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Abstract

Recently, Graph Convolutional Networks (GCNs)
have proven to be a powerful mean for Computer
Aided Diagnosis (CADx). This approach requires
building a population graph to aggregate structural
information, where the graph adjacency matrix rep-
resents the relationship between nodes. Until now,
this adjacency matrix is usually defined manually
based on phenotypic information. In this paper,
we propose an encoder that automatically selects
the appropriate phenotypic measures according to
their spatial distribution, and uses the text simi-
larity awareness mechanism to calculate the edge
weights between nodes. The encoder can automati-
cally construct the population graph using pheno-
typic measures which have a positive impact on
the final results, and further realizes the fusion of
multimodal information. In addition, a novel graph
convolution network architecture using multi-layer
aggregation mechanism is proposed. The structure
can obtain deep structure information while sup-
pressing over-smooth, and increase the similarity
between the same type of nodes. Experimental re-
sults on two databases show that our method can
significantly improve the diagnostic accuracy for
Autism spectrum disorder and breast cancer, in-
dicating its universality in leveraging multimodal
data for disease prediction.

1 Introduction

There is a growing body of researchers that have realized the
potential for graph convolutional networks in medical-related
fields. Recently, GCNs have been widely used to solve a va-
riety of medical problems already, including localization of
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landmarks in craniomaxillofacial [Lang et al., 2020], bone
age assessment [Gong et al., 2020], representation learning
for medical fMRI images [Gadgil et al., 2020] and so on. In
this work, we focus on Computer Aided Diagnosis (CADx)
[Kazi et al., 2019b], which uses computer technology to assist
physicians in disease prediction. At present, deep learning
methods have been widely used in disease prediction tasks
and achieve great results, but in order to further improve di-
agnostic accuracy, it is necessary to make full use of complex
medical multimodal data to extract the effective information
hidden in it. These data usually include medical imaging and
corresponding non-imaging phenotypic measures (e.g. sub-
ject’s age, height, or acquisition site), which are usually non-
Euclidean and difficult to be processed by traditional deep
learning methods. Moreover, not every phenotypic measure is
helpful for disease prediction and it is still a tedious and time-
consuming task for people to select phenotypic measures that
can have a positive effect on classification results.

Inspired by the success of GCNs in social network anal-
ysis and recommendation systems [Bronstein er al., 20171,
graph-based methods are usually used in multimodal data
processing. At present, a large number of researchers have
made great contributions to apply GCNs in CADx. At
first, the population graph constructed by the features ex-
tracted from the multimodal data is used as the input of
GCNs [Sarah et al., 2018]. However, the phenotypic mea-
sures selected in this method contribute the same to the edge
weights, but should actually be different. Recently, there
are two methods to solve this problem, which are multi-
graph fusion methods [Vivar et al., 2018; Kazi et al., 2019a;
Kazi er al., 2019b] and single comprehensive graph methods
[Huang and Chung, 2020]. Although these methods deal with
the phenotypic measures differently, they both assign appro-
priate weights to it. For example, Huang et al. propose that
an encoder can be built to calculate the connection between
nodes directly using multimodal data, and the only graph con-
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structed in the end can be used as the input of GCNs.

Although the above two methods can achieve high accu-
racy for disease prediction, their common limitation is that
there is still no effective method to screen out phenotypic
measures that have a negative impact on classification results.
Moreover, the parameter quantity of multi-graph fusion meth-
ods will become very large with the increase in phenotypic
measures, which seriously affects the real-time performance
of the model. In addition, although existing methods, such
as the JK-GCN [Xu et al., 2018] or EV-GCN [Huang and
Chung, 20201, have tried to apply layer aggregation mech-
anism to GCNs to learn more structural information, due to
the actual medical situation being too complex, it is still chal-
lenging to determine an appropriate aggregation strategy.

