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Abstract
Conversational discourse structures aim to describe
how a dialogue is organised, thus they are helpful
for dialogue understanding and response genera-
tion. This paper focuses on predicting discourse de-
pendency structures for multi-party dialogues. Pre-
vious work adopts incremental methods that take
the features from the already predicted discourse
relations to help generate the next one. Although
the inter-correlations among predictions are con-
sidered, we find that the error propagation is also
very serious and hurts the overall performance. To
alleviate error propagation, we propose a Struc-
ture Self-Aware (SSA) model, which adopts a novel
edge-centric Graph Neural Network (GNN) to up-
date the information between each Elementary Dis-
course Unit (EDU) pair layer by layer, so that ex-
pressive representations can be learned without his-
torical predictions. In addition, we take auxiliary
training signals (e.g. structure distillation) for bet-
ter representation learning. Our model achieves the
new state-of-the-art performances on two conver-
sational discourse parsing benchmarks, largely out-
performing the previous methods.

1 Introduction
As a common dialogue scenario, multi-party dialogues have
lots of potential applications, attracting increasing research
attentions recently. To understand multi-party dialogues,
conversational discourse parsing was proposed, which aims
at discovering the inter-dependencies between EDUs1. In
this aspect, most of dominant approaches study dependency-
based structures. Figure 1 shows a multi-party dialogue in-
volving five speakers (A, B, C, D, E) and the correspond-
∗Equal contribution
†Corresponding author
1EDUs are the fundamental discourse units in discourse parsing.

Each EDU corresponds to an utterance in a dialogue.

Figure 1: A multi-party dialogue from the Molweni [Li et al., 2020]
dataset with its discourse structure, where the links in slahsed blue,
dotted red and slash-dotted green denote “Comment”, “Clarification
Question”, and “Question-Answer Pair” respectively.

ing discourse relations. We can observe that it effectively in-
cludes relations between non-adjacent utterances, such as the
“Comment” relation between the first turn and the last turn.

Initial efforts [Muller et al., 2012; Li et al., 2014; Afan-
tenos et al., 2015] for discourse parsing are mainly based on
handcrafted features, where the decoding process is modeled
in a pipeline manner. In this process, the probability of the
discourse relation for each EDU pair is firstly estimated, and
then a discourse structure is inferred by a search algorithm
such as maximum spanning tree. Inspired by the success
of deep learning on other NLP tasks, Shi and Huang [2019]
proposed a neural model, i.e. DeepSequential, for discourse
parsing on multi-party dialogues. Typically, DeepSequential
simultaneously constructs and utilizes the discourse structure
for each dialogue: it first extracts features from the already
predicted discourse structure, then makes the next prediction
before merging it into the partial discourse structure.

Although taking the previously predicted structure can pro-
vide richer information, DeepSequential is confronted with
severe error propagation. Figure 2 gives the prediction ac-
curacy of DeepSequential and its baseline without historical
predictions at different dialogue turns. We can see that uti-
lizing predicted structure has a negative effect on EDUs after
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Figure 2: The prediction accuracy of DeepSequential [Shi and
Huang, 2019] and DeepSequential(NS) at different dialogue turns on
the Molweni test set. Unlike DeepSequential, DeepSequential(NS)
does not use any features from already predicted discourse structure.

the 6th dialogue turn. One likely reason for the severe error
propagation is that the current state-of-the-art performance is
not accurate enough (less than 60% in accuracy), thus such
utilization will introduce more noises than benefits.

In this work, we propose a novel edge-centric Structure
Self-Aware Graph Neural Network (SSA-GNN) for discourse
parsing of multi-party dialogues. With this model, we explore
another direction that learns effective representations without
the features from historical actions (thus no error propagation
is introduced). Unlike previous work that focuses on learn-
ing EDU-specific representations, our model directly uses an
edge-specific vector to capture the implicit structural infor-
mation between each EDU pair. Benefiting from the message
passing of Graph Neural Networks [Kipf and Welling, 2017;
Marcheggiani and Titov, 2017; Velickovic et al., 2018], edge-
specific vectors in SSA-GNN can gradually capture implicit
correlation and global information via the semantic interac-
tions with their connected EDU nodes. As a result, our model
can learn better representations using implicit structural infor-
mation instead of explicit historical predictions.

