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Abstract

“Strong-cyclic policies” were introduced to formal-
ize trial-and-error strategies and are known to work
in Markovian stochastic domains, i.e., they guar-
antee that the goal is reached with probability 1.
We introduce “best-effort” policies for (not neces-
sarily Markovian) stochastic domains. These gen-
eralize strong-cyclic policies by taking advantage
of stochasticity even if the goal cannot be reached
with probability 1. We compare such policies with
optimal policies, i.e., policies that maximize the
probability that the goal is achieved, and show that
optimal policies are best-effort, but that the con-
verse is false in general. With this framework at
hand, we revisit the foundational problem of what
it means to plan in nondeterministic domains when
the nondeterminism has a stochastic nature. We
show that one can view a nondeterministic plan-
ning domain as a representation of infinitely many
stochastic domains with the same support but dif-
ferent probabilities, and that for temporally ex-
tended goals expressed in LTL/LTLf a finite-state
best-effort policy in one of these domains is best-
effort in each of the domains. In particular, this
gives an approach for finding such policies that re-
duces to solving finite-state MDPs with LTL/LTLf
goals. All this shows that “best-effort” policies are
robust to changes in the probabilities, as long as the
support is unchanged.

1 Introduction
Planning in nondeterministic environments is one of the key
challenges of AI: often the agent does not have control over
everything that happens in its environment so it views the
environment as nondeterministic (in a devilish sense), i.e.,
only partially controllable by the agent itself. This topic
has developed as a subarea of Planning on Fully Observ-
able Nondeterministic Domains (FOND) [Rintanen, 2004;
Geffner and Bonet, 2013; Ghallab et al., 2016; Haslum et
al., 2019] and numerous solvers are available [Mattmüller et
al., 2010; Kissmann and Edelkamp, 2011; Muise et al., 2012;
Ramı́rez and Sardiña, 2014; Geffner and Geffner, 2018].

The direct extension of classical planning to FOND gives
rise to strong plans, i.e., policies or strategies that tell the
agent what to do in every situation and that achieve the goal
in spite of the nondeterministic environment’s response to the
agent’s actions [Cimatti et al., 1998; Pistore and Traverso,
2001]. However, in many situations these kinds of plans
do not exist. So, a weaker notion of plan was introduced,
the strong cyclic plans [Daniele et al., 1999; Cimatti et al.,
2003]. Intuitively, these policies allow loops from which the
agent assumes it will eventually exit, e.g., they may encode
trial-and-error strategies. Interestingly, as recently noted in
[D’Ippolito et al., 2018], the fundamental question of formal-
izing “contexts under which these type[s] of plans will indeed
achieve the objectives. . . has not received much attention and
has mostly been discussed informally”. A first attempt to
characterize these contexts has been to make a logical fair-
ness assumption on the actions effects, see [D’Ippolito et al.,
2018] for a discussion. Unfortunately, while this solves the
problem for classical reachability goals, if we consider tem-
porally extended goals, e.g., expressed in LTL or LTLf , this
characterization fails because the simple fairness assumption
that is sufficient for reachability is not adequate for LTL or
LTLf goals [Aminof et al., 2020b]. An alternative to logi-
cal fairness is stochastic fairness (see [Aminof et al., 2020b]
for a detailed comparison) already suggested in early papers,
e.g., [Cimatti et al., 2003]. This point of view assumes that
the nondeterminism in FOND arises from a stochastic nature
of the environment: the environment is not adversarial to the
agent, but chooses its effects according to some unknown
probability distribution. In particular, strong-cyclic policies
rely on the fact that in a stochastic environment, repeating
an action (in the same situation) will eventually lead to the
desired effect.

The question now arises: on what objects is this unknown
probability distribution given? Is it given on the current val-
ues of the fluents and the action, and if so, what is the justi-
fication for that? Why should we assume such a probability
distribution is stationary with respect the domain states? Af-
ter all, the nondeterministic domain describes only the sup-
port, i.e., the effects with non-zero probability. No further
assumptions should be made on the effect distributions. In
this paper we take this observation seriously.

