observation.

Unfortunately, our results indicate that this is not the case:
if we only allow for fresh individuals but not for complex con-
cepts, hypotheses may require exponentially many assertions
for DLs between EL⊥ and ALCI , while for ALCF there
does not even exist a general bound. If in addition, we allow
for complex concepts, we are able to explain more observa-
tions, but the explanations may become triple exponentially
large in comparison to the input. Motivated by this, we also
consider a variant of the abduction problem in which we are
additionally given a bound on the size of the hypothesis. To
summarize, our contributions are the following.

1. we investigate signature-based ABox abduction for DLs
ranging from EL toALCQI where hypotheses may use
fresh individuals, complex concepts or both,

2. we give tight bounds on the size of hypotheses if they
exist,

3. we analyse the computational complexity of deciding
whether a hypothesis exists, and

4. we analyse the complexity of deciding whether a hy-
pothesis of bounded size exists.

Proof details are provided in the technical report [Koop-
mann, 2021].

2 Description Logics and ABox Abduction
We recall the DLs relevant to this paper [Baader et al., 2017]
and provide the formal definition of the abduction problem
we consider in this paper.

Let NC, NR and NI be three pair-wise disjoint sets of re-
spectively concept, role and individual names. A role R is
either a role name r or an inverse role r−, where r ∈ NR.
EL concepts are built according to the following syntax rule,
where A ∈ NC and R ∈ NR:

C ::= > | A | C u C | ∃R.C
More expressive DLs allow for the following additional con-
cepts, where n ∈ N, and in brackets, we give the name of the
corresponding DL:

⊥ (EL⊥) ¬C (ALC) 61R.>(ALCF) 6nR.C(ALCQ)

In each case, all previous constructs are allowed in the DL
as well. Using the letter I in the DL name we express that
in the above, R may also be an inverse role. For exam-
ple, (≥nr−.C) is an ALCQI concept but not an ALCQ-
concept, and ∃r.⊥ is an EL⊥ concept. Additional operators
are introduced as abbreviations: C tD = ¬(¬C u ¬D) and
∀R.C = ¬∃R.¬C.

A KB is a set of axioms, that is, concept inclusions (CIs)
C v D, concept assertions C(a) and role assertions r(a, b),
where C,D are concepts, a, b ∈ NI and r ∈ NR. If a KB con-
tains only concept and role assertions, it is called ABox, and if
every concept assertion is of the form A(a), where A ∈ NC,
flat ABox. Given a concept/axiom/KB/ABoxE, we denote by
sub(E) the set of (sub-)concepts occurring in E, by sig(E)
the set of concept and role names occuring in E, and by
ind(E) the set of individual names in E. By size(E), we de-
note the number of symbols required to write E down, where
operators, as well as concept, role and individual names count
as one, numbers are encoded in binary and the introduced ab-
breviations can be used.

The semantics of DLs is defined based on interpretations,
which are tuples I = 〈∆I , ·I〉 of a set ∆I of domain el-
ements and an interpretation function ·I which maps ev-
ery a ∈ NI to some aI ∈ ∆I , every A ∈ NC to some
AI ⊆ ∆I , every r ∈ NR to some rI ⊆ ∆I × ∆I , satis-
fies (r−)I = (rI)−, and is extended to concepts as follows,
where #S denotes the cardinality of the set S:

⊥I = ∅ (C uD)I = CI ∩DI (¬C)I = ∆I \ CI

(∃R.C)I = {d ∈ ∆I | 〈d, e〉 ∈ RI , e ∈ CI}
(6nR.C)I = {d ∈ ∆I | #{〈d, e〉 ∈ RI | e ∈ CI} ≤ n}
I satisfies an axiom α, in symbols I |= α, if α = C v D
and CI ⊆ DI ; α = C(a) and aI ∈ CI ; or α = r(a, b)
and 〈aI , bI〉 ∈ rI . If I satisfies all axioms in a KB K,
we write I |= K and call I a model of K. A KB entails
an axiom/KB E, in symbols K |= E, if I |= E for every
model I of K. If K has no model, it is inconsistent and we
write K |= ⊥.

