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Abstract
Best-arm identification (BAI) in a fixed-budget set-
ting is a bandit problem where the learning agent
maximizes the probability of identifying the opti-
mal (best) arm after a fixed number of observa-
tions. Most works on this topic study unstruc-
tured problems with a small number of arms, which
limits their applicability. We propose a general
tractable algorithm that incorporates the structure,
by successively eliminating suboptimal arms based
on their mean reward estimates from a joint gen-
eralization model. We analyze our algorithm in
linear and generalized linear models (GLMs), and
propose a practical implementation based on a G-
optimal design. In linear models, our algorithm
has competitive error guarantees to prior works and
performs at least as well empirically. In GLMs,
this is the first practical algorithm with analysis for
fixed-budget BAI.

1 Introduction
Best-arm identification (BAI) is a pure exploration bandit
problem where the goal is to identify the optimal arm. It
has many applications, such as online advertising, recom-
mender systems, and vaccine tests [Hoffman et al., 2014;
Lattimore and Szepesvári, 2020]. In fixed-budget (FB) BAI
[Bubeck et al., 2009; Audibert et al., 2010], the goal is to
accurately identify the optimal arm within a fixed budget of
observations (arm pulls). This setting is common in appli-
cations where the observations are costly. However, it is
more complex to analyze than the fixed-confidence (FC) set-
ting, due to complications in budget allocation [Lattimore and
Szepesvári, 2020, Section 33.3]. In FC BAI, the goal is to find
the optimal arm with a guaranteed level of confidence, while
minimizing the sample complexity.

Structured bandits are bandit problems in which the arms
share a common structure, e.g., linear or generalized linear
models [Filippi et al., 2010; Soare et al., 2014]. BAI in
structured bandits has been mainly studied in the FC setting
with the linear model [Soare et al., 2014; Xu et al., 2018;
Degenne et al., 2020]. The literature of FB BAI for linear

∗This work started prior to joining Amazon.

bandits was limited to BayesGap [Hoffman et al., 2014] for
a long time. This algorithm does not explore sufficiently, and
thus, performs poorly [Xu et al., 2018]. [Katz-Samuels et al.,
2020] recently proposed Peace for FB BAI in linear bandits.
Although this algorithm has desirable theoretical guarantees,
it is computationally intractable, and its approximation loses
the desired properties of the exact form. OD-LinBAI [Yang
and Tan, 2021] is a concurrent work for FB BAI in linear
bandits. It is a sequential halving algorithm with a special
first stage, in which most arms are eliminated. This makes the
algorithm inaccurate when the number of arms is much larger
than the number of features, a common setting in structured
problems. We discuss these three FB BAI algorithms in detail
in Section 7 and empirically evaluate them in Section 8.

In this paper, we address the shortcomings of prior work
by developing a general successive elimination algorithm that
can be applied to several FB BAI settings (Section 3). The
key idea is to divide the budget into multiple stages and al-
locate it adaptively for exploration in each stage. As the al-
location is updated in each stage, our algorithm adaptively
eliminates suboptimal arms, and thus, properly addresses the
important trade-off between adaptive and static allocation in
structured BAI [Soare et al., 2014; Xu et al., 2018]. We ana-
lyze our algorithm in linear bandits in Section 4. In Section 5,
we extend our algorithm and analysis to generalized linear
models (GLMs) and present the first BAI algorithm for these
models. Our error bounds in Sections 4 and 5 motivate the use
of a G-optimal allocation in each stage, for which we derive
an efficient algorithm in Section 6. Using extensive experi-
ments in Section 8, we show that our algorithm performs at
least as well as a number of baselines, including BayesGap,
Peace, and OD-LinBAI.

2 Problem Formulation
We consider a general stochastic bandit with K arms. The
reward distribution of each arm i ∈ A (the set of K arms) has
mean µi. Without loss of generality, we assume that µ1 >
µ2 ≥ · · · ≥ µK ; thus arm 1 is optimal. Let xi ∈ Rd be the
feature vector of arm i, such that supi∈A ||xi|| ≤ L holds,
where ||·|| is the ℓ2-norm in Rd. We denote the observed
rewards of arms by y ∈ R. Formally, the reward of arm i is
y = f(xi)+ ϵ, where ϵ is a σ2-sub-Gaussian noise and f(xi)
is any function of xi, such that µi = f(xi). In this paper, we
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focus on two instances of f : linear (Eq. (1)) and generalized
linear (Eq. (4)).

