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Abstract

We extend the map-of-elections framework to the
case of approval elections. While doing so, we
study a number of statistical cultures, including
some new ones, and we analyze their properties.
We find that approval elections can be understood
in terms of the average number of approvals in the
votes, and the extent to which the votes are chaotic.

1

In an approval election [Brams and Fishburn, 1983], each
voter indicates which candidates he or she finds acceptable
for a certain task (e.g., to be a president, to join the parlia-
ment, or to enter the final round of a competition) and a vot-
ing rule aggregates this data into the final outcome. In the
single-winner setting (e.g., when choosing the president), the
most popular rule is to pick the candidate with the highest
number of approvals. In the multiwinner setting (e.g., in par-
liamentary elections or when choosing finalists in a compe-
tition) there is a rich spectrum of rules to choose from, each
with different properties and advantages. Approval voting is
particularly attractive due to its simplicity and low cognitive
load imposed on the voters. Indeed, its practical applicabil-
ity has already been tested in a number of field experiments,
including those in France [Laslier and der Straeten, 2008;
Baujard and Igersheim, 2011; Bouveret et al., 2019] and Ger-
many [Alés-Ferrer and Grani¢, 2012]. Over the recent years
there was also tremendous progress regarding its theoreti-
cal properties (see, e.g., the overviews of Laslier and Sanver
[2010] and Lackner and Skowron [2021]).

In spite of all these achievements, numerical experiments
regarding approval voting are still challenging to design. One
of the main difficulties is caused by the lack of consensus on
which statistical election models to use. Below we list a few
models (i.e., statistical cultures) that were recently used:

Introduction

1. In the impartial culture setting, we assume that each vote
is equally likely. Taken literally, this means that each
voter approves each candidate with probability 1/2 [Bar-
rot et al., 2017]. As this is quite unrealistic, several au-
thors treat the approval probability as a parameter [Bred-
ereck et al., 2019; Faliszewski et al., 2020] or require
that all voters approve the same (small) number of can-
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didates [Lackner and Skowron, 2020]. A further refine-
ment is to choose an individual approval probability for
each candidate [Lackner and Maly, 2021].

In Euclidean models, each candidate and voter is a point
in R where d is a parameter, and a voter approves a
candidate if they are sufficiently near. Such models are
used, e.g., by Bredereck et al. [2019] and Godziszewski
et al. [2021]. Naturally, the distribution of the candidate
and voter points strongly affects the outcomes.

. Some authors consider statistical cultures designed for
the ordinal setting (where the voters rank the candi-
dates from the most to the least desirable one) and let
the voters approve some top-ranked candidates (e.g., a
fixed number of them). This approach is taken, e.g., by
Lackner and Skowron [2020] on top of the ordinal Mal-
lows model (later on, Caragiannis et al. [2022] provided
approval-based analogues of the Mallows model).

Furthermore, even if two papers use the same model, they of-
ten choose its parameters differently. Since it is not clear how
the parameters affect the models, comparing the results from
different papers is not easy. Our goal is to initiate a system-
atic study of approval-based statistical cultures and attempt to
rectify at least some of these issues. We do so by extending
the map-of-elections framework of Szufa er al. [2020] and
Boehmer et al. [2021] to the approval setting.

Briefly put, a map-of-elections is a set of elections with
a distance between each pair. We embed these elections in a
plane, by representing each election as a point, so that the Eu-
clidean distances between these points are similar to the orig-
inal distances between the respective elections. Such maps
help in obtaining insights about the elections they contain.

To create a map-of-elections for approval elections, we
start by identifying two metrics between approval elections,
the isomorphic Hamming distance and the approvalwise dis-
tance. The first one is accurate, but difficult to compute,
whereas the second one is less precise, but easily computable.
Fortunately, in our datasets the two metrics are strongly cor-
related, so we use the latter one.

Next, we analyze the space of approval elections with a
given number of candidates and voters. For each p € [0, 1],
by p-identity (p-ID) elections we mean those where all the
votes are identical and approve the same p-fraction of candi-
dates. By p-impartial culture (p-IC) elections we mean those
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where each voter chooses to approve each candidate with
probability p. We view p-ID and p-IC elections as two ex-
tremes on the spectrum of agreement between the voters and,
intuitively, we expect that every election (where each voter
approves on average a p fraction of candidates) is located
somewhere between these two. In particular, for p, ¢ € [0, 1],
we introduce the (p, ¢)-resampling model, which generates
elections whose expected approvalwise distance from p-ID is
exactly the ¢ fraction of the distance between p-ID and p-IC.