In order to address the above challenges, we present a
new similarity-aware adaptive calibrated multi-layer aggre-
gation GCN structure called Adaptive Multi-layer Aggrega-
tion GCN(AMA-GCN). As shown in Figure 1, this struc-
ture contains a specially designed encoder to select effective
phenotypic measures and calculate the edge weights, namely
phenotypic measure selection and weight encoder (PSWE).
Besides, we propose two separately designed GCN models
to aggregate the deep structural information and increase the
similarity between different objects of the same type, respec-
tively. This structure can improve the accuracy of the model
and its robustness. The main contributions of our work can
be summarized as follows:

* We design PSWE to automatically select the best com-
bination of phenotypic measures to interpret the similar-
ity between subjects and calculate their scores.

* A multi-layer aggregation graph convolutional network
with multiple aggregation modes is introduced to con-
sider more appropriate structural information for each
node. And a dynamic updating mechanism is devised to
increase the similarity between nodes of the same type.

* We test AMA-GCN on real-world dataset. The results
show that our method is superior to other models known
at present in terms of validation set accuracy.

2 Related Work

In the past, disease classification based on deep learning was
usually achieved using medical imaging. Recently, in order
to further improve the classification accuracy, non-imaging
phenotypic data has also been included in the research scope,
that is, medical multimodal data.

2.1 Medical Imaging Based Approach

This method analyzes the medical imaging of patients from
different perspectives, so as to obtain as many image fea-
tures as possible to improve diagnostic accuracy. For ex-
ample, MSE-GCN [Yu et al., 2020] is proposed to extract
temporal and spatial information respectively from fMRI and
DTTI to comprehensively analyze medical imaging. Zhang et
al. have achieved great result performance for nodule-level
malignancy prediction by using the transfer learning method
[Zhang et al., 2020]. This method requires that the input data
must be specific types of medical imaging, while the imaging

methods of different diseases are usually diverse (e.g., ultra-
sound imaging for the breast and fMRI for the brain), which
makes this method difficult to apply to the diagnosis of other
diseases. Moreover, model learning only relies on medical
imaging, and does not take into account the rich non-image
phenotypic data, which does not conform to the diagnostic
habits of professional doctors in the actual situation.

2.2 Multimodal Data Based Approach

In order to further improve the classification accuracy, re-
searchers study patients’ non-imaging phenotypic data while
studying medical imaging. This complex data is called multi-
modal data, which is usually non-Euclidean and difficult to be
processed by traditional deep learning methods. At present,
GCNs are usually used to process multimodal data in the
medical field. This method needs to define the population
graph where nodes represent patients, edges represent con-
nections between patients, and edge weights represent simi-
larity between patients. Specifically, phenotypic measures are
usually used to calculate similarity between patients, and im-
age features extracted from medical imaging are stored in the
corresponding nodes. Furthermore, according to the different
processing methods of phenotypic measures, GCNs methods
can be divided into multi-graph fusion methods and single
comprehensive graph methods. Multi-graph fusion methods
usually construct graphs for each phenotypic measure and
process them separately, and design different multi-graph fu-
sion methods to assign weights to each phenotypic measure,
such as RNN [Vivar et al., 2018], self-attention [Kazi et al.,
2019al, or LSTM [Kazi et al., 2019b]. Single comprehensive
graph methods directly extract features from the multimodal
data to build a comprehensive graph as input. For example,
Huang et al. [Huang and Chung, 2020] propose to use an en-
coder to process multimodal data. The above methods have
achieved great results, but there are still some limitations: not
every phenotypic measure has a positive effect on classifica-
tion results. In fact, although our proposed method is also to
build a single comprehensive graph to predict disease, it does
not need to determine the appropriate phenotypic measures
through a large number of experiments as in the past, but is
automatically completed by the proposed encoder.

3 Methodology
3.1 Preliminaries

In our study, the population graph is defined as an undirected
graph G = (V, E, A), where V is the set of vertices and each
vertex represents a patient; F denotes the set of edges; A
denotes the adjacency matrix of population graph G, whose
elements are the edge weights. As shown in Figure 1, the ad-
jacency matrix A is obtained by using the proposed PSWE,
which can automatically find the appropriate phenotypic mea-
sures and calculate the corresponding phenotypic measure
selection scores (PMS-scores), and then calculate the edge
weights. Note that traditional GCNs usually artificially select
phenotypic measures.