To further enhance representation learning, we introduce
two auxiliary loss terms (i.e. relation recognition loss and
structure distillation loss) that provide orthogonal training
signals into the overall objective function. The first one
is calculated by conducting relation recognition at each in-
termediate layer of SSA-GNN. The second one is an MSE
loss function for knowledge distillation [Hinton et al., 2014;
Zhang et al., 2019]. It transfers the knowledge of a teacher
model that accesses ground-truth discourse relations except
for the relation which needs predicting to our model.

To summarize, our contributions in this work mainly in-
clude the following three aspects:

• We propose a novel SSA-GNN model for discourse
parsing on multi-party dialogues. It directly learns the
representation for each EDU pair, yielding stronger per-
formances than previous node-centric GNN models.

• We explore relation recognition and structure distillation
to further enhance the robustness of our model for learn-
ing better representations.

• Extensive experiments and analysis on two benchmarks
demonstrate the effectiveness of our model.

2 Related Work
2.1 Discourse Parsing
Most previous studies for discourse parsing are based on
Penn Discourse TreeBank (PDTB) [Prasad et al., 2008] or
Rhetorical Structure Theory Discourse TreeBank (RST-DT)
[Mann and Thompson, 1988]. PDTB mainly focuses on
shallow discourse relations while ignoring the overall dis-
course structure [Yang and Li, 2018]. As for RST, there
have been many approaches including transition-based meth-
ods [Braud et al., 2017; Wang et al., 2017; Yu et al., 2018],
CYK-based approaches [Joty et al., 2015; Li et al., 2016;
Liu and Lapata, 2017] and greedy bottom-up approach [Feng
and Hirst, 2014]. However, constituency-based RST does not
allow structures with crossing dependencies [Afantenos et al.,
2015].

To deal with this issue, other approaches [Prasad et al.,
2008; Li et al., 2014] take dependency-based structures to
represent discourse relations. The dependency-based for-
malism is especially prevalent on dialogues [Holmer, 2008;
Perret et al., 2016], where the non-adjacent can frequently
occur. We follow this line of research and propose a novel
edge-centric GNN with several auxiliary losses to learn better
representations, which alleviates error propagation to make
further improvement.

2.2 Edge-centric GNN
As one type of effective approaches for processing struc-
tural inputs, GNNs have attracted increasing attentions in
recent years. Most previous GNN models [Marcheggiani
and Titov, 2017; Beck et al., 2018; Song et al., 2019]
mainly resort to learning representations for nodes. Until
recently, some studies [Zhu et al., 2019; Yin et al., 2019;
Cai and Lam, 2020] introduce edge representations. How-
ever, their edge representations are generated only from edge
labels and kept constant to serve as additional inputs for en-
riching node representations.

Compared with previous GNNs, our edge-centric GNN has
the following advantages: (i) it directly learns the representa-
tion for each edge, thus it can work better for problems that
involve a pair of nodes as an input (e.g. discourse parsing);
(ii) our GNN iteratively updates the edge hidden states and
it allows information exchange both from node states to edge
states and vice versa within each iteration. Thus, it can gen-
erate more accurate representations for both edges and nodes.
To our knowledge, this is the first attempt to apply a GNN
model on conversational discourse parsing.

3 Our Model
In this section, we first give a brief description about the task
definition before introducing our proposed model in detail.

3.1 Problem Definition
Unlike previous work that considers this task as a “resolu-
tion” problem, we formulate it as a classification problem for
each utterance pair. Given a sequence of EDUs (utterances)
x1, x2, ..., xN from a dialogue, we aim to predict all relations
{(xj , xi, lji) | i>j} between EDU pairs, where (xj , xi, lji)
stands for a discourse link of the relation type lji from xj
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Figure 3: The architecture of our model, which includes a hierarchical GRU layer, our proposed SSA-GNN layer, a link predictor and a
relation classifier. We take (xj → xi, lk) as an example and only show the edges between xi and other EDUs in SSA-GNN for clarity.

to xi.2 Generally, the prediction of each triple (xj , xi, lji) is
divided into link prediction P (xj → xi | x0, x1, ..., xi) and
relation classification P (lji | xj → xi).