We focus on stochastic domains and LTL and LTLf goals.
We study three classes of policies: (i) those that almost-
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surely enforce the goal, i.e., with probability 1, [Baier et al.,
2008], (ii) those that are optimal wrt enforcing the goal [Put-
erman, 2005], and (iii) those that are best-effort wrt enforc-
ing the goal [Aminof et al., 2021b]. The latter, which we
call stochastic best-effort policies, are novel in the context of
stochastic domains. Such a policy will guarantee that even
if the goal is not achievable with probability 1, it will, in-
tuitively, seize every opportunity to achieve the goal. For
example, suppose an agent is offered some money that, if it
were to accept, can only be used to place one of two bets,
Bet 1 or Bet 2, each of which gives it a non-trivial probability
of winning; however, the agent does not know these probabil-
ities, or even which probability is larger. If the agent’s goal
is to win money at the casino, what actions should it take?
In this setting the agent cannot guarantee with probability 1
that it will win a bet. Also, since the relative probabilities
of winning each bet are not known, it can’t deduce an op-
timal policy either. A rational solution would be to accept
the money, rather than refuse the money, and place either bet.
This is achieved by a stochastic best-effort policy.

In Section 3, we show the following: optimal policies are
stochastic best-effort, but a stochastic best-effort policy need
not be optimal; if an almost-sure policy exists, the stochas-
tic best-effort policies are exactly the almost-sure policies;
stochastic best-effort policies always exist, while almost-sure
or optimal policies may not exist.

In Section 4, we consider a FOND as a specification of a
set of stochastic domains, i.e., those whose support is spec-
ified by the FOND. We show that a finite-state policy that
is stochastic best-effort in one of these stochastic domains
is in fact stochastic best-effort in all of these stochastic do-
mains. This immediately provides an algorithm to compute a
single stochastic best-effort policy that works for each of the
stochastic domains induced by the FOND: choose a stochas-
tic domain compliant with the FOND in the most convenient
way (e.g., assigning uniform probability to all nondeterminis-
tic transition of the FOND), and compute a (finite-state) opti-
mal policy for that particular stochastic domain. Note that the
stochastic domain can be chosen to be an MDP, which always
has an optimal policy. This policy is in fact stochastic best-
effort for every stochastic domain specified by the FOND.
Moreover, if the policy almost-surely enforces the goal in that
stochastic domain then it almost-surely enforces the goal in
every stochastic domain specified by the FOND.

In other words, we show that the true nature of FOND
for strong cyclic-plans (or FOND under “stochastic fairness”)
is that of a generalized planning problem [Srivastava, 2010;
Bonet et al., 2010; Hu and De Giacomo, 2011; Bonet et
al., 2017] over the set of stochastic domains induced by the
FOND. Moreover, our studies show that even if the strong
cyclic solution does not exist, instead of giving up, we can
provide a best-effort solution anyway, which unlike optimal
solutions is robust in that it is shared by all induced stochas-
tic domains. Observe that this last aspect is of interest per se
since it can also be understood as follows: even if the prob-
abilities in a stochastic domain, such as an MDP, are not ac-
curate for some reason, as long as the support is correct, the
nominal optimal solution, although not optimal in reality re-
mains best-effort anyway.

2 Preliminaries
Notation
Sequences may be written (x0, x1, · · · ) or x0x1 · · · . If h is
a finite sequence then last(h) is its last element. If h is a
prefix of h′ we say that h′ extends h. A set is countable if
it is finite or countably infinite. Let Dbn(X) denote the set
of distributions over X , i.e., functions d : X → [0, 1] such
that

∑
x∈X d(x) = 1. An element x is in the support of d if

d(x) > 0.

Stochastic Domains
Let F be a finite set of Boolean variables called fluents. We
write Obs = 2F for the set of evaluations of the fluents,
sometimes called observations or percepts. For symmetry,
let A be a finite set of Boolean variables (disjoint from F )
and let Act = 2A be the set of actions. A stochastic domain
D is a tuple (F,A, s0, P r) where

1. s0 ∈ Obs is the initial observation, and
2. Pr : Hist × Act → Dbn(Obs) is the transition func-

tion. Here Hist is the set of histories, i.e., sequences
(s0, a0, s1, a1, · · · , sk) that start with the initial obser-
vation, alternate observations and actions, and end in an
observation.