We can now define the main reasoning problem we are con-
cerned with in this paper. We consider signature-based ABox
abduction problems, which for convenience, we just call ab-
duction problems from here on.
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Definition 1. LetL be a DL. AnL abduction problem is given
by a triple A = 〈K,Φ,Σ〉, with an L KB K of background
knowledge, an L ABox Φ as observation, and a signature
Σ ⊆ NC ∪ NR of abducibles; and asks whether there exists a
hypothesis for A, i.e. an L ABoxH satisfying

A1 K ∪H 6|= ⊥, A2 K ∪H |= Φ, and A3 sig(H) ⊆ Σ.

If we require H additionally to be flat, we speak of a flat ab-
duction problem.

Condition A1 is required to avoid trivial solutions, since
everything follows from a basic inconsistency. Condition A2
ensures the hypothesis is indeed effective, and Condition A3
is what makes this a signature-based abduction problem.

In addition, different minimality criteria can be put on the
hypothesis, such as size-, subset-, semantic minimality [Cal-
vanese et al., 2013], or completeness [Koopmann et al.,
2020]. In this paper, we consider size minimality, for which
the corresponding decision problem is the following.
Definition 2. A size-restricted (flat) L abduction problem is
a tuple A = 〈K,Φ,Σ, n〉, where A′ = 〈K,Φ,Σ〉 is a (flat) L
abduction problem and n is a number encoded in binary. A
hypothesis for A is an L-ABoxH which is a hypothesis for A′
and additionally satisfies size(H) ≤ n.

3 Flat ABox Abduction
We first consider flat ABox abduction: the size of hypotheses,
and the complexity of deciding their existence. This prob-
lem is similar to that of query emptiness [Baader et al., 2016]
which asks whether for a given set T of CIs, Boolean query q
and signature Σ, there exists a flat ABoxA with sig(A) ⊆ Σ,
s.t. T ∪ A entails that query. Query emptiness for instance
queries is essentially the special case of flat ABox abduc-
tion where the observation is of the form A(a) and the back-
ground knowledge contains only CIs. This immediately gives
us lower bounds for the decision problem of flat ABox abduc-
tion. The other results in this section do not follow, but can be
shown similarly as in [Baader et al., 2016]. Similar to query
emptiness, flat ABox abduction only becomes interesting if
the DL is powerful enough to create inconsistencies. Other-
wise, we can construct a trivial hypothesis candidate as

H ={A(a) | A ∈ (Σ ∩ NC), a ∈ ind(K ∪ Φ)}
∪{r(a, b) | r ∈ (Σ ∩ NR), a, b ∈ ind(K ∪ Φ)}.

Clearly, H satisfies A1 and A3. If it does not satisfy A2,
then neither would any other ABox. Consequently, if there
is a solution to the abduction problem, then H must be such
a solution. This means that for EL, flat ABox abduction can
always be performed in polynomial time. On the other hand,
already for EL⊥, solutions may require exponentially many
fresh individual names.
Theorem 1. There exists a family 〈Kn,Φ,Σ〉n>0 of flat
EL⊥ abduction problems s.t. every hypothesis is of size ex-
ponential in the size of Kn.

Proof. We set Φ = A(a) and Σ = {B, r}, and let Kn use
concept names X1, X1, . . ., Xn, Xn to encode an exponen-
tial counter. Kn uses this to ensure that an r-chain of distinct

2n elements from a to an instance of B entails A(a).

B v X1 u . . . uXn

∃r.(Xi uXi−1 u . . . X1) v Xi for i ∈ J1, nK

∃r.(Xi uXi−1 u . . . uX1) v Xi for i ∈ J1, nK

∃r.(Xi uXj) v Xi for i, j ∈ J1, nK, j < i

∃r.(Xi uXj) v Xi for i, j ∈ J1, nK, j < i

Xi uXi v ⊥ for i ∈ J1, nK
X1 u . . . uXn v A

The only way to produce this chain of 2n elements is using
2n−1 role assertions, which establishes our lower bound.