The node feature matrix X is also the input of our model.
We define X as X = (x1,%2,...,T,) € R"™™™ where n de-
notes the number of samples, m represents the dimension of
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Figure 1: Overall framework of the proposed method. PSWE: phenotypic measure selection and weight encoder. GC: graph convolution. LA:
information aggregation layer. Colors in the graphs: green and orange - labeled diagnostic values (e.g., healthy or diseased), grey: unlabeled.

the features. We select feature extracted from medical imag-
ing of the two datasets involved in our experiment as the node
information. For the ABIDE database, we use functional
connectivity derived from resting-state functional Magnetic
Resonance Imaging (rs-fMRI) for Autism Spectrum Disorder
(ASD) classification. Rudie et al. [Rudie et al., 2013] pro-
posed that ASD is linked to disruptions in the functional and
structural organization of the brain, Abraham et al. [Abra-
ham et al., 2016] further demonstrated this assertion. More
accurately, we use the vectorized functional connectivity ma-
trices as feature vectors. For our collection of breast cancer
mass ultrasound image data, we use ResNet-50 to extract fea-
tures of medical imaging and directly verify the performance
of these features on ResNet-50 and Ridge classifier.

3.2 Phenotypic Measure Selection and Weight
Encoder

Edges are the channels through which the node filters in-
formation from its neighbors and represent relationships be-
tween nodes. Our hypothesis is that some appropriate non-
imaging phenotypic data can provide critical information as
complement to explain the associations between subjects.
Therefore, selecting the best combination of phenotypic mea-
sures to interpret the similarity between subjects and assign-
ing appropriate weights to them are the keys to our experi-
ment. In our studies, it will be done by PSWE, and the im-
plementation process of PSWE as shown in Figure 2.
Considering a set of [ non-imaging phenotypic measures
K = {K}}, including quantitative (e.g. subject’s age, height,
or BMI) and non-quantitative (e.g. subject’s calcification or
capillary distribution) phenotypic measures. The population
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graph’s adjacency matrix A is defined as follows:

H
A(v,w) =Y ap *y(Kn(v), Kn(w)) (1
h=1

where «y, is the PMS-scores of phenotypic measure Kj; ~y
is a measure of the distance between the value of phenotypic
measure K, of two graph nodes. «y, is defined as follows:

H
Kp
Hx =", Hxnfr >3 pfn
ap = S nfn - hzzjl ’ 2)
0, otherwise.
where n* is a measure of the number of samples in which

phenotypic measure K, meets the requirements, and it is de-
fined differently depending on the type of phenotypic mea-
sures. When K, is a non-quantitative phenotypic measure
(e.g. calcification or edema), we define n¥nr as a function
with respect to a threshold 6:

1 u P % nEn_pEn
1 h u  —'pou 9
K 2D My et <0,
O == 3)
0, otherwise.
where nﬁg is a measure of the number of samples with the

value v and category p in the phenotypic measure Kj; nl<*
is a measure of the number of samples with the value v in the
phenotypic measure K;,. Meanwhile, when K7, is a quantita-
tive phenotypic measure (e.g. subject age or BMI), we define
n®n as a function with respect to a threshold 4:
P nEn_pEn

PR DL TN =)
p=1 p-s

n

“4)

0, otherwise.
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Figure 2: Overview of the proposed PSWE. wu;: values of non-
quantitative phenotypic measures corresponding to subject ¢. s;:
values of quantitative phenotypic measures corresponding to subject
1. p;: the category corresponding to subject <.

where nff » is a measure of the number of samples with the

category p in the phenotypic measure K} ; We define a closed
interval D from « to 3, where D € value(K}), and n% is
a measure of the number of samples with the category p and
value s ¢ D in the phenotypic measure K.

v is also defined differently depending on the type of phe-
notypic measure. For non-quantitative phenotypic measures
such as family history, we define + as the Kronecker delta
function, meaning that the similarity highly between two sub-
jects if their values of phenotypic measure K, are the same.
For quantitative phenotypic measures such as subject’s age,
we define v as a function with respect to a closed interval D
from o to 3, where D € value(Kp,):

V(KR (v), Kn(w)) =
17 Kh(v)’Kh(w) ¢ D7

Wa (K (v) — Kp(w)] < B —a,
0, otherwise.