The support function of D is the function ∆ : Hist×Act→
2Obs defined by s ∈ ∆(h, a) iff Pr(h, a)(s) > 0. If
Pr(h, a)(s) > 0 we say that s is in the support of Pr(h, a).
We say that D has Markovian support if ∆(h, a) only de-
pends on last(h) and a, i.e., last(h) = last(h′) implies that
∆(h, a) = ∆(h′, a). In this case, we may write the sup-
port function as ∆ : Obs × Act → 2Obs. We say that D is
bounded if there is some ε > 0 such that Pr(h, a)(s) ≥ ε
for all h, a and s in the support of Pr(h, a). A domain is
Markovian if Pr(h, a) only depends on last(h) and a, i.e.,
last(h) = last(h′) implies that Pr(h, a) = Pr(h′, a).

Note that finite-state Markov Decision Processes (MDPs)
without rewards are exactly the Markovian stochastic do-
mains. Some of the counterexample stochastic-domains that
we give are MDPs; in the figures, we will label their transi-
tions by a : r to mean that, given that action a was played,
the probability of that transition is r.

Plays and Policies
Let D = (F,A, s0, P r) be a stochastic domain. A play
of D is an infinite sequence π = (s0, a0, s1, a1, · · · ) start-
ing in the initial observation. Let Plays denote the set of
all plays in D. A policy (aka strategy, plan) is a function
σ : Hist → Act. A σ-play (resp. σ-history) is such that
σ(s0, a0, s1, a1, · · · , st) = at for every t. A policy is finite-
state if it can be represented as a finite-state input/output au-
tomaton that, on reading h ∈ Hist as input, outputs the ac-
tion σ(h). A policy is memoryless if last(h) = last(h′) im-
plies that σ(h) = σ(h′). In this case we can write σ : Obs→
Act.

Markov Chains
A Markov chain M is a tuple (Q, s0, p) where Q is a count-
able set of states, s0 ∈ Q is the initial state, and p : Q →
Dbn(Q). We write p(s, t) for p(s)(t), and call these the tran-
sition probabilities of M . The graph (Q,EM ) induced by M
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has state set Q and edge set EM consisting of pairs (q, q′)
such that q′ is in the support of p(q). Thus, graph-theoretic
notions (like connected components) are defined for M by
considering the induced graph. A Markov chain is finite if Q
is finite. A Markov chain M induces a canonical probability
space on the set of infinite paths in M starting in s0 that we
denote (ΩM , AlgM , µM ), e.g., [Puterman, 2005]. We may
drop subscripts for readability. Elements of Alg are called
events. All sets that we measure are either assumed to be
events, or can be shown to be events, although we may not
explicitly say so. For a history h we denote by Ch the event
consisting of the plays with prefix h. If µ(E) = 1 we say
that almost surely E holds (in M ). In case µ(F ) > 0 define
µ(E|F ) := µ(E ∩ F )/µ(F ).

Probability Measures
Fix a domain D and a policy σ. Define the Markov chain
D[σ] = (Hist, s0, p) where p(h, h′) := Pr(h, σ(h))(s)
for h′ = hσ(h)s. The measure of the induced prob-
ability space is denoted µD[σ]. Note that a play in
D[σ] is a sequence of histories of D, i.e., of the form
(s0), (s0, a0, s1), (s0, a0, s1, a1, s2), · · · , whose limit is a
play in D, i.e., of the form (s0, a0, s1, a1, · · · ). Thus, for
convenience, we will refer to σ-plays in D as plays in D[σ],
and vice versa. Intuitively, µD[σ](E) is the probability that a
play in D starting from s0 generated by σ is in E. We say
that σ almost surely enforces E (in D) if µD[σ](E) = 1.

Linear-time Temporal Logic (LTL/LTLf)
The formulas of LTL a finite set AP of atoms are defined by
the following BNF (where p ∈ AP ): ϕ ::= p | ϕ ∨ ϕ | ¬ϕ |
Xϕ |ϕUϕ. We use the usual abbreviations, Fϕ .