Armed with these tools, we proceed to draw maps of elec-
tions. First, we consider p-ID, p-IC, and (p, ¢)-resampling
elections, where the p and ¢ values are chosen to form a
grid, and compute the approvalwise distances between them.
We find that, for a fixed value of p, the (p, ¢)-resampling
elections indeed form lines between the p-ID and p-IC ones,
whereas for fixed ¢ values they form lines between 0-ID and
1-ID ones (which we refer to as the empty and full elections).
We obtain more maps by adding elections generated accord-
ing to other statistical cultures; the presence of the (p, ¢)-
resampling grid helps in understanding the locations of these
new elections. For each of our elections we compute sev-
eral parameters, such as, e.g, the highest number of approvals
that a candidate receives, the time required to compute the re-
sults of a certain multiwinner voting rule, or the cohesiveness
level (see Section 2 for a definition). For each of the statis-
tical cultures, we present maps where we color the elections
according to these values. This gives further insight into the
nature of the elections they generate. Finally, we compare the
results for randomly generated elections with those appearing
in real-life, in the context of participatory budgeting.

2 Preliminaries

For a given positive integer ¢, we write [¢] to denote the set
{1,2,...,t}, and [t]o as an abbreviation for [t] U {0}.

Elections. A (simple) approval election £ = (C, V') con-
sists of a set of candidates C' = {cy,..., ¢} and a collec-
tion of voters V' = (v1,...,v,). Each voter v € V casts an
approval ballot, i.e., he or she selects a subset of candidates
that he or she approves. Given a voter v, we denote this subset
by A(v). Occasionally, we refer to the voters or their approval
ballots as votes; the exact meaning will always be clear from
the context. An approval-based committee election (an ABC
election) is a triple (C, V. k), where (C,V) is a simple ap-
proval election and k is the size of the desired committee. We
use simple elections when the goal is to choose a single indi-
vidual, and ABC elections in the multiwinner setting. Given
an approval election E (be it a simple election or an ABC
election) and a candidate ¢, we write score 4, (¢) to denote the
number of voters that approve c. We refer to this value as the
approval score of c. The single-winner approval rule (called
AV) returns the candidate with the highest approval score (or
the set of such candidates, in case of a tie).

Distances Between Votes. For two voters v and w, their
Hamming distance is ham(v,u) = |[A(v)AA(u)|, i.e., the
number of candidates approved by exactly one of them.
Other distances include, e.g., the Jaccard one, defined as

_ ham(v,u) el
= TAUAG" For other examples of such dis

jac(v, u)
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tances, we point to the work of Caragiannis et al. [2022].

Approval-Based Committee Voting Rules. An approval-
based committee voting rule (an ABC rule) is a function that
maps an ABC election (C,V, k) to a nonempty set of com-
mittees of size k. If an ABC rule returns more than one com-
mittee, then we consider them tied.

We introduce two prominent ABC rules. Multiwinner Ap-
proval Voting (AV) selects the k candidates with the highest
approval scores. Given a committee W, its approval score
is the sum of the scores of its members; score,,(W) =
> wew S€oTeqy (w). If there is more than one committee that
achieves a maximum score, AV returns all tied committees.
The second rule is Proportional Approval Voting (PAV). PAV
outputs all committees with maximum PAV-score:

2 vev MIA() N W),

where h(x) = 327, 1/j is the harmonic function. Intu-
itively, AV selects committees that contain the “best” candi-
dates (in the sense of most approvals) and PAV selects com-
mittees that are in a strong sense proportional [Aziz er al.,
2017]. In contrast to AV, which is polynomial-time com-
putable, PAV is NP-hard to compute [Aziz er al., 2015;
Skowron ef al., 2016]. In practice, PAV can be computed by
solving an integer linear program [Peters and Lackner, 2020]
or by an approximation algorithm [Dudycz er al., 2020].

scoTepay (W) =

Cohesive Groups. Intuitively, a proportional committee
should represent all groups of voters in a way that (roughly)
corresponds to their size. To speak of proportional commit-
tees in ABC elections, Aziz et al. [2017] introduced the con-
cept of cohesive groups.

Definition 1. Consider an ABC election (C,V, k) with n vot-
ers and some non-negative integer £. A group of voters V' C
V is C-cohesive if (i) [V'| > £ - % and (ii) |,ey A(v)] > .