&)

The influence of effective phenotypic measures selected by
PSWE on the classification results will be investigated in our
experiments, so as to visually demonstrate the performance
of PSWE.

3.3 Model Structure Design

In order to make nodes from different dense blocks to obtain
sufficient effective information on each layer while suppress-
ing over-smooth, we reconstruct the architecture of the net-
work with multi-layer aggregation mechanism so that the in-
formation from different layers can be adaptively fused into
the final expression of the node. As shown in Figure 1, in
order to get the key features of structural information, the
first two aggregation layers that directly integrate the infor-
mation from graph convolution layers are aggregated in the
way of maxPooling. Besides, the final aggregation layer uses
the way of concating to fully summary the information aggre-
gated by each layer. The rebuilt model enables each node to
automatically integrate the appropriate information.

The input graph data () is processed by the above model,
and the output A7) is then calculated by the softmax acti-
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vation function. The final output Z € R™* ¥ denotes the label
prediction for all data in which each row Z; denotes the label
prediction for the # — th node. The optimal weight matrices
trained by minimizing the cross-entropy loss function as:

P
Esemi = - Z Z )/ij In Zz'j (6)

ieL j=1

where L indicates the set of labeled nodes. Y;; represents the
label information of the data.

In addition, we introduce an auxiliary dynamic update
GCN to increase the similarity between nodes of the same
types while encouraging competition. As shown in Figure 1,
this model’s output is also calculated by the softmax activa-
tion function. The final output 7' € R™*? denotes the clas-
sification score for all data in which each row T;; denotes the
classification score for the ¢ — th node. Note that 7" is the out-
put of the auxiliary model, which is different from the output
Z of the semi-supervised classification model. The similarity
loss function as:

Sier b (Yij — Tij)? +¢€ ;
202 ™

where ¢ is a minimal constant; o determines the width of the
kernel.

Then, the joint representation is used to compute a fusion
loss. It poses extra regularization that can help generalization
[Liu et al., 2020]. The final loss function is defined as:

L= ‘Csemi + )\Eszm (8)

where Lgem; and Ly, are defined in Eq.(6) and Eq.(7), re-
spectively. Parameter A > 0 is a tradeoff parameter with a
default value of 1.

Esim = tanh

4 Experiments and Results

4.1 Dataset

To verify the effectiveness of our model, we evaluate it on
the Autism Brain Imaging Data Exchange (ABIDE) database
[Martino et al., 2014]. The ABIDE publicly shares fMRI
and the corresponding phenotypic data (e.g., age and gen-
der) of 1112 subjects, and notes whether these subjects
have Autism Spectrum Disorder (ASD). In order to com-
pare fairly with state-of-the-art [Huang and Chung, 2020]
on the ABIDE, we select the same 871 subjects consist-
ing of 403 normal and 468 ASD individuals, and perform
the same data preprocessing steps [Huang and Chung, 2020;
Sarah er al., 2018]. Then we delete the subjects with empty
values, and finally select the 759 subjects consisting of 367
normal and 392 ASD individuals. Besides, approved by the
local Institutional Review Board, the local hospital provides
ultrasound images of breast nodules and the corresponding
phenotypic data (e.g., age, gender, and calcification) of 572
sets, and follows the diagnostic results given by the radiol-
ogist for each subject to note whether these subjects have
Breast Cancer. These data are acquired from 121 different
patients consisting of 55 adenopathy and 66 breast cancer in-
dividuals, and each set contains a total of six images (two
ultrasound static imaging and four ultrasound elastography).
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Hyperparameter description Value
Layer number of the MLA-GCN 5
Layer number of the ADU-GCN 2

Chebyshev polynomial 3
Number of node features 2000
Graph convolution kernel 16
Learning rate of MLA-GCN 0.005
Learning rate of ADU-GCN 0.05
Regularization parameter 0.0005
Dropout probability 0.3
Number of training epoch 300
Tradeoff parameter A 1
Optimizer Adam

Table 1: Experiment hyperparameter setting. MLA-GCN: multi-
layer aggregation GCN. ADU-GCN: auxiliary dynamic update
GCN.