= trueUϕ,
Gϕ

.
= ¬F¬ϕ. A trace τ is an infinite sequence of valua-

tions of the atoms, i.e., τ ∈ (2AP )ω . For n ≥ 0, write τn
for the valuation at position n. Given τ , n, and ϕ, the sat-
isfaction relation (τ, n) |= ϕ, stating that ϕ holds at step n
of the sequence τ , is defined as follows: 1. (τ, n) |= p iff
p ∈ τn; 2. (τ, n) |= ϕ1 ∨ ϕ2 iff (τ, n) |= ϕ1 or (τ, n) |= ϕ2;
3. (τ, n) |= ¬ϕ iff (τ, n) |= ϕ does not hold; 4. (τ, n) |= Xϕ
iff (τ, n + 1) |= ϕ; and 5. (τ, n) |= ϕ1 Uϕ2 iff there ex-
ists m ≥ n such that: (τ,m) |= ϕ2 and (τ, j) |= ϕ1 for all
n ≤ j < m. If τ, 0 |= ψ we write τ |= ψ and say that τ
satisfies ψ and that τ is a model of ψ. In case AP = F ∪A,
we say that a play (s0, a0, s1, a1, · · · ) satisfies ϕ if the corre-
sponding trace (s0∪a0, s1∪a1, · · · ) satisfies ϕ. We also con-
sider the variant LTLf (Bacchus and Kabanza [2000], Baier
and McIlraith [2006], De Giacomo and Vardi [2013]). It has
the same syntax and semantics as LTL except that τ is a finite
sequence and X and U are redefined as follows: for n < |τ |
define τ, n |= Xψ if n < |τ | − 1 and τ, n + 1 |= ψ; define
τ, n |= ϕ1 Uϕ2 iff there existsm with n ≤ m < |τ | such that
(τ,m) |= ϕ2 and (τ, j) |= ϕ1 for all n ≤ j < m.1

We use the following convention for interpreting LTLf for-
mulas over infinite traces: if τ is infinite and ψ is an LTLf
formula, then τ |= ψ means that some finite prefix of τ satis-
fies ψ (analogous to the agent using an explicit “stop” action).

1“Optimistic” variants of these operators can be defined, e.g.,
”weak next ψ” holds if n < |τ | − 1 implies τ, n+ 1 |= ψ.

Goals and Planning Problems
A planning problem (D,G) consists of a stochastic domain
D and a set G of plays, called a goal. We say that a play
satisfies G if it is in G. We only require that G satisfies the
following technical property: for every policy σ, the set of
plays ofD[σ] that are inG is measurable. This includes goals
represented by LTL/LTLf formulas and by automataM. If D
is stochastic, we will write µD[σ](G) for the measure of the
event consisting of all plays in D[σ] that are in G.

3 Stochastic Best-effort (SBE) Policies
In this section we provide the definition of stochastic best-
effort policy, and compare it to optimal policies. Fix a
stochastic domain D and a goal G. For a policy σ, and σ-
history h, define valD,G(σ, h) (simply val(σ, h)) as follows:

valD,G(σ, h) :=


+1 if µD[σ](G|Ch) = 1

−1 if µD[σ](G|Ch) = 0

0 otherwise.
The following fact about the extreme values follows from

additivity of µD[σ]:
Proposition 1 (Hereditary). If val(σ, h) 6= 0, and h′ is σ-
history that extends h, then val(σ, h) = val(σ, h′)

Here is the main definition of this work:
Definition 1 (Stochastic best-effort – SBE). Fix a stochastic
domain D and a goal G. A policy σ is called stochastic best-
effort (SBE) for the planning problem (D,G) if for every σ-
history h of D:
valD,G(σ, h) = max

σ′
{valD,G(σ′, h) : h is a σ′-history}.

Intuitively, an SBE policy tries, from every history, to
almost-surely enforce G, and if this is not possible, then at
least tries to ensure that G holds with positive probability.
Thus, even if there is no policy that almost-surely enforces
G from the start, the coin tosses from the environment may
lead to such an opportunity in the future, and an SBE policy
will take advantage of this. By maintaining a positive proba-
bility where possible, SBE policies do not close the door on
opportunities that may arise due to stochasticity. Moreover,
differentiating between probability zero, non-zero, and one,
turns out to be robust even if very little is known of the prob-
abilities themselves, but only what is and is not possible, see
Section 4. It turns out that SBE policies always exist!
Theorem 1. There exists a SBE policy for (D,G).

The proof of this result is an adaptation of the fact that best-
effort policies exist in the context of synthesis under assump-
tions [Aminof et al., 2020a]. Moreover, the special case of
temporal goals and bounded stochastic domains with Marko-
vian support will follow from Theorem 4 Part 1.