3.2 Structure Self-Aware Graph Neural Network

Figure 3 illustrates the architecture of our model. We first em-
ploy a hierarchical GRU consisting of two bidirectional GRU
(BiGRU) layers to learn vector representations of EDUs.
The bottom layer consumes each EDU xi, where the last
hidden states in two directions are concatenated to form
the local EDU representation hl

i, and the top layer acts on
hl
0,h

l
1, . . . ,h

l
n to learn the global context-aware EDU repre-

sentations Hg = [hg
0,h

g
1, . . . ,h

g
n] in a dialogue.

With the learned EDU representations, we then apply a
Structure Self-Aware Graph Neural Network (SSA-GNN) to
capture the implicit structural information between EDUs.
The input of SSA-GNN is a fully connected graph, where
each EDU or each edge connecting two EDUs is represented
as a vector. The basic intuition behind our learnable edge rep-
resentations is to explicitly capture and exploit the implicit
structural information within the input dialogue. To initialize
hidden states of SSA-GNN, we directly use Hg as the initial
node representations u(0). Besides, we form the initial vector
representation r(0)ij for each EDU pair (xj , xi) by concate-
nating three learnable embeddings: sij indicating whether xi
and xj are from the same speaker, tij meaning whether xi
and xj are continuous utterances of the same speaker, and
dij denoting the relative distance between xi and xj .

Afterwards, inspired by the recent work [Zhu et al.,
2019; Cai and Lam, 2020; Wang et al., 2020], we perform
Structure-Aware Scaled Dot-Product Attention operation to
update node hidden states. With the t-th layer node repre-
sentations (e.g. u(t)

i ) and edge representations (e.g. r(t)ij ), we
obtain the node representations u(t+1) at the next layer as fol-
lows:

2Following previous work, we add a dummy root x0 to represent
the beginning of a dialogue.

u
(t+1)
i =

N∑
j=1

αij

(
u
(t)
j W

V + r
(t)
ij W

F
)
,

αij =
exp (eij)∑N

j′=1 exp (eij′)
,

eij =

(
u
(t)
i W

Q
)(
u
(t)
j W

K + r
(t)
ij W

R
)T

√
du

,

(1)

where W ∗ (∗ ∈ {Q,K, V,R, F}) are learnable model pa-
rameters3, and du is the dimension of the node represen-
tations. Meanwhile, we also update edge representations,
which enables our model to capture implicit structural infor-
mation gradually. Specifically, we adopt a GRU-style gating
mechanism to update the edge representation r(t)ij :

γij = σ([u
(t)
i ;u

(t)
j ]W r),

zij = σ([u
(t)
i ;u

(t)
j ]W z),

r̃ij = tanh([γij � r
(t)
ij ;u

(t)
i ;u

(t)
j ]W h),

r
(t+1)
ij = (1− zij)� r(t)ij + zij � r̃ij ,

(2)

where � represents the dot-product operation, and γij and
zij are reset gate and update gate, respectively.

We iterate the above hidden state updating process for T
times, where the top-layer hidden states are then used for con-
versational discourse parsing. Concretely, for each EDU xj

preceding xi in the dialogue, we adopt R̂i,j = [r
(T )
ij ; r

(T )
ji ],

the concatenated vector of r(T )
ij and r(T )

ji to conduct link pre-
diction and relation classification.

4 Structure Self-Aware Training
Given the training data D, we train our model according to
the following training objective:

L(D; θ) =
∑
d∈D

Lce(d; θ) + αLcls(d; θ) + βLskd(d; θ), (3)

3We use W ∗ to denote learnable model parameters in this work.
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where d is a multi-party dialogue from training corpus D,
Lce(d; θ) is the standard loss term of conversational discourse
parsing based on cross entropy, Lcls(d; θ) and Lskd(d; θ) are
two auxiliary loss terms on multiple granularities, both of
which are used to further enhance representation learning,
and α, β are hyperparameters used to balance the preference
among loss terms.