We remove cases without complete phenotypic measures and
adjust all images to 256x256, and then organize the collected
data into the breast cancer detection dataset (BCD) and verify
the universality of proposed model on it.

4.2 Baseline Methods and Settings

We compare the AMA-GCN with the following baselines:
ResNet-50 [He ez al., 2016]: A single modality classification
approach using only images.

Ridge classifier [Abraham et al., 2016]: A single modal-
ity classification approach using only features extracted from
medical imaging data.

GCN [Sarah ef al., 2018]: A model extracting features con-
tained in medical multimodal data, which is usually used to
deal with non-Euclidean data.

JK-GCN [Xu er al., 2018]: A model using an aggregation
layer before the output layer to integrate information.

GLCN [Jiang et al., 2020]: A model using graph learning
mechanism to constantly optimize graph structure to improve
the classification effect.

EV-GCN [Huang and Chung, 2020]: A model using a cus-
tom encoder to obtain the association between nodes from
non-imaging phenotypic data, and JK-GCN is used to aggre-
gate information.

EV-GCN+PS: A model using the phenotypic measures se-
lected by proposed PSWE as the basis for constructing the
population graph, and using EV-GCN to extract structural in-
formation.

Ablation Study

To investigate how the PSWE, the multi-layer aggregation
mechanism and similarity loss function improve the perfor-
mance of the proposed model, we conduct the ablation study
on the following variants of AMA-GCN:

AMA-GCN(noP) is a model that uses the same phenotypic
measures with baseline methods to build the population graph
as input and uses proposed model for training.
AMA-GCN(moW) is a model that only uses PSWE to select
effective phenotypic measures, and uses a two-layer GCN for
training. Note that the weight ratio calculated by PSWE is
not used.
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ABIDE BCD

ACC AUC ACC AUC
ResNet-50 0.626 0.679 0.897 0.955
Ridge classifier 0.636  0.688 0.901 0.961
GCN 0.705 0.731 0.916 0.950
JK-GCN 0.722 0.736  0.947 0.972
GLCN 0.707 0.725 0.932 0.965
EV-GCN 0.829 0.876 0.967 0.987
EV-GCN+PS 0.936 0949 0971 0.989
AMA-GCN 0.984 0983 0.994 0.998
AMA-GCN(noP) | 0.724 0.747 0.956 0.979
AMA-GCN(oW) | 0955 0974 0974 0.987
AMA-GCN(noA) | 0972 0986 0.976 0.983
AMA-GCN(oS) | 0981 0.981 0.990 0.992

Table 2: Quantitative comparisons between different methods on
ABIDE and BCD.

AMA-GCN(MoA) is a model that uses PSWE to build the
population graph, but uses a two-layer GCN for training.
AMA-GCN(noS) is a model without the similarity loss func-
tion.

In order to ensure a fair comparison, when we do not use
PSWE to select the appropriate phenotypic measures, we
choose gender and acquisition sites as the basis for construct-
ing the population graph of ABIDE database, and choose age
as the basis for constructing the population graph of BCD
dataset. This setting applies to all baseline models. The hy-
perparameters of the experiment are shown in Table 1. We
employ 10-fold cross-validation to evaluate the performance
of the model and implement our model using TensorFlow.
In order to evaluate the performance of models, we choose
overall accuracy (ACC) and area under the curve (AUC) as
the evaluation indicators.

4.3 Results and Analysis

We compare our AMA-GCN with the six baseline methods
for predictive classification of disease on the ABIDE database
and BCD dataset, as shown in Table 2. It can be observed
that single-mode models (i.e. ResNet-50 and Ridge classifier)
only use medical imaging data as the basis for classification,
and their overall performance is poor. Comparatively, graph-
based methods (GCN, JK-GCN, GLCN, EV-GCN and ours)
yield larger performance gains, benefiting from analyzing as-
sociations between nodes in the population graphs. The pro-
posed method, AMA-GCN, obtains an average accuracy of
98.4% and 99.4% on ABIDE and BCD datasets, respectively,
outperforming the recent SOTA method EV-GCN, which em-
ploys an adaptive population graph with variational edges and
uses JK-GCN to aggregate structure information. We notice
that the performance of graph-based methods is highly sen-
sitive to the phenotypic measures used to construct graphs,
where the phenotypic measures K; = {gender, acquisition
sites} on ABIDE database used by EV-GCN yields an aver-
age accuracy of 82.9%. To prove the effectiveness of the phe-
notypic measures selected by our PSWE, we train EV-GCN
using the same phenotypic measures as those in our model.
As depicted in Table 2, it results in 10.7% accuracy and 7.3%
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Figure 3: Effects of effective phenotypic measures selected by
PSWE on results, the evaluation indicators are Accuracy (ACC) and
Area Under Curve(AUC).