3.1 Relation to Optimization Problems
In the case that probabilities in a stochastic domain are known
or can be sampled, the natural problem is to find optimal
policies, i.e., ones that maximize the probability of success.
A policy σ is optimal for the planning problem (D,G) if
σ = argsupσ′µD[σ′](G). It is interesting to note that, in
contrast to SBE policies, optimal policies don’t always exist,
even for reachability goals:
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s0 s1s2

a:rn

b:pn
a:qn

b:(1− pn)

a:(1− rn − qn)

a:1,b:1 a:1,b:1

Figure 1: Generic planning problem. The starting observation is s0,
there are two actions ”a” and ”b”, and the goal G is “eventually s1”.
The parameter n = 0, 1, 2, · · · is the number of time steps that have
passed. The variables rn, pn, qn are instantiated in the text.

Example 1 (Optimal need not exist). Consider Fig. 1 where
pn := (n+ 1)/(2n+ 3) and rn := 1 (and thus qn := 0). One
can calculate that for every policy σ, µD[σ](G) < 1/2, while
supσ µD[σ](G) = 1/2. We remark thatD is bounded and has
Markovian support.

Optimal policies are stochastic best-effort:
Theorem 2 (Optimal→ SBE). LetD be a stochastic domain,
and let G be a goal. Then every optimal policy σ for (D,G)
is stochastic-best effort for (D,G).

Proof. Suppose σ is not stochastic best-effort. Then
val(σ, h) < val(σ′, h) for some σ′ and some history h that
is both a σ-history and a σ′-history. There are two cases
depending on val(σ, h) ∈ {−1, 0}. We consider the case
that val(σ, h) = 0. In this case, µD[σ](G|Ch) = 0 and
µD[σ′](G|Ch) > 0. Define the policy σ′′ := σ[h ← σ′],
which agrees with σ′ on h and all of its extensions, and oth-
erwise agrees with σ. Then µD[σ′′](G|Ch) > 0, and thus
µD[σ′′](G) > µD[σ](G). Thus σ is not optimal. The case that
val(σ, h) = −1 is similar.

We point out that the converse is false already for reacha-
bility goals. Although one can deduce this from the fact that
optimal policies don’t always exist (Example 1) while SBE
policies do (Theorem 1), it also holds for finite MDPs and
reachability goals for which optimal policies always exist.
Example 2 (SBE 6→ optimal). Consider Fig. 1 with pn :=
1/10, qn := 7/10, and rn = 0. The domain is an MDP. Only
the first action played is relevant; thus there are in effect just
two policies ”first do a”, which is optimal and achieves the
goal with probability 7/10, and ”first do b”, which is not op-
timal (it achieves the goal with probability 1/10). However,
both policies are SBE (since both have value 0 at s0).

By Proposition 1 and Definition 1 we get:
Theorem 3. Let D be a stochastic domain and G a goal. If
there is a policy σ that almost-surely enforces G in D, then
a policy σ′ is stochastic-best effort for (D,G) if and only σ′
almost-surely enforces G in D.

This has an analogue in the non-stochastic setting: if there
is a winning policy, then the best-effort policies are exactly
the winning policies [Aminof et al., 2020a].

4 Generalized Stochastic Planning
Finding a single policy that works in multiple “similar” do-
mains is called “Generalized Planning”. In this section we

introduce and study generalized planning for stochastic do-
mains. We restrict to stochastic domains that are bounded and
have Markovian support: the latter means we can talk about
an induced nondeterministic domain that does not change
over time; the former means this domain does not change “in
the limit” (intuitively, if the probability of taking a transition
(s, a, s′) goes to zero very fast, then the probability condi-
tioned on being at s infinitely often of eventually taking the
edge may go to zero, which means, intuitively, that this edge
is not there “in the limit”).
Definition 2. Let D1, D2 be stochastic domains that are
bounded and have Markovian support. We say that D1 and
D2 are similar if they have the same set of fluents F , actions
A, initial observation s0, same support functions, but possi-
bly different Pr. A generalized planning problem is a pair
(D, G) where D is a set of pairwise-similar stochastic do-
mains, and G is a goal for every D ∈ D.

We specify G by LTL/LTLf formulas (and in some proofs
also with automata), and we specify D by a fully observable
nondeterministic domain (FOND) D = (F,A, s0,∆), where
∆ : Obs× Act → 2Obs \ {∅}. That is, D determines the set
D of bounded stochastic domains D′ = (F,A, s0, P r) such
that ∆ is the support function of Pr.
Definition 3. Let (D, G) be a generalized planning domain.
A policy is stochastic best-effort (SBE) (resp. optimal, resp.
almost-sure enforcing) if for every domain D ∈ D, the pol-
icy is stochastic best-effort (resp. optimal, resp. almost-sure
enforcing) for the planning domain (D,G).