We denote by B the fixed budget of arm pulls and by ζ
the arm returned by the BAI algorithm. In the FB setting, the
goal is to minimize the probability of error, i.e., δ = Pr(ζ ̸=
1) [Bubeck et al., 2009]. This is in contrast to the FC setting,
where the goal is to minimize the sample complexity of the
algorithm for a given upper bound on δ.

3 Generalized Successive Elimination
Successive elimination [Karnin et al., 2013] is a popular
BAI algorithm in multi-armed bandits (MABs). Our algo-
rithm, which we refer to as Generalized Successive Elimina-
tion (GSE), generalizes it to structured reward models f . We
provide the pseudo-code of GSE in Algorithm 1.
GSE operates in s = ⌈logη K⌉ stages, where η is a tunable

elimination parameter, usually set to be 2. The budget B is
split evenly over s stages, and thus, each stage has budget
n = ⌊B/s⌋. In each stage t ∈ [s], GSE pulls arms for n times
and eliminates 1 − 1/η fraction of them. We denote the set
of the remaining arms at the beginning of stage t by At. By
construction, only a single arm remains after s stages. Thus,
A1 = A and As+1 = {ζ}. In stage t, GSE performs the
following steps:
Projection (Line 2): To avoid singularity issues, we project
the remaining arms into their spanned subspace with dt ≤ d
dimensions. We discuss this more after Eq. (1).
Exploration (Line 3): The arms inAt are sampled according
to an allocation vector Πt ∈ NAt , i.e., Πt(i) is the number of
times that arm i is pulled in stage t. In Sections 4 and 5, we
first report our results for general Πt and then show how they
can be improved if Πt is an adaptive allocation based on the
G-optimal design, described in Section 6.
Estimation (Line 4): Let Xt = (X1,t, . . . , Xn,t) and Yt =
(Y1,t, . . . , Yn,t) be the feature vectors and rewards of the arms
sampled in stage t, respectively. Given the reward model f ,
Xt, and Yt, we estimate the mean reward of each arm i in
stage t, and denote it by µ̂i,t. For instance, if f is a lin-
ear function, µ̂i,t is estimated using linear regression, as in
Eq. (1).
Elimination (Line 5): The arms in At are sorted in descend-
ing order of µ̂i,t, their top 1/η fraction is kept, and the re-
maining arms are eliminated.

At the end of stage s, only one arm remains, which is re-
turned as the optimal arm. While this algorithmic design is
standard in MABs, it is not obvious that it would be near-
optimal in structured problems, as this paper shows.

4 Linear Model
We start with the linear reward model, where µi = f(xi) =
x⊤
i θ∗, for an unknown reward parameter θ∗ ∈ Rd. The es-

timate θ̂t of θ∗ in stage t is computed using least-squares re-
gression as θ̂t = V −1

t bt, where Vt =
∑n

j=1 Xj,tX
⊤
j,t is the

sample covariance matrix, and bt =
∑n

j=1 Xj,tYj,t. This
gives us the following mean estimate for each arm i ∈ At,

µ̂i,t = x⊤
i θ̂t . (1)

Algorithm 1 GSE: Generalized Successive Elimination
Input: Elimination hyper-parameter η, budget B
Initialization: A1 ← A, t← 1, s← ⌈logη K⌉

1: while t ≤ s do
2: Projection: Project At to dt dimensions, such that At

spans Rdt

3: Exploration: Explore At using the allocation Πt

4: Estimation: Calculate (µ̂i,t)i∈At
based on observed

Xt and Yt, using Eqs. (1) or (4)
5: Elimination: At+1 = arg max

A⊂At:|A|=⌈ |At|
η ⌉

∑
i∈A µ̂i,t

6: t← t+ 1
7: end while
8: Output: ζ such that As+1 = {ζ}

The matrix V −1
t is well-defined as long as Xt spans Rd.