AUC improvement on ABIDE database respectively, indi-
cating that the appropriate phenotypic measures are indeed
the key to improving the performance of disease prediction.
Meanwhile, the universality in leveraging multimodal data
for disease prediction of the proposed AMA-GCN architec-
ture is relatively validated according to the comparison results
on BCD dataset in Table 2.

Ablation Experiments

As an ablation study, we test whether removing the PSWE,
the multi-layer aggregation mechanism or similarity loss
function affect model performance, and the results as shown
in Table 2. It can be observed that the phenotypic measures
selected by PSWE can significantly improve the classifica-
tion accuracy. Using only these phenotypic measures with-
out considering PMS-scores, the average accuracy of the con-
structed graphs on the ABIDE and BCD datasets is improved
by 25.0% and 5.8%, respectively. The classification accuracy
is further improved by 1.7% and 0.2% on ABIDE and BCD
datasets respectively after calculating PMS-scores to the se-
lected phenotypic measures. Although the latter can also im-
prove the classification accuracy, the improvement is far less
than the former, which indicates that finding the appropriate
phenotypic measures is the key to disease prediction. In addi-
tion, the effectiveness of multi-layer aggregation mechanism
in improving classification accuracy is also validated accord-
ing to the comparison results in Table 2.

4.4 Phenotypic Measures Analysis

In order to demonstrate our conclusion that finding the appro-
priate phenotypic measures is the key to solving the problem
of disease classification, and also to prove the effectiveness
of proposed PSWE, we further explore the impact of each
phenotypic measure on the classification results. As shown

2240

0.65 0.96

forstlty T TElhefHEl

062 0945 - max

0.

@

0.

@
@
o

061 75% 09 75%
Q& PIL™ T L RS N
& O TESFEE SEFFIFES

(a) ACC of the ABIDE dataset (b) ACC of the BCD dataset

Figure 4: Effects of phenotypic measures not selected by PSWE on
results, the evaluation indicators is Accuracy (ACC).

in Figure 3, using the single phenotypic measure selected by
PSWE to construct the population graph as input, their perfor-
mances on ABIDE and BCD datasets are respectively more
than 3% and 1% better than that of randomly constructed
graph. Comparatively, as shown in Figure 4, using pheno-
typic measures not selected by PSWE as the basis for con-
structing graphs, the final performance is basically the same
as that of randomly generated graphs, and even worse than
the latter, which indicates that these phenotypic measures se-
lected by PSWE are reasonable. Meanwhile, PSWE achieves
the best performance by combining multiple effective phe-
notypic measures, and its accuracy on ABIDE database is
even 33.8% higher than that of randomly constructed graph.
This indicates that there is hidden complementary informa-
tion among phenotypic measures, and how to learn these
complementary information is the key to disease prediction.

5 Conclusion

In this paper, we have proposed a generalizable graph-
convolutional framework that combines multimodal data to
predict disease. We designed the population graph struc-
ture according to the spatial distribution and text similarity
of phenotypic measures, while allowing each effective phe-
notypic measure to contribute to the final prediction. We re-
constructed the graph convolution model by using the multi-
layer aggregation mechanism to automatically find the opti-
mal feature information from each layer while suppressing
over-smooth, and introduce another channel to increase the
similarity between different objects in the same type. Exper-
imental results show that the proposed method achieves su-
perior performance on brain analysis and breast cancer pre-
diction. We believe that such an extensible method can have
a better use of helping people with medical multimodal data
for clinical computer-aided diagnosis.
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