An /-cohesive group is large enough to deserve ¢ represen-
tatives in the committee and is cohesive in the sense that there
are ¢ candidates that can represent it. A number of proportion-
ality notions have been proposed based on cohesive groups,
such as (extended) justified representation [Aziz et al., 2017],
proportional justified representation [Sénchez-Ferndndez et
al., 2017], proportionality degree [Skowron, 2021], and oth-
ers. All these notions make certain proportionality guarantees
for the cohesive groups (see also the survey of [Lackner and
Skowron, 2021] for a comprehensive overview).

3 Statistical Cultures for Approval Elections

In the following, we present several statistical cultures (prob-
abilistic models) for generating approval elections. Our input
consists of the desired number of voters n and a set of candi-
dates C' = {cy, ..., ¢ }. For models that already exist in the
literature, we provide examples of papers that use them.

Resampling, IC, and ID Models. Let p and ¢ be two num-
bers in [0, 1]. In the (p, ¢)-resampling model, we first draw a
central ballot u, by choosing | p-m | approved candidates uni-
formly at random; then, we generate each new vote v by ini-
tially setting A(v) = A(u) and executing the following pro-
cedure for every candidate ¢; € C': With probability 1 —¢, we



Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

leave ¢;’s approval intact and with probability ¢ we resample
its value (i.e., we let ¢; be approved with probability p). The
resampling model is due to this paper and is one of our basic
tools for analyzing approval elections. By fixing ¢ = 1, we
get the p-impartial culture model (p-IC) where each candi-
date in each vote is approved with probability p; it was used,
e.g., by Bredereck er al. [2019] and Faliszewski er al. [2020].
By fixing ¢ = 0, we ensure that all votes in an election are
identical (i.e., approve the same p fraction of the candidates).
We refer to this model as p-identity (p-ID).

Disjoint Model. The (p,,g)-disjoint model, where p
and ¢ are numbers in [0,1] and ¢ is a non-negative inte-
ger, works as follows: We draw a random partition of C
into g sets, C,...,Cy, and, to generate a vote, we choose
i € [g] uniformly at random and sample the vote from a
(p, ¢)-resampling model with the central vote that approves
exactly the candidates from C; (while the central votes are in-
dependent of p, we still need this parameter for resampling).

Noise Models. Let p and ¢ be two numbers from [0, 1] and
let d be a distance between approval votes. We require that d
is polynomial-time computable and, for each two approval
votes w and v, d(u,v) depends only on |A(u)|, |A(v)|, and
|A(uw) N A(v)[; both distances from Section 2 have this prop-
erty. In the (p, ¢, d)-Noise model we first generate a central
vote w as in the resampling model and, then, each new vote v
is generated with probability proportional to ¢(**). Such
noise models are analogous to the Mallows model for ordinal
elections and were studied, e.g., by Caragiannis ez al. [2022].
In particular, they gave a sampling procedure for the case of
the Hamming distance. We extend it to arbitrary distances.

Proposition 1. There is a polynomial-time sampling proce-
dure for the (p, ¢, d)-noise models (as defined above).

In the reminder, we only use the noise model with the Ham-
ming distance and we refer to it as the (p, ¢)-noise model.
Note that the roles of p and ¢ in this model are similar, but
not the same, as in the resampling one (for example, for ¢ = 0
we get the p-ID model, but for ¢ = 1 get the 0.5-IC one).

Euclidean Models. In the ¢-dimensional Euclidean model,
each candidate and each voter is a point from R¢ and a voter v
approves candidate c if the distance between their points
is at most r (this value is called the radius); such models
were discussed, e.g., in the classical works of Enelow and
Hinich [1984,1990], and more recently by Elkind and Lack-
ner [2015], Elkind et al. [2017], Bredereck et al. [2019], and
Godziszewski et al. [2021]. We consider ¢t-dimensional mod-
els for t € {1,2}, where the agents’ points are distributed
uniformly at random on [0,1]*. We refer to them as 1D-
Uniform and 2D-Square models (note that to fully specify
each of them, we also need to indicate the radius value).

Truncated Urn Models. Let p be a number in [0, 1] and
let o be a non-negative real number (the parameter of conta-
gion). In the truncated Pélya-Eggenberger Urn Model [Berg,
1985] we start with an urn that contains all m! possible linear
orders over the candidate set. To generate a vote, we (1) draw
a random order r from the urn, (2) produce an approval vote
that consists of [p - m] top candidates according to r (this
is the generated vote), and (3) return am! copies of r to the
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urn. For o = 0, all votes with [p - m] approved candidates
are equally likely, whereas for large values of « all votes are
likely to be identical (so the model becomes similar to p-ID).