However, since GSE eliminates arms, it may happen that the
arms in later stages do not span Rd. Thus, Vt could be sin-
gular and V −1

t would not be well-defined. We alleviate this
problem by projecting1 the arms in At into their spanned
subspace. We denote the dimension of this subspace by dt.
Alternatively, we can address the singularity issue by using
the pseudo-inverse of matrices [Huang et al., 2021]. In this
case, we remove the projection step, and replace V −1

t with its
pseudo-inverse.

4.1 Analysis
In this section, we prove an error bound for GSE with the lin-
ear model. Although this error bound is a special case of that
for GLMs (see Theorem 2), we still present it because more
readers are familiar with linear bandit analysis than GLMs.
To reduce clutter, we assume that all logarithms have base η.
We denote by ∆i = µ1−µi, the sub-optimality gap of arm i,
and by ∆min = mini>1 ∆i, the minimum gap, which by the
assumption in Section 2 is just ∆2.
Theorem 1. GSE with the linear model (Eq. (1)) and any
valid2 allocation strategy Πt identifies the optimal arm with
probability at least 1− δ for

δ ≤ 2η log(K) exp

(
−∆2

minσ
−2

4 max
i∈A,t∈[s]

||xi − x1||2V −1
t

)
. (2)

where ||x||V =
√
x⊤V x for any x ∈ Rd and matrix V ∈

Rd×d. If we use the G-optimal design (Algorithm 2) for Πt,
then

δ ≤ 2η log(K) exp

(
−B∆2

min

4σ2d log(K)

)
. (3)

We sketch the proof in Section 4.2 and defer the detailed
proof to Appendix A.

The error bound in (3) scales as expected. Specifically, it
is tighter for a larger budget B, which increases the statisti-
cal power of GSE; and a larger gap ∆min, which makes the

1The projection can be done by multiplying the arm features with
the matrix whose columns are the orthonormal basis of the subspace
spanned by the arms [Yang and Tan, 2021].

2Allocation strategy Πt is valid if Vt is invertible.
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optimal arm easier to identify. The bound is looser for larger
K and d, which increase with the instance size; and larger
reward noise σ, which increases uncertainty and makes the
problem instance harder to identify. We compare this bound
to the related works in Section 7.

There is no lower bound for FB BAI in structured ban-
dits. Nevertheless, in the special case of MABs, our bound
((3)) matches the FB BAI lower bound exp

(
−B∑

i∈A ∆−2
i

)
in Kaufmann et al. [2016], up to a factor of logK. It also
roughly matches the tight lower bound of Carpentier and Lo-
catelli [2016], which is exp

(
−B

log(K)
∑

i∈A ∆−2
i

)
. To see this,

note that
∑

i∈A ∆−2
i ≈ K∆−2

min and d = K, when we apply
GSE to a K-armed bandit problem.

4.2 Proof Sketch
The key idea in analyzing GSE is to control the probability
of eliminating the optimal arm in each stage. Our analysis is
modular and easy to extend to other elimination algorithms.
Let Et be the event that the optimal arm is eliminated in stage
t. Then, δ = Pr(∪st=1Et) ≤

∑s
t=1 Pr(Et|Ē1, . . . , Ēt−1) ,

where Ēt is the complement of event Et. In Lemma 1, we
bound the probability that a suboptimal arm has a higher es-
timated mean reward than the optimal arm. This is a novel
concentration result for linear bandits in successive elimina-
tion algorithms.

Lemma 1. In GSE with the linear model of Eq. (1), the proba-
bility that any suboptimal arm i has a higher estimated mean
reward than the optimal arm in stage t satisfies Pr(µ̂i,t >

µ̂1,t) ≤ 2 exp
( −∆2

iσ
−2

2||xi−x1||2
V

−1
t

)
.

This lemma is proved using an argument mainly driven
from a concentration bound. Next, we use it in Lemma 2
to bound the probability that the optimal arm is eliminated in
stage t.

Lemma 2. In GSE with the linear model (Eq. (1)), the
probability that the optimal arm is eliminated in stage t

satisfies Pr(Ẽt) ≤ 2η exp
( −∆2

min,tσ
−2

2maxi∈At ||xi−x1||2
V

−1
t

)
, where

∆min,t = mini∈At\{1} ∆i and Ẽt is a shorthand for event
Et|Ē1, . . . , Ēt−1.