This bound remains tight if we add expressivity up to
ALCI , while we lose any bound on the size once we addi-
tionally allow concepts of the form 61r.>.

Theorem 2. If there exists a hypothesis for a flat L abduction
problem A, then there exists one of size

1. polynomial in the size of A if L = EL,

2. exponential in the size of A if L = ALCI , and

3. if L = ALCF , no general upper bound based on A can
be given.

Proof sketch. We already established the bound for L = EL.
For ALCI , we assume there exists some hypothesis H0,
based on which we build one of bounded size. For this, we
pick any model I ofH0∪K, which allows us to identify indi-
vidual names a ∈ ind(H0) using at most exponentially many
types tp(a) = tp(aI)I , where

tp(d)I = {C ∈ sub(K ∪ Φ) | d ∈ CI}.

We associate to every type tp(a) an individual name btp(a),
and define h : ind(H0)→ NI by h(a) = a if a ∈ ind(K ∪ Φ)
and h(a) = btp(a) otherwise. The hypothesisH is then:

{A(h(a)) | A(a) ∈ H0} ∪ {r(h(a), h(b)) | r(a, b) ∈ H0}.

Based on I and h, one can construct a model for K ∪ H, so
thatH satisfies A1. BecauseH0 satisfies A3, by construction,
so does H. Finally, using the fact that h is a homomorphism
from K ∪ H0 into K ∪ H s.t. for every a ∈ ind(K ∪ Φ)
h(a) = a, we can show that K ∪H |= Φ, and thus A2.

For L = ALCF , we note that if there was a bound on the
size of hypotheses, we could decide the instance query empti-
ness problem forALCF by iterating over all candidates, con-
tradicting that this problem is undecidable forALCF [Baader
et al., 2016].

The proof of Theorem 2 indicates how types can be used to
perform abduction, which is used in the following theorem.
Theorem 3. Flat L ABox abduction is

• P-complete for L = EL,

• EXPTIME-complete for L = EL⊥,

• CONEXPTIME-complete for L = ALCI ,

• undecidable for L = ALCF .
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Proof sketch. For EL, we already described a method to com-
pute and verify hypotheses in P. For the other DLs, we use
type elimination to compute in exponential time the set TK∪Φ

of types t ⊆ sub(K∪Φ) that can occur in models ofK. For a
type t and a set T of types, we denote by Sr

T (t) ⊆ T the types
an r-succesor of a t-individual can have. We iterate over all
assignments s : ind(K ∪ Φ)→ TK∪Ψ for which we set

Hs ={A(a) | a ∈ I, A ∈ s(a) ∩ Σ}
∪ {r(a, b) | a, b ∈ I, r ∈ Σ, s(b) ∈ Sr

TK∪Φ
(s(a))},

where I contains an additional individual name for every type
and s is extended to I . If there exists a hypothesis, then the
hypothesis constructed in the proof for Theorem 2 is con-
tained in some such Hs s.t. K ∪ Hs 6|= ⊥, so that we can
directly check A1–A3 from Def. 2 on the generated Hs. A1
can be verified syntactically using the types. For EL⊥, A2 is
verified in time polynomial in the size ofHs and thus in EXP-
TIME. ForALCI , we guess a model of K∪Hs that does not
entail Φ by assigning a type to every individual and possibly
adding a new element per type. If this fails,K∪Hs |= Φ.

4 Abduction with Complex Concepts
As illustrated in the introduction, abduction may only be suc-
cessful if we also admit complex concepts in the hypothesis.
Determining such hypotheses turns out to be more challeng-
ing than for flat hypotheses, and we cannot find a correspon-
dence to a known problem as for flat abduction. Indeed, one
might assume such a relation to uniform interpolation: given
a KB K and a signature Σ, the uniform interpolant of K for
Σ is a Σ ontology that captures all entailments of K within
Σ [Koopmann and Schmidt, 2015]. By negating the observa-
tion, this can be used to perform complete abduction [Koop-
mann et al., 2020; Del-Pinto and Schmidt, 2019], that is, to
compute a hypothesis that would be entailed by any other hy-
pothesis. However, if we are interested just in computing any
hypothesis rather than a complete one, this correspondence
falls short, as uniform interpolants have stronger require-
ments than hypotheses, and the reasons for non-existence are
different: namely, capturing all entailments of K in Σ in the
uniform interpolant, using only names from Σ, may require
infinitely many axioms in case of cyclic axioms. In contrast,
for abduction, non-existence is always due to Condition A1.