4 Metrics

Next we describe two (pseudo)metrics used to measure dis-
tances between approval elections. Since we are interested in
distances between randomly generated elections, our metrics
are independent of renaming the candidates and voters.
Consider two equally-sized candidate sets C' and D, and
a voter v with a ballot over C'. For a bijection o: C' — D,
by o(v) we mean a voter with an approval ballot A(c(v)) =
{o(c) | ¢ € C}. In other words, o(v) is the same as v,
but with the candidates renamed by . We write II(C, D) to
denote the set of all bijections from C' to D. For a positive
integer n, by S,, we mean the set of all permutations over [n].
Next, we define the isomorphic Hamming distance (inspired
by the metrics of Faliszewski et al. [2019]).
Definition 2. Let E = (C,V) and F = (D,U) be two
elections, where |C| = |D|, V = (v1,...,v,) and U =
(u1,...,up). The isomorphic Hamming distance between E
and F, denoted dyam (E, F), is defined as:

min,er(c,py minges, (31, ham(o(v;), u,))) -

Intuitively, under the isomorphic Hamming distance we unify
the names of the candidates in both elections and match their
voters to minimize the sum of the resulting Hamming dis-
tances. We call this distance isomorphic because its value is
zero exactly if the two elections are identical, up to renam-
ing the candidates and voters. Computing this distance is
NP-hard (see also the related results for approximate graph
isomorphism [Arvind et al., 2012; Grohe et al., 2018]).

Proposition 2. Computing the isomorphic Hamming dis-
tance between two approval elections is NP-hard.

Thus we compute this distance using a brute-force algo-
rithm (which is faster than using, e.g., ILP formulations).
Since this limits the size of elections we can deal with, we
also introduce a simple, polynomial-time computable metric.

Definition 3. Let E be an election with candidate set
{c1,...,cm} and n voters. Its approvalwise vector, denoted
av(E), is obtained by sorting the vector (scoreq,(c1)/n,
..., 8coTC 4y (¢ ) /M) in non-increasing order.

Definition 4. The approvalwise distance between elections
E and F with approvalwise vectors av(E) = (x1,...,Tm)
and av(F) = (y1,...,Ym) is defined as:

dapp(E’F) =z =yl + -+ [Tm — Yml-

In other words, the approvalwise vector of an election is a
sorted vector of the normalized approval scores of its candi-
dates, and an approvalwise distance between two elections is
the ¢; distance between their approvalwise vectors. We sort
the vectors to avoid the explicit use of a candidate matching,
as is needed in the Hamming distance. Occasionally we will
speak of approvalwise distances between approvalwise vec-
tors, without referring to the elections that provide them.

It is clear that the approvalwise distance is computable in
polynomial time. Yet, it is not as clear that its values are
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Figure 1: Distances between resampling elections.
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Figure 2: Correlation between Hamming and approvalwise metrics.

actually meaningful. In Section 6.3 we will show that in our
datasets it is strongly correlated with the Hamming distance
and, so, in the following, we focus on approvalwise distances.

S A Grid of Approval Elections

To better understand the approvalwise metric space of elec-
tions, next we analyze expected distances between elections
generated according to the (p, ¢)-resampling model.

Fix some number m of candidates and parameters p, ¢ €
[0,1], such that pm is an integer, and consider the process
of generating votes from the (p, ¢)-resampling model. In the
limit, the approvalwise vector of the resulting election is:

pm (1—p)-m

Indeed, each of the pm candidates approved in the central
ballot either stays approved (with probability 1 — ¢) or is re-
sampled (with probability ¢, and then gets an approval with
probability p). Analogous reasoning applies to the remaining
(1 — p)m candidates. With a slight abuse of notation, we call
the above vector av(p, ¢). Furthermore, we refer to av(p, 0)
as the p-ID vector, to av(p, 1) as the p-IC vector, and to 0-
ID and 1-ID vectors as the empty and full ones, respectively
(note that O-ID = 0-IC and 1-ID = 1-IC).