This lemma is proved by examining how another arm can
dominate the optimal arm and using Markov’s inequality. Fi-
nally, we bound δ in Theorem 1 using a union bound. We ob-
tain the second bound in Theorem 1 by the Kiefer-Wolfowitz
Theorem [Kiefer and Wolfowitz, 1960] for the G-optimal de-
sign described in Section 6.

5 Generalized Linear Model
We now study FB BAI in generalized linear models (GLMs)
[McCullagh and Nelder, 1989], where µi = f(xi) =
h(x⊤

i θ∗), where h is a monotone function known as the mean
function. As an example, h(x) = (1 + exp (−x))−1 in lo-
gistic regression. We assume that the derivative of the mean
function, h′, is bounded from below, i.e., cmin ≤ h′(x⊤

i θ̃t),

for some cmin ∈ R+ and all i ∈ A. Here θ̃t can be any con-
vex combination of θ∗ and its maximum likelihood estimate θ̂t
in stage t. This assumption is standard in GLM bandits [Fil-
ippi et al., 2010; Li et al., 2017]. The existence of cmin can
be guaranteed by performing forced exploration at the begin-
ning of each stage with the sampling cost of O(d) [Kveton et
al., 2020]. As θ̂t satisfies

∑n
j=1

(
Yj,t − h(X⊤

j,tθ̂t)
)
Xj,t = 0,

it can be computed efficiently by iteratively reweighted least
squares [Wolke and Schwetlick, 1988]. This gives us the fol-
lowing mean estimate for each arm i ∈ At,

µ̂i,t = h(x⊤
i θ̂t) . (4)

5.1 Analysis
In Theorem 2, we prove similar bounds to the linear model.
The proof and its sketch are presented in Appendix B. These
are the first BAI error bounds for GLM bandits.
Theorem 2. GSE with the GLM (Eq. (4)) and any valid Πt

identifies the optimal arm with probability at least 1− δ for

δ ≤ 2η log(K) exp

(
−∆2

minσ
−2c2min

8 max
i∈A,t∈[s]

||xi||2V −1
t

)
. (5)

If we use the G-optimal design (Algorithm 2) for Πt, then

δ ≤ 2η log(K) exp

(
−B∆2

minc
2
min

8σ2d log(K)

)
. (6)

The error bounds in Theorem 2 are sim-
ilar to those in the linear model (Sec-
tion 4.1), since maxi∈A,t∈[s] ||xi − x1||V −1

t
≤

2maxi∈A,t∈[s] ||xi||V −1
t

.The only major difference is
in factor c2min, which is 1 in the linear case. This factor
arises because GLM is a linear model transformed through
some non-linear mean function h. When cmin is small, h
can have flat regions, which makes the optimal arm harder to
identify. Therefore, our GLM bounds become looser as cmin

decreases. Note that the bounds in Theorem 2 depend on all
other quantities same as the bounds in Theorem 1 do.

The novelty in our GLM analysis is in how we control the
estimation error of θ∗ using our assumptions on the existence
of cmin. The rest of the proof follows similar steps to those in
Section 4.2 and are postponed to Appendix B.

6 G-Optimal Allocation
The stochastic error bounds in (2) and (5) can be opti-
mized by minimizing 2maxi∈A,t∈[s] ||xi||V −1

t
with respect

to Vt, in particular, with respect to Xt. In each stage t, let
gt(π, xi) = ||xi||2V −1

t
, where Vt = n

∑
i∈At

πixix
⊤
i and∑

i∈At
πi = 1. Then, optimization of Vt is equivalent to solv-

ing minπ maxi∈At
gt(π, xi). This leads us to the G-optimal

design [Kiefer and Wolfowitz, 1960], which minimizes the
maximum variance along all xi.