We consider abduction for ALC, EL, and EL⊥, starting
with the latter. In EL and EL⊥, complex concepts do not
bring much benefit compared to fresh individuals: an EL⊥
concept can only state the existence of role successors, which
we can also do in flat ABoxes. In fact, for EL⊥, if we allow
complex concepts instead of fresh individuals , hypotheses
even get more complex.

Theorem 4. There exists a family of EL⊥ abduction prob-
lems for which every hypothesis without fresh individuals is
at least of double exponential size. If there exists such a hy-
pothesis, there always exists one of at most double exponen-
tial size, whose existence can be decided in exponential time.

Proof sketch. The family of abduction problems is obtained
similarly as in the proof for Theorem 1, only that we now use
two roles r and s To get the corresponding upper bound, we

first flatten an existing hypothesis H0 and again simplify the
ABox based on the types in some model, however this time
making sure the resulting flat ABox can be translated back
into a complex one without fresh individuals.

The same care has to be taken when we modify the method
used for Theorem 3. Specifically, we have to make sure
that the hypothesis Hs that we generate for a given mapping
s : ind(K ∪ Φ) → TK∪Φ does not contain cycles between
fresh individuals, so that it can be translated into a hypothesis
without fresh individuals. Our fresh individuals are now of
the form ba,t,i, where a ∈ ind(K ∪ Φ), t ∈ T = TK∪Φ, and
i ∈ J1, 2|T |K. Set ba,s(a),0 = a. Hs is then defined as:

Hs =
{
A(ba,t,k) | a ∈ ind(A), t ∈ T, k ∈ J0, 2|T |K,

A ∈ (T ∩ Σ)
}

∪
{
r(ba,t1,k, ba,t2,k+1) | a ∈ ind(K ∪ Φ), t1 ∈ T, r ∈ Σ,

t2 ∈ Sr
T (t1), k ∈ J0, 2|T | − 1K

}
∪
{
r(a, b) | s(b) ∈ Sr

T (s(a))
}

The hardness result requires again ⊥: for EL, we can al-
ways use a flat solution as in the last section. In contrast, with
more expressivity, the problem becomes even harder, even if
we do admit fresh individuals. The reason is that for concepts
of the form ∀r.C, fresh individuals cannot come to the rescue
anymore, and disjunctions may become necessary. The fol-
lowing theorem is shown by a modification of a construction
in [Ghilardi et al., 2006].
Theorem 5. There is a family of ALC abduction problems
for which the smallest (non-flat) ABox hypotheses are triple
exponential in size.

We can show that this bound is tight.
Theorem 6. Let A be an ALC abduction problem. Then,
there exists a hypothesis for A iff there exists a hypothesis of
triple exponential size.

To show this theorem, we use a technique similar as for
Theorem 2: we take an arbitrary hypothesis, and transform
it into one of triple exponential size. However, this time, a
construction based on a single model is not sufficient, and we
have to take into account an appropriate abstraction of several
models of K ∪H0. We thus proceed as follows:

1. we abstract the KB K ∪H0 into a model abstraction,
2. we reduce the size of this abstraction,
3. based on which we construct a hypothesis H of triple

exponential size.
In the model abstraction, elements are represented as nodes

v ∈ V that are labeled with a set λ(v) of types with
the intuitive meaning “this element may have one of the
types in λ(v)”. Role relations are represented using tuples
〈v1, t, r, v2〉 which are read as: if the node v1 has type t, then
it has an r-successor corresponding to v2. Roughly, from a
model abstraction, we can obtain a model using the following
inductive procedure: 1) start with the nodes that represent in-
dividuals, 2) assign to each node a type from its label set, 3) if
for those types, the node requires successor nodes, add those
and continue in 2). To allow for unbounded paths in models
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for finite acyclic model abstractions, we further have “open”
nodes whose role successors are only restricted by the TBox.