Now, consider two additional numbers, p’, ¢’ € [0, 1], such
that p’m is an integer. Simple calculations show that:

dapp(empty, full) = m,

dapp (p-1C, p-ID) = 2mp(1 — p),
dapp(av(p, @), av(p’, d)) = m - |p — p'|,
dapp(av(p, @), av(p, ¢')) = 2mp(1 — p) - [¢ — ¢'].
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Thus dapp(av(p, ¢), empty) = mp is a p fraction of the dis-
tance between empty and full, and d,pp(av(p, ¢),p-ID) =
2mp(1 —p)¢ is a ¢ fraction of the distance between p-IC and
p-ID (see also Figure 1). Furthermore, dap, (empty, full) =
m is the largest possible approvalwise distance.

Intuitively, (p, ¢)-resampling elections form a grid that
spans the space between extreme points of our election space;
the larger the ¢ parameter, the more “chaotic” an election be-
comes (formally, the closer it is to the p-IC elections), and
the larger the p parameter, the more approvals it contains (the
closer it is to the full election). We use (p, ¢)-resampling elec-
tions as a background dataset, which consists of 241 elections
with 100 candidates and 1000 voters each, with the following
p and ¢ parameters:

1. pischosen from {0,0.1,0.2,...,0.9,1} and ¢ is chosen
from the interval (0, 1),! or

2. ¢ is chosen from {0, 0.25,0.5,0.75,1} and p is chosen
from the interval (0, 1).

For each of these elections we compute a point in R?, so that
the Euclidean distances between these points are as similar
to the approvalwise distances between the respective elec-
tions as possible. For this purpose, similarly to Szufa ef al.
[2020], we use the Fruchterman-Reingold force-directed al-
gorithm [Fruchterman and Reingold, 1991]. For the resulting
map, see the clear grid-like shape at the left side of Figure 3.
Whenever we present maps of elections later in the paper, we
compute them in the same way (but for datasets that include
other elections in addition to the background ones).

6 Experiments

In this section, we use the map-of-elections approach to an-
alyze quantitative properties of approval elections generated
according to our models. In particular, we will see how an
election’s position in the grid influences each of the proper-
ties, and what parameters to use to generate elections with the
quantitative property in a desired range.

6.1 Experimental Design

Concretely, we consider the following four statistics:

Max. Approval Score. The highest approval score among
all candidates in a given election, normalized by the
maximum possible score, i.e., the number of voters.

Cohesiveness Level. The largest integer ¢ such that there ex-
ists an ¢/-cohesive group (for committee size 10).

Voters in Cohesive Groups. Fraction of voters that belong
to at least one 1-cohesive group (for committee size 10).

PAV Runtime. Runtime (in seconds) required to compute a
winning committee under the PAV rule, by solving an
integer linear program provided by the abcvoting li-
brary [Lackner et al., 20211, using the Gurobi ILP solver.

We use six datasets. Five of them are generated using our
statistical cultures and consist of 100 candidates and 1000

'By generating ¢ elections with a parameter from interval (a, b),

we mean generating one election for each value a—l—z‘l;jr—‘l‘, fori € [t].
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Figure 3: Maps for (a) the Resampling Model and (b) the Noise Model. For the latter, the darker a dot in the main plot, the higher is the ¢

value used to generate the election.

voters (except for the experiments related to the cohesive-
ness level, where we have 50 candidates and 100 voters,
due to computation time). We have: 250 elections from
the Disjoint Model (50 for each ¢ € {2,3,4,5,6} with
¢ € (0.05,1/9)); 225 elections from the Noise Model with
Hamming distance (25 for each p € {0.1,0.2,...,0.9} with
¢ € (0,1)); 225 elections from the Truncated Urn Model
(25 for each p € {0.1,0.2,...,0.9} with « € (0,1)); 200
elections from Euclidean Model (100 for 1D-Uniform, with
radius in (0.0025,0.25), and 100 for 2D-Square, with radius
in (0.005, 0.5)); these parameters are as used by Bredereck et
al. [2019]. The sixth dataset uses real-life participatory bud-
geting data and contains 44 elections from Pabulib [Stolicki
et al., 20201, where for each (large enough) election we ran-
domly selected a subset of 50 candidates and 1000 voters.

6.2 Experimental Results

Our visualizations are shown in Figures 3 and 4. We use the
grid structure of the background dataset for comparison. with
other datasets. Notably, some of them do not fill this grid.
This is most striking for the real-world dataset, Pabulib (Fig-
ure 4d), which is placed very distinctly in the bottom left part.