The intuition behind our auxiliary losses is as follows:
SSA-GNN adopts a multi-layer architecture and leverages
edge hidden states to capture implicit structural information.
However, without sufficient supervision information, SSA-
GNN may heavily rely on its top layer to make the final pre-
dictions, resulting in extra challenge for our model to be fully
trained. To deal with this issue, we augment the conventional
training objective with two loss terms of relation recognition
and structure distillation, aiming to guide each SSA-GNN
layer effectively learn the implicit structural knowledge. In
essence, Lcls(d; θ) provides the coarse-grained structural su-
pervision information at label level, while Lskd(d; θ) exploits
the fine-grained structural supervision information at neuron
level. Thus, they have the potential to be used together to
improve model training.

4.1 Discourse Parsing Loss Lce(d; θ)
Formally, Lce(d; θ) is composed of the loss term Llink(d; θ)
for link prediction and the loss term Lrel(d; θ) for relation
classification:

Lce(d; θ) = Llink(d; θ) + Lrel(d; θ),

Llink(d; θ) = −
|d|∑
i=1

logP
(
x∗i | R̂i,<i

)
,

Lrel(d; θ) = −
|d|∑
i=1

logP
(
l∗ji | R̂i,j , xj = x∗i

)
,

(4)

where |d| indicates the EDU number of d, x∗i and l∗ji denote
the gold parent and corresponding relation for xi respectively,
and R̂i,<i = [R̂i,0, R̂i,1, ..., R̂i,i−1] denotes the relations of
xi with its previous EDUs. Note that if EDU xi does not
depend on any preceding EDU, x∗i is the added dummy root
x0.

4.2 Relation Recognition Loss Lcls(d; θ)
This loss term is calculated by taking the edge hidden states of
each intermediate SSA-GNN layer to predict the correspond-
ing discourse relations. By using this loss term, we expect
the edge hidden states of every layer can effectively capture
all discourse relations. Formally, Lcls(d; θ) is defined as

Lcls(d; θ) = −
T−1∑
t=1

|d|∑
i=0

|d|∑
j=0

logP
(
lji | r(t)ij

)
, (5)

where T is the layer number of SSA-GNN, lji is the relation
type of EDU pair (xj , xi). In particular, if xj → xi does not
exist in the discourse structure, we set its target label lji as
“None”. Comparing with this type of loss, the standard loss
Lce(d; θ) has to be propagated from the last layer, and thus
the supervision can be weakened throughout this process.

4.3 Structure Distillation Loss Lskd(d; θ)
This loss term is used to exploit the knowledge of a structure-
aware model (i.e. teacher) for enhancing our model train-
ing. Different from our model, the teacher model takes the
whole dialogue and all gold relations except for the relation
being predicted as additional inputs. Inspired by previous
work [Romero et al., 2014], formally, we take the follow-
ing Mean-Square Error (MSE) loss to reduce the distance of
the edge hidden states of each intermediate layer between the
teacher and our model:

Lskd(d; θ) =
T∑

t=1

|d|∑
i=0

|d|∑
j=0

MSE
(
r
(t)
ij W

(t) ‖ r∗,(t)ij

)
, (6)

where r∗,(t)ij denotes the edge hidden state of (xj , xi) from
the teacher model.

5 Experiments
5.1 Setup
Datasets. We conduct experiments on two benchmark
datasets: (i) Molweni. It is a multi-party dialogue corpus
manually annotated based on Ubuntu Chat Corpus [Lowe et
al., 2015], which contains 9,000, 500 and 500 instances for
training, development and testing, respectively. (ii) STAC.
This dataset is collected from an online game. It is much
smaller than Molweni and only contains 1,062 and 111 dia-
logues for training and testing, respectively. We preprocess
datasets following Shi and Huang [2019].
Settings. For experiments on STAC, we follow previous
work to represent words with 100-dimensional GloVe em-
beddings [Pennington et al., 2014] that are fine-tuned during
training. We adopt a 3-layer SSA-GNN module with 4 heads,
where all layers share the same parameters. The dimensions
for the edge and the node states in SSA-GNN are 128 and
256, respectively. We set the dropout rate to 0.5 and employ
Stochastic Gradient Descent to train all models with batch
size and initial learning rate set to 40 and 0.1, respectively.
For the Molweni corpus, we use 200-dimensional pretrained
GloVe embeddings to initialize word vectors, since it is much
larger than STAC. Besides, the batch size is set to 100 for
more stable training. For fair comparison, we use the same
settings as ours for DeepSequential and its variants on both
datasets. Performance of using either Lcls(d; θ) or Lskd(d; θ)
with different coefficients are showed in Figure 4. We set our
coefficients α and β to 0.2 and 3, respectively. For the ex-
periments using pretrained model, we apply ELECTRA-small
[Clark et al., 2020] that has been proved effective on several
tasks with a small model size. In this work, micro-averaged
F1 score is adopted for evaluation. Our code is available at
https://github.com/DeepLearnXMU/Structure-Self-Aware
Baselines. We compare ours with the following baselines:

• DeepSequential [Shi and Huang, 2019]: It adopts an in-
cremental predicting method. Note that it is confronted
with error propagation as discussed above.

• DeepSequential(NS): It is a variant of DeepSequential
that does not use any features from already predicted dis-
course structures.
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Figure 4: Experimental results on the Molweni development dataset.

• DeepSequential(Share): It is a variant of DeepSequen-
tial that shares the parameters of link prediction and re-
lation classification modules (e.g. embedding layer and
hierarchical GRU) except the prediction layer.

• HGRU: It only adopts the hierarchical GRU for repre-
sentations learning and possesses the same structure as
DeepSequential(NS).

Besides, we also conduct experiments with pretrained lan-
guage model (i.e. ELECTRA-small) to further verify the ef-
fectiveness of our model.

5.2 Main Results
Table 1 lists the test results on Molweni and STAC. Here, we
can draw the following conclusions. First, DeepSequential
which adopts incremental predicting method does not outper-
form DeepSequential(NS) on Molweni. This indicates that
the severe error propagation causally hurts the model per-
formance. Second, different from the discovery by Shi and
Huang [2019], we find that DeepSequential(share) using less
parameters is comparable with DeepSequential. Third, our
model outperforms all baselines on Molweni and STAC (boot-
strap test, p < 0.01), demonstrating its effectiveness and ro-
bustness. Fourth, with the better local representations gener-
ated by the pretrained model, Our+ELECTRA can be further
enhanced. The improvement mainly comes from the gains
of relation classification accuaries, which shows that token-
level information is very important for capturing the knowl-
edge about relation types.

5.3 Ablation Study
To evaluate the effectiveness of different components in our
model, we compare ours with the following variants:

• HGRU+SSA(FixEdgeRep): It is a simplified node-
centric SSA-GNN, where edge representations of each
layer are always set as the initial vectors r(0).

• HGRU+SSA(NodeRep): It uses the concatenated node
representations to predict discourse structures.

• HGRU+SSA(ShareEdgeRep): In this varient, edge
representations rij and rji of each SSA-GNN layer
share the same vector. For fair comparison, we extend
its edge hidden size to 256.

4https://github.com/shizhouxing/DialogueDiscourseParsing

Model Molweni STAC
Link Link&Rel Link Link&Rel

DeepSequential 0.7694 0.5349 0.7199 0.5362
DeepSequential(NS) 0.7657 0.5360 0.7074 0.5280
DeepSequential(Share) 0.7680 0.5403 0.7158 0.5377

HGRU 0.7623 0.5336 0.7145 0.5258
Our 0.8142 0.5689 0.7379 0.5513

HGRU+ELECTRA 0.7672 0.5531 0.7068 0.5386
Our+ELECTRA 0.8163 0.5854 0.7348 0.5731

Table 1: Main test results (F1 scores). Link shows the performance
regarding link prediction only, and Link&Rel, the main metric, indi-
cates the performance when both link and relation are correctly pre-
dicted at the same time. We reproduce the scores of DeepSequential
and its variants using their released code4.

Model Link Link&Rel

HGRU 0.7623 0.5336

HGRU+SSA(FixEdgeRep) 0.8038 0.5581
HGRU+SSA(NodeRep) 0.8069 0.5591
HGRU+SSA 0.8102 0.5631

HGRU+SSA+Lcls 0.8138 0.5665
HGRU+SSA+Lskd 0.8136 0.5673
HGRU+SSA+Lcls+Lskd 0.8142 0.5689

HGRU+SSA(ShareEdgeRep)
+Lcls+Lskd

0.8106 0.5665

HGRU+SSA(Teacher) 0.8331 0.5950

Table 2: Ablation study on the test dataset of Molweni.