Definition 3. An interpretation abstraction for 〈K,Φ,Σ〉 is a
tuple I = 〈V, λ, s,R, F 〉, where

• V is a set of nodes,

• λ : V → 2TK∪Φ maps each node to a set of types,

• partial function s : NI 9 V assigns individuals to nodes

• R ⊆
(
V ×TK∪Φ×(Σ∩NR)×V

)
is the role assignment,

• and F ⊆ V is the set of open nodes.

I abstracts an interpretation I if there is a subset ∆′ ⊆ ∆I

and a function h : ∆′ → V s.t. for every d ∈ ∆′ and r ∈
(Σ ∩ NR):

I1 for all a ∈ NI, if s(a) is defined, then s(a) = h(aI)

I2 tp(d)I ∈ λ(h(d)),

I3 if h(d) 6∈ F , then for every e ∈ ∆I , 〈d, e〉 ∈ rI iff
e ∈ ∆′ and 〈h(d), tp(d)I , r, h(e)〉 ∈ R.

We need some additional requirements to make sure an in-
terpretation abstraction can be represented as an ALC ABox
H s.t. sig(H) ⊆ Σ. We call a node v ∈ V for which there
exists a ∈ NI with s(a) = v internal node, and otherwise
outgoing node. If v = s(a) for a ∈ ind(K ∪ Φ), we call v
named node. A path in 〈V, λ, s,R, F 〉 is a sequence

π = v0, t0, r0, v1, t1, r1, . . . tn−1rn−1vn

s.t. for each i ∈ J0, n−1K, 〈vi, ti, ri, ti+1〉 ∈ R. π is cyclic if
it contains a node twice, and its length is its number of nodes.

Definition 4. I = 〈V, λ, s,R, F 〉 is called ALC-conform if

D1 there is no cyclic path between outgoing nodes ,

D2 for every internal node v, if 〈v, t, r, v′〉 ∈ R, then
〈v, t′, r, v′〉 ∈ R for every t′ ∈ λ(v′), and

D3 for every 〈v1, t, r, v2〉 ∈ R, where v2 is internal, there
exists 〈v1, t, r, v

′
2〉 ∈ R s.t. v′2 is outgoing.

We say that I is Σ-complete if

D4 for every v ∈ V , and t1 ∈ λ(v), λ(v) contains every
type t2 ∈ TK∪Φ s.t. λ(t1) ∩ Σ = λ(t2) ∩ Σ, and

D5 for every 〈v1, t, r, v2〉 ∈ R and t′ ∈ TK∪Φ s.t. t ∩ Σ =
t′ ∩ Σ, also 〈v1, t

′, r, v2〉 ∈ R.

D1 ensures that we can represent the outgoing paths from
a node s(a) in a single assertion C(a). D2 expresses that the
relations between internal nodes is independent of the type,
which allows to represent them using role assertions. D3 is
needed to capture allowed paths using universal role restric-
tions. D4 and D5 ensure that I can be captured using only
names in Σ.

From here on, we fix an abduction problem A = 〈K,Φ,Σ〉.
We say that I explains Φ iff some model of K is abstracted
by I and every model of K that is abstracted by I entails Φ.
If I is ALC-conform, Σ-complete, and explains Φ, we call it
a hypothesis abstraction.

Lemma 1. Every hypothesis H for A can be translated into
a hypothesis abstraction.

Now that we can translate hypotheses into an alternative
representation, the next step is to decrease their size while
making sure they still explain the observation. For this, we
can now use similar techniques as in Theorems 2 and 4, where
we now identify nodes v ∈ V based on the their label λ(v)
instead of on a single type.
Lemma 2. Let I be a hypothesis abstraction. Then, I
can be transformed into a hypothesis abstraction I′ =
〈V ′, λ′,R′, F ′〉 where, for ` = |TK∪Φ| · 2|TK∪Φ|, i) V ′ con-
tains at most ` internal nodes, ii) every v ∈ V ′ has at most `
successors in R′, and iii) every path of outgoing nodes con-
tains at most ` nodes.