It is not hard to see that already in very simple cases there
may not be a policy that is optimal for D, even though for
every D ∈ D there is an optimal policy.
Example 3. Recall the domain from Example 2 that has an
optimal policy. Define a similar domain D′ with the roles of
a and b reversed, i.e., pn := 7/10, qn := 1/10, rn := 0. Then
the optimal policy in D′ is ”first do b”. So, there is no policy
that is optimal for both (D,G) and (D′, G).

On the other hand, as we now show, already in a quite gen-
eral setting there is a stochastic best-effort policy for (D, G).
Theorem 4. Let (D, ϕ) be a generalized planning problem
for a LTL/LTLf goal ϕ. Then:

1. There exists a finite-state SBE policy for (D, ϕ) which
can be computed from the specification of D (i.e., the
common Markovian support) and ϕ (i.e., the LTL/LTLf
formula).

2. If σ is a finite-state SBE policy for (D,ϕ) for some D ∈
D, then σ is a SBE policy for (D, ϕ). Moreover, if σ
almost-surely enforces ϕ for some D ∈ D, then σ is
almost-surely enforcing for (D, ϕ).

The algorithm for Part 1 is simple. Given the support ∆ :
Obs×Act→ 2Obs \ {∅} and LTL/LTLf formula ϕ:
Step 1. Fix a similar finite MDP D = (F,A, s0, P r) by

letting Pr(s, a) be, e.g., the uniform distribution over
∆(s, a): Pr(s, a)(s′) := 1/|∆(s, a)| for s′ ∈ ∆(s, a).

Step 2. Return a finite-state optimal σ for the stochastic plan-
ning problem (D,ϕ). This can be computed using any
standard technique, e.g., [Bianco and de Alfaro, 1995].
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Figure 2: Stochastic domain for simulating a random walk.

Remark 1. Consider finite nondeterministic domains D =
(F,A, s0,∆) and reachability goals Fϕ. An important con-
cept in this context are strong-cyclic policies, e.g., [Cimatti et
al., 2003]. A view for such policies is that D abstracts a sin-
gle finite MDP whose exact probabilities are unknown, but
whose support is known, and strong-cyclic policies almost-
surely enforce Fϕ. Theorem 4 (Part 2) implies that one can
take a much broader view: strong-cyclic planning can be
viewed as finding a policy that is almost-sure enforcing for
generalized stochastic planning consisting of infinitely many,
not-necessarily Markovian, similar stochastic domains.

In the special case of strong-cyclic solutions, it was noted
in [Jensen et al., 2001] that one can find such solutions by
simply choosing a convenient instantiation and solving it for
optimality. Our algorithm (Theorem 4, Part 1) extends this
result in three directions: (1) LTL/LTLf instead of just reach-
ability; (2) generalized stochastic planning instead of finite
MDPs; (3) SBE instead of simply enforcing almost-surely.

Remark 2. Part 2 fails if we remove any of the three assump-
tions, i.e., policies being finite-state, domains being bounded,
domains having Markovian support: (i) If σ is not assumed
finite-state, consider the stochastic domain from Fig. 2. There
is a non finite-state policy σ that almost-surely enforces the
goal iff p ≤ 1/2. Intuitively, the policy σ simulates a one-
dimensional random walk on N0 starting at 1, stopping at 0,
where p is the probability of decrementing; and uses the fact
that the random walk almost-surely stops iff p ≤ 1/2, see,
e.g., [Bhattacharya and Waymire, 2021]. The policy σ keeps
a counter k ∈ N0 as memory: if k = 0 and observe ”l” or ”r”
then choose action ”b”, otherwise choose action ”a”; decre-
ment (resp. increment) the counter when observing ”l” (resp.
”r”). (ii) If domains are not assumed to be bounded, consider
two domains D,D′ instantiated from Fig. 1 with pn := 0
and rn := 1 − qn. For D let qn := 1/3, and for D′ let
qn := 1/3n+1. Then consider the policy that always plays a.
(iii) If the domains are not assumed to have Markovian sup-
port, consider D1, D2 instantiated from Fig. 1 with rn := 1.
Domain D1 is defined p0 := 1 and pn := 0 for n > 0, while
D0 is defined by p0 := 0 and pn := 1 for n > 0. Then
consider the policy that immediately plays b.