• HGRU+SSA+L∗: It denotes a kind of models trained
with our proposed auxiliary loss terms. The fol-
lowing variants are considered: HGRU+SSA+Lcls,
HGRU+SSA+Lskd and HGRU+SSA+Lcls+Lskd.

• HGRU+SSA(Teacher): It is the teacher model used to
guide the training of our model via structure distillation
loss term.

Table 2 reports the ablation experimental results on Mol-
weni, where we have the following observations. First, the
extra information learned by our SSA-GNN module is very
important for context-aware representations learning. Com-
pared with HGRU, HGRU+SSA(FixEdgeRep) achieves better
performance, because our SSA-GNN module helps extract
better dialogue features. Second, predicting with edge repre-
sentations directly can reach better overall performance than
that with node representations. Comparing HGRU+SSA with
HGRU+SSA(NodeRep), both Link and Link&Rel scores are
improved, which indicates the gain of using edge-centric rep-
resentations. Third, both Lcls and Lskd can improve the per-
formance of our model. The results of +Lskd are better than
those of +Lcls since the distillation loss (Lskd) provides more
fine-grained (neuron-level) supervision than the label-level
classification loss (Lcls). Nevertheless, training withLcls and
Lskd can give further improvements, indicating that they can
still provide complementary information. Fourth, by com-
paring HGRU+SSA with HGRU+SSA(ShareEdgeRep), we
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Figure 5: An example involving three speakers (A,B,C) from the Molweni corpus. Different relation types are showed in different colors,
where orange denotes “Clarification Question”, green is “Question-Answer Pair”, blue is “Result” and red is “Comment”.
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Figure 6: Comparison of prediction accuracy between typical mod-
els at different dialogue turns.

find that assigning distinct hidden states for opposite direc-
tions (e.g. rij and rji) yields better performance than using
the same states for both directions. For this result, we specu-
late that the former learns more flexible representations, and
thus it can better fit the asymmetric fact of each utterance pair
on this task.

5.4 Case Study
As shown in Figure 5, given a dialogue example from three
speakers, different discourse structures are predicted by these
models, where we have the following observations. First,
DeepSequential is based on RNN, therefore, it is difficult
to correctly predict the long-distance dependencies such as
u1 → u6. Besides, it tends to be confronted with the problem
of error propagation, which results in errors on u7, u8 given
u4 → u6. Second, HGRU+SSA allows more efficiently se-
mantic interaction and does not suffer from error propagation.
As a result, it correctly predicts u6, but still fails on u7 and
u8. It indicates that this task is still very challenging. Third,
with both auxillary losses, our model is able to correctly pre-
dict both u7 and u8 due to its better representation learning
for intermediate layers.

Surprisingly, all models fail to predict the correct relation

type of u4 → u5. This is because that u5 seems to be
confusing and not related to the given context. In fact, this
phenomenon is common in the actual conversation scenario.
Therefore, the application of conversational discourse parsing
still faces challenges.

5.5 Accuracy at Different Dialogue Turns
Since the prediction of each EDU may depend on any pre-
ceding one, the accuracy may decrease as the dialogue turn
increases. Hence, we investigate the accuracy of our model
and other system at different dialogue turns, which is shown
in Figure 6. Overall, all models have a similar downward
trend. DeepSequential exhibits the worst performance espe-
cially after the 6th dialogue turn because of error propagation.
In comparison to HGRU, HGRU+SSA achieves better perfor-
mance in most cases, demonstrating the advantage of directly
learning edge-specific vectors for EDU pairs and utilizing im-
portant dialogue features. Particularly, when introducing the
two auxiliary loss terms, the accuracy of our model is further
improved for later dialogue turns.

6 Conclusions
In this paper, we propose a Structure Self-Aware model for
conversational discourse parsing. Particularly, it adopts an
edge-centric GNN to directly learn the implicit structural in-
formation between each EDU pair. Besides, we explore two
effective auxiliary losses for relation recognition and struc-
ture distillation to enhance representation learning. Com-
pared with previous models, ours avoids the serious defect
of error propagation, but also makes better use of the struc-
tural information in training data. In the future, we plan to
continuously refine our model by enhancing its robustness for
domain transfer.
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