The final ingredient to establish Theorem 6 is the following
lemma.
Lemma 3. For every ALC-conform, Σ-complete interpreta-
tion abstraction I = 〈V, λ, s,R, F 〉, there exists an ABox
H s.t. i) the models of K ∪ H are exactly the models of
K accepted by I, ii) |ind(H)| ≤ |V |, and iii) for every
a ∈ ind(H), H contains one assertion C(a), with size(C)
exponentially bounded by the path lengths between outgoing
nodes in I.

Unfortunately, interpretation abstractions cannot be as eas-
ily constructed by a deterministic procedure as we did for
Theorems 3 and 4, as there can to be non-trivial interactions
between connected internal nodes, and we only have a double
exponential upper bound on their number. To decideALC ab-
duction, we can however guess an interpretation abstraction
within the bounds of Lemma 2, and then guess assignments
of types to nodes to obtain its models. We thus obtain the
following theorem.

Theorem 7. ALC ABox abduction is in N2EXPTIMENP.

5 Size-Restricted Abduction
Because hypotheses can become very large, a natural require-
ment is to compute hypotheses of minimal or bounded size.
We here obtain the following complexities.
Theorem 8. Size restricted L ABox abduction is

• NP-complete for L = EL,
• NEXPTIME-complete for L = EL⊥,
• NEXPTIMENP-complete for the flat variant and L ∈
{ALC,ALCI}, and

• in 2EXPTIME for L = ALCQI .
The upper bounds are based on guess-and-check algo-

rithms. For EL, we exploit the fact that, by Theorem 2, we
can always find a solution of polynomial size. For EL⊥, we
note that the size of the hypothesis is exponentially bounded
by the number of bits used for the size bound k. The
NEXPTIMENP-upper bound can be obtained by a refinement
of the procedure used in the proof for Theorem 3. For the
double exponential upper bound, we iterate over the double
exponentially many possible KBs within the size and signa-
ture bounds—independent on whether we are interested in
flat or complex solutions—and then check for entailment in
time exponential in the size of the current solution. The lower
bounds are provided by the following lemmas.
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Lemma 4. Size-restricted EL abduction is NP-hard.

Proof sketch. We reduce the NP-complete problem CNF-
SAT to deciding whether a given signature-based problem has
a hypothesis of size at most k. Let φ = c1∧ . . .∧cn be a CNF
formula over propositional variables p1, . . . , pm. K contains
the following axioms:

True v P False v P ∃r.True v C ∃s.False v C
r(ci, pj) for every i ∈ J1, nK, j ∈ J1,mK, if pj ∈ cj
s(ci, pj) for every i ∈ J1, nK, j ∈ J1,mK, if ¬pj ∈ cj

Φ contains P (pi) for every i ∈ J1,mK and C(ci) for every
i ∈ J1, nK. Finally, Σ = {True,False}. 〈K,Φ,Σ〉 has a
hypothesis of size at most 2m iff φ is satisfiable.

Lemma 5. Size restricted EL⊥ abduction is NEXPTIME-
hard.

Proof sketch. The hardness follows from a reduction of the
NEXPTIME-complete exponential tiling problem, which is
given by a tuple 〈T, TI , te, V,H, n〉 of a set T of tile types,
a sequence TI ∈ T ∗ of initial tiles, a final tile te, vertical and
horizontal tiling conditions V,H ⊆ T × T , and a number n
in unary encoding. A solution to this problem is then a tiling,
as a function f : J1, 2nK× J1, 2nK→ T assigning tiles to co-
ordinates, s.t. the first tiles are as in TI , f(2n, 2n) = te, and
that obeys the vertical and horizontal tiling conditions [van
Emde Boas, 1997].