We develop an algorithm based on the Frank-Wolfe (FW)
method [Jaggi, 2013] to find the G-optimal design. Algo-
rithm 2 contains the pseudo-code of it, which we refer to
as FWG. The G-optimal design is a convex relaxation of
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Algorithm 2 Frank-Wolfe G-optimal allocation (FWG)

1: Input: Stage budget n, N number of iterations
2: Initialization: π0 ← (1, . . . , 1)/|At| ∈ R|At|, i← 0
3: while i < N do
4: π′

i ← arg minπ′:||π′||1=1∇πgt(πi)
⊤π′ {Surrogate}

5: γi ← arg minγ∈[0,1] gt(πi+γ(π′
i−πi)) {Line search}

6: πi+1 ← πi + γi(π
′
i − πi) {Gradient step}

7: i← i+ 1
8: end while
9: Output: Πt = ROUND(n, πN ) {Rounding}

the G-optimal allocation; an allocation is the (integer) num-
ber of samples per arm while a design is the proportion of
n for each arm. Defining gt(π) = maxi∈At gt(π, xi), by
Danskin’s theorem [Danskin, 1966], we know ∇πj

gt(π) =

−n(x⊤
j V

−1
t xmax)

2, where xmax = arg maxi∈At
gt(π, xi).

This gives us the derivative of the objective function so we
can use it in a FW algorithm. In each iteration, FWG first min-
imizes the 1st-order surrogate of the objective, and then uses
line search to find the best step-size and takes a gradient step.
After N iterations, it extracts an allocation (integral solution)
from πN using an efficient rounding procedure from Allen-
Zhu et al. [2017], which we call it ROUND(n, π). This pro-
cedure takes budget n, design πN , and returns an allocation
Πt.

In Appendix C, we show that the error bounds of Theo-
rems 1 and 2 still hold for large enough N , if we use Algo-
rithm 2 to obtain the allocation strategy Πt at the exploration
step (Line 3 of Algorithm 1). This results in the deterministic
bounds in (3) and (6) in these theorems.

7 Related Work
To the best of our knowledge, there is no prior work on FB
BAI for GLMs and our results are the first in this setting.
However, there are three related algorithms for FB BAI in
linear bandits that we discuss them in detail here. Before we
start, note that there is no matching upper and lower bound
for FB BAI in any setting [Carpentier and Locatelli, 2016].
However, in MABs, it is known that successive elimination is
near-optimal [Carpentier and Locatelli, 2016].
BayesGap [Hoffman et al., 2014] is a Bayesian ver-

sion of the gap-based exploration algorithm in Gabillon
et al. [2012]. This algorithm models correlations of re-
wards using a Gaussian process. As pointed out by Xu et
al. [2018], BayesGap does not explore enough and thus per-
forms poorly. In Appendix D.1, we show under few simpli-
fying assumptions that the error probability of BayesGap is
at most KB exp

(
−B∆2

min

32K

)
. Our error bound in Eq. (3) is

at most 2η log(K) exp
(

−B∆2
min

4d log(K)

)
. Thus, it improves upon

BayesGap by reducing dependence on the number of arms
K, from linear to logarithmic; and on budget B, from linear
to constant. We provide a more detailed comparison of these
bounds in Appendix D.1. Our experimental results in Sec-
tion 8 support these observations and show that our algorithm
always outperforms BayesGap in the linear setting.

Peace [Katz-Samuels et al., 2020] is mainly a FC BAI al-
gorithm based on a transductive design, which is modified
to be used in the FB setting. It minimizes the Gaussian-
width of the remaining arms with a progressively finer level
of granularity. However, Peace cannot be implemented ex-
actly because the Gaussian width does not have a closed form
and is computationally expensive to minimize. To address
this, Katz-Samuels et al. [2020] proposed an approximation
to Peace, which still has some computational issues (see Re-
mark D.2 and Section 8.1). The error bound for Peace, al-
though is competitive, only holds for a relatively large bud-
get (Theorem 7 in [Katz-Samuels et al., 2020]). We dis-
cuss this further in Remark D.1. Although the compari-
son of their bound to ours is not straightforward, we show
in Appendix D.2 that each bound can be superior in cer-
tain regimes that depend mainly on the relation of d and
K. In particular, we show two cases: (i) Based on few
claims in Katz-Samuels et al. [2020] that are not rigorously
proved (see (i) in Appendix D.2 for more details), their error
bound is at most 2⌈log(d)⌉ exp

(
−B∆2

min

maxi∈A||xi−x1||V −1 log(d)