4.1 Automata-theory Preliminaries
We define the (synchronous) product of a deterministic au-
tomaton and a stochastic domain. This allows us to reduce
finite-state policies to memoryless policies, and to work with
automata acceptance conditions instead of LTL/LTLf goals.

A deterministic automaton is a tuple M = (Σ, Q, q0, δ)
where Σ is the input alphabet, Q is a finite set of states,
q0 ∈ Q is the initial state and δ : Q × Σ → Q is the transi-
tion function. A (finite or infinite) input string u = u0u1 · · ·
determines a unique run, i.e., the sequence q0q1 · · · of states
starting with the initial state such that δ(qi, ui) = qi+1 for all
0 ≤ i < |u|. We use labeling functions λ : Q → L that map
the automaton states Q to some set of labels: we set L = Act
to model the decisions taken by finite-state policies; we set
L = {0, 1} to model reachability objectives for deterministic
finite word automata (DFAs); we set L ⊆ Z to model parity
objectives for deterministic parity word automata (DPAs). A
DFAM accepts a finite string u if λ(qi) = 1 for the last state
qi of the run ofM on u. A DPAM accepts an infinite string
u if lim supi→∞ λ(qi) is even, where the qi are the states of
the infinite run ofM on u (i.e., if the largest integer that oc-
curs infinitely often as a label of a state in the run is even).

We now define the product of a deterministic automaton
and a stochastic domain. Intuitively, the product will result
in a stochastic domain with the “same” distribution, i.e., the
product domain D × M mimics the probabilistic choices
of D while also deterministically storing the state that M
would reach given the history so far. Here is the construc-
tion. Let D = (F,A, s0,Pr) be a stochastic domain and
let M = (Σ, Q, q0, δ) be a deterministic automaton with
Q = 2B for some set B of Boolean variables disjoint from
F (this is a technical convenience), and Σ = 2F∪A. De-
fine the synchronous product D × M to be the stochastic
domain (F ∪ B,A, s0 ∪ q0,Pr′) where the probability dis-
tribution Pr′ is defined as follows. For a history x = (s0 ∪
q0, a0, s1 ∪ q1, a1, · · · , sk ∪ qk) of the product, and a ∈ Act ,
the support of Pr′(x, a) is the set valuations s ∪ q such that
(i) s is in the support of Pr((s0, a1, s1, a1, · · · , sk), a), and
(ii) q = δ(qk, sk ∪ a), and in this case, Pr′(x, a)(s ∪ q) =
Pr((s0, a0, s1, a1, · · · , sk), a). Every labeling function λ :
Q→ L can be lifted to D ×M by setting λ(s, `) := λ(`).

We note that because we only consider deterministic au-
tomata, policies over D and over D ×M are in correspon-
dence, and the measure of events is unchanged by this cor-
respondence. We now state this formally. We say that a his-
tory (s0, a0, · · · , sk) in D induces a history (s0 ∪ q0, a0, s1 ∪
q1, a1, · · · , sk ∪ qk) in D×M, by adding the corresponding
automaton state qi+1 = δ(qi, (si ∪ ai)) for every i. Likewise,
we say that a policy σ in D induces a policy σ′ in D ×M,
and an event E of D[σ] induces an event E′ of (D×M)[σ′].
The following is a direct result of the above definitions:

Lemma 1. For a stochastic domainD and an automatonM,
consider the product stochastic domain D ×M. Let σ be a
policy and let E be an event of D[σ]. Moreover, let σ′ be the
induced policy and letE be the induced event of (D×M)[σ′].
Then, µD[σ](E) = µ(D×M)[σ′](E

′).

We recall the following fundamental fact of automata-
theoretic approaches to reasoning about LTL/LTLf :

Theorem 5. [Vardi and Wolper, 1986] There is an algorithm
that takes an LTL (resp. LTLf ) formula ϕ and constructs a
DPA (resp. DFA)Mϕ that accepts the models of ϕ.