In the reduction, concept names Start and End respectively
mark the initial and the final tile. We implement two binary
counters X and Y as for Theorem 1 which are decremented
over the roles x and y, and encode the coordinates of the tiles.
Each tile type t ∈ T is represented by a concept nameAt. We
enforce the horizontal tiling conditions using CIs

∃x.At uAt′ v ⊥ for each 〈t, t′〉 ∈ (T × T ) \H
and correspondingly for the vertical conditions. The (hidden)
concept name B 6∈ Σ is used to ensure that the hypothesis
contains at least one individual per coordinate. This name is
initialised by the individual satisfying Start, and then propa-
gated in x and y direction, provided that a tiling type is asso-
ciated. The observation to be explained is End(a), where End
occurs in the following CI:

nl

i=1

Xi u
nl

i=1

Yi uB uAte v End

and the abducibles are

Σ = {Start, x, y} ∪ {At | t ∈ T}.
Without the size restriction, a valid hypothesis corresponds
to a binary tree with tile types associated to each node, and
tiling conditions ensured along the x- and y-successors. To
make sure it forms a 2n × 2n grid, we choose the size k ap-
propriately in a way that every coordinate can be used at most
once. Valid hypotheses of size k then correspond to solutions
to the tiling problem.

To present the proof idea for the NEXPTIMENP-hardness
result more concisely, we introduce a new tiling problem.

Definition 5. A NEXPTIMENP-tiling problem is
given by a tuple 〈T, TI , te, H1, V1, H2, V2, n〉, where
〈T, TI , te, H1, V1, n〉 is an exponential tiling problem,
H2, V2 ⊆ T × T are additional tiling conditions, and
for which we want to decide the existence of a valid
tiling f : J1, 2nK × J1, 2nK → T for the tiling problem
〈T, TI , te, V1, H1, n〉, s.t. for no i ∈ J1, 2nK, there exists
a valid tiling for the tiling problem 〈T, f(i), te, V2, H2, n〉,
where f(i) denotes the ith row of the tiling f .

In other words, we have to find a tiling using conditionsH1

and V1, while avoiding any rows that can be first row of any
tiling for conditions H2 and V2.
Lemma 6. The NEXPTIMENP-tiling problem is
NEXPTIMENP-hard.

Lemma 7. Size-restricted ALC abduction is NEXPTIMENP-
hard.

Proof sketch. We modify the construction for Lemma 5 to en-
code the NEXPTIMENP-tiling problem. We now use 3 roles
x, y, z and corresponding binary counters so that, together
with the size restriction, each hypothesis will have the shape
of a cube. The bottom side of this cube has to correspond to
a tiling for 〈T, TI , te, V1, H1, n〉, which can be achieved us-
ing similar axioms as for Lemma 5. For nodes outside of the
bottom side of the cube, we require the use a different set of
concept names for the tile types, which are of the form A∗t ,
and for which we have the axiom T ∗ v

⊔
t∈T A

∗
t . We use

Σ = {Start, x, y, z, T ∗} ∪ {At | t ∈ T},
and again require every coordinate to be assigned some tile
type. For the coordinates outside the bottom side, we have
to use the concept name T ∗ to assign tile types, which leaves
the precise selection of the tile type to the different models of
the hypothesis. We detect tiling errors in the different x× z-
squares with the following axioms
∃x.A∗t uA∗t′ v B3 for 〈t, t′〉 ∈ (T × T ) \H2

and correspondingly for V2. This information is propaga-
gated along the succeeding coordinates so that the observa-
tion End(a) is only entailed if every model of the hypothesis
encodes a tiling error on each of the x× z squares.

6 Outlook
We believe that our results for complex abduction inALC can
be extended to ALCI , and that the bound for size restricted
ALCQI abduction in is tight. A question is whether we can
improve the N2EXPTIMENP-bound for the most general vari-
ant of our abduction problem. Apart from that, we want to in-
vestigate our setting for observations formulated as conjunc-
tive queries, which would allow us to explain negative query
answers [Calvanese et al., 2013]. Another interesting ques-
tion is what happens if we allow fresh individual names for
abduction with ontologies formulated using existential rules.
For the EL⊥-variant, we are currently working on a practical
method for computing size-minimal flat hypotheses.
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