To get an intuitive understanding of the four statistics, let
us consider the background dataset in Figure 3a. We see that
the highest approval score is lowest in the lower left side and
increases towards up and right. This is sensible: If the average
number of approved candidates increases, so does this statis-
tic; also, if voters become more homogeneous, high-scoring
candidates are likely to exist. Regarding voters in cohesive
groups, it turns out that in most elections almost all voters
belong to a 1-cohesive group, with the left lower part as an
exception (where there are not enough approvals to form 1-
cohesive groups). The time needed to find a winning com-
mittee under PAV is correlated with the distance from 0.5-IC.
Similar to the highest approval score, the cohesiveness level
increases when moving up or right in the diagram. Cohesive
groups with levels close to the committee size only exist in
very homogeneous elections (rightmost path) and elections
with many approvals (top part).

500

We move on to the results for the five other datasets. Note
that each figure also contains the background dataset (gray
dots) for reference. These results help to understand the dif-
ferences between our statistical cultures.

The maximum approval score statistic provides an insight
into whether there is a candidate that is universally supported.
Instances with a value close to 1 possess such a candidate. In
a single-winner election, this candidate is likely to be a clear
winner. This is undesirable when simulating contested elec-
tions or shortlisting. Also note that in the real-world data set
(Pabulib) we do not observe the existence of such a candidate.

When looking at the PAV runtime, we find some statistical
cultures that generate computationally difficult elections, e.g.,
the (p, ¢)-resampling model with parameter values close to
p =0.5and ¢ = 1 (0.5-IC), the noise model with parameters
p € ]0.5,0.9] and ¢ > 0.5, and the disjoint model with g = 2.
Yet, instances from the real-world dataset, as well as from the
Euclidean and urn ones, can be computed very quickly.”

Concerning voters in cohesive groups, whenever this statis-
tic is close to 1, it is easy to provide most voters with at least
one approved candidate in the committee; such committees
are easy to find [Aziz et al., 2017]. Since many propor-
tional rules take special care of voters that belong to cohe-
sive groups, in such elections there are no voters that are at a
systematic disadvantage. In many of our generated elections
(almost) all voters belong to 1-cohesive groups, but this is not
the case for the real-world, Pabulib data and it would be in-
teresting to find statistical model that would behave similarly.
For the cohesiveness level, we see that all models generate a
full spectrum (i.e., [0, 10]) of cohesiveness levels. That said,
we expect realistic elections to appear in the “lower left” part
of our grid (with few approvals), and such elections tend to
have low cohesiveness levels. Indeed, this is the case for Pab-
ulib elections. Thus it is important how proportional rules
treat /-cohesive groups with small /.

?Less than 1 second on a single core (Intel Xeon Platinum 8280
CPU @ 2.70GH) of a 224 core machine with 6TB RAM. In contrast,
the worst-case instance (0.3-1C) required 25 minutes on 13 cores.
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(c) Truncated Urn Model
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(b) Disjoint Model
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Figure 4: Maps for (a) the Euclidean Model, (b) the Disjoint Models, (c) the Truncated Urn Model, and (d) Pabulib. For (a), (b), and (c), the
darker a dot in the main plot, the higher is the value of the radius, the ¢ parameter, or the o parameter, respectively.

6.3 Correlation

Figures 3 and 4 are based on the approvalwise distance, but
they would not change much if we used the (computation-
ally intractable) isomorphic Hamming distance. To verify this
claim, we generated 363 elections with 10 candidates and 50
voters from the statistical cultures used in the previous exper-
iment and compared Hamming and approvalwise distances
between them: The results are in Figure 2, where each dot
represents a pair of elections, and its coordinates are the re-
spective distances between them. The Pearson Correlation
Coefficient is 0.989, and for 67% pairs of elections the dis-
tances (after normalization) are identical.

This last observation requires comments. On the one hand,
we observe that the two distances often coincide when the dis-
tances are large. This happens, e.g., if one election is dense
(i.e., each voter approves many candidates) and the other one
is sparse (i.e., each voter approves few candidates). In such
cases, it is likely that every ballot A(v;) from the sparse elec-
tion can be mapped to some ballot B(u;) in the dense election
such that A(i) C B(j). If this is the case, then both distances
coincide. On the other hand, equality of the distances is un-
likely, e.g., for elections generated from 0.5-IC.
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7 Conclusions and Future Work

We propose to use the resampling model as a baseline in nu-
merical experiments on approval voting. An important task
for future work is to broadly study real-world datasets with
the methods proposed in this paper. It would also be interest-
ing to consider further statistics than the ones we used.
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