Lemma 1 and Theorem 5 immediately allow us to reduce
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problems about planning for LTL/LTLf objectives, to prob-
lems about planning for parity/reachability objectives:
Corollary 1. Let D be a stochastic domain, let σ be some
policy, let ϕ be an LTL (resp. LTLf ) formula and letMϕ be
the corresponding DPA (resp. DFA) with parity (resp. reach-
ability) objective C. Moreover, let σ′ be the induced policy of
D ×Mϕ. Then, µD[σ](ϕ) = µ(D×Mϕ)[σ′](C).

4.2 Values Transfer Across Similar Domains
In this section we show how to compare valD1,G(σ, h) and
valD2,G(σ, h) for similar domains D1, D2. We begin assum-
ingG is a parity goal and σ is memoryless, and end assuming
G is an LTL/LTLf formula and σ is finite-state.

Suppose D is a stochastic domain with Markovian support
and let ∆ : Obs × Act → 2Obs be the support function. A
play π = (s0, a0, s1, a1, · · · ) in D is called state-action fair
if for every triple (s, a, s′) with s′ ∈ ∆(s, a), if there are in-
finitely many i such that si = s and ai = a, then there are in-
finitely many i such that si = s, ai = a, and si+1 = s′. The
next lemma follows from [Baier and Kwiatkowska, 1998];
intuitively, if a transition has positive probability, then the
probabilitity of visiting its source and not taking the transi-
tion goes to zero as the number of visits goes to infinity:
Lemma 2 (State-action fair). Let D be a bounded stochastic
domain with Markovian support, and σ a policy. LetE be the
set of state-action fair plays. Then µD[σ](E) = 1.

For memoryless policies and parity goals, we can relate
satisfaction almost-surely to satisfaction on all state-action
fair plays. The reason this is possible is that state-action fair-
ness guarantees that every play will eventually reach a bot-
tom strongly-connected component and that every state in this
component will be visited infinitely often:
Lemma 3. Let D be a bounded stochastic domain with
Markovian support, C : Obs → Z be a parity objective, and
σ : Obs→ Act be a memoryless policy. Then, µD[σ](C) = 1
iff all state-action fair plays in D[σ] satisfy C.

We can now show that values transfer for parity goals; this
follows from Lemma 3 using that parity conditions are closed
under complement and that the satisfaction of a parity condi-
tion does not depend on finite prefixes:
Theorem 6. Let D1, D2 be similar stochastic domains (that
are bounded and have Markovian support). Let h be a his-
tory, σ : Obs → Act be a finite-state policy, and C : Obs →
Z be a parity objective. Then valD1,C(σ, h) = valD2,C(σ, h)
for every σ-history h.

Combining Theorem 6 with Lemma 1 and Corollary 1 we
can show that values transfer for LTL/LTLf goals:
Theorem 7. Let D1, D2 be similar stochastic domains. Let
ϕ be an LTL/LTLf goal, and let σ be a finite-state policy. For
every σ-history h, valD1,ϕ(σ, h) = valD2,ϕ(σ, h).

We are now in a position to finish the proof of Theorem 4.
To see that the algorithm in Part 1 is correct, note that by The-
orem 2, the finite-state policy σ produced by the algorithm is
SBE for (D,ϕ). Since D is bounded, by Theorem 7 also σ
is SBE for (D′, ϕ) for every D′ ∈ D. To see that Part 2 is
correct, simply apply the definitions and Theorem 7.

5 Related Work
Variants of “best-effort” policies are studied for the non-
stochastic setting in Reactive Synthesis [Aminof et al., 2020a;
Aminof et al., 2021b; Aminof et al., 2021a] and in games
on graphs [Berwanger, 2007; Faella, 2009; Brenguier et al.,
2017].

Stochastic domains in this paper are countable and not
necessarily Markovian. Memory requirements for ε-optimal
policies for countable Markovian domains with parity objec-
tives were studied in [Kiefer et al., 2020].

Various traditional notions of plan correctness for general-
ized planning for infinite stochastic domains with reachability
goals are studied in [Belle and Levesque, 2016], which in ad-
dition, characterizes the strong-cyclic policies for generalized
planning problems specified by a finite-state nondeterministic
domain (with varying initial states). In contrast, the general-
ized planning problem in our work consist of infinitely many
stochastic domains in which the probabilities are different.

The finite domain D that specifies the set of similar do-
mains D can be viewed as an abstraction D. This point of
view has been exploited to solve (non-stochastic) generalized
planning problems in [Bonet et al., 2017; Bonet et al., 2020].
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