)
which is better than our bound (Eq. (2)) only if K >
exp(exp(log(d) log log(d))). (ii) We can also show that their
bound is at most 2⌈log(d)⌉ exp

(
−B∆2

min

d log(K) log(d)

)
under the G-

optimal design, which is worse than our error bound (Eq. (3)).
In our experiments with Peace in Section 8, we imple-

mented its approximation and it never performed better than
our algorithm. We also show in Section 8.1 that approximate
Peace is much more computationally expensive compared to
our algorithm.
OD-LinBAI [Yang and Tan, 2021] uses a G-optimal de-

sign in a sequential elimination framework for FB BAI. In
the first stage, it eliminates all the arms except ⌈d/2⌉. This
makes the algorithm prone to eliminating the optimal arm
in the first stage, especially when the number of arms is
larger than d. It also adds a linear (in K) factor to the er-
ror bound. In Appendix D.3, we provide a detailed compar-
ison between the error bound of OD-LinBAI and ours, and
show that similar to the comparison with Peace, there are
regimes where each bound is superior. However, we show
that our bound is tighter in the more practically relevant set-
ting of K = Ω(d2). In particular, we show that their error is
at most

(
4K
d + 3 log(d)

)
exp

(
(d2−B)∆2

min

32d log(d)

)
. Now assuming

K = dq for some q ∈ R, if we divide our bound (Eq. (3)) with
theirs, we obtain O

(
q log(d)

dq−1+log(d) exp
(

−d2∆2
min

d log(d)

))
, which is

less than 1, so in this case our error bound is tighter. How-
ever, for K < d(d + 1)/2, their bound is tighter. Finally,
we note that our experiments in Section 8 and Appendix E.3
support these observations.

8 Experiments

In this section, we compare GSE to several baselines includ-
ing all linear FB BAI algorithms: Peace, BayesGap, and OD-
LinBAI. Others are variants of cumulative regret (CR) ban-
dits and FC BAI algorithms. For CR algorithms, the baseline
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Figure 1: Static allocation.

stops at the budget limit and returns the most pulled arm.3 We
use LinUCB [Li et al., 2010] and UCB-GLM [Li et al., 2017],
which are the state-of-the-art for linear and GLM bandits, re-
spectively. LinGapE (a FC BAI algorithm) [Xu et al., 2018]
is used with its stopping rule at the budget limit. We tune its
δ using a grid search and only report the best result. In Ap-
pendix F, we derive proper error bounds for these baselines
to further justify the variants.

The accuracy is an estimate of 1 − δ, as the fraction of
1000 Monte Carlo replications where the algorithm finds the
optimal arm. We run GSE with linear model and uniform
exploration (GSE-Lin), with FWG (GSE-Lin-FWG), with se-
quential G-optimal allocation of Soare et al. [2014] (GSE-
Lin-Greedy), and with Wynn’s G-optimal method (GSE-Lin-
Wynn). For Wynn’s method, see Fedorov [1972]. We set
η = 2 in all experiments, as this value tends to perform well
in successive elimination [Karnin et al., 2013]. For LinGapE,
we evaluate the Greedy version (LinGapE-Greedy) and show
its results only if it outperforms LinGapE. For LinGapE-
Greedy, see [Xu et al., 2018]. In each experiment, we fix
K, B/K, or d; depending on the experiment to show the de-
sired trend. Similar trends can be observed if we fix the other
parameters and change these. For further detail of our choices
of kernels for BayesGap and also our real-world data experi-
ments, see Appendix E.

8.1 Linear Experiment: Adaptive Allocation
We start with the example in Soare et al. [2014], where the
arms are the canonical d-dimensional basis e1, e2, . . . , ed plus
a disturbing arm xd+1 = (cos(ω), sin(ω), 0, . . . , 0)⊤ with
ω = 1/10. We set θ∗ = e1 and ϵ ∼ N (0, 10). Clearly the
optimal arm is e1, however, when the angle ω is as small as
1/10, the disturbing arm is hard to distinguish from e1. As ar-
gued in Soare et al. [2014], this is a setting where an adaptive
strategy is optimal (see Appendix G.1 for further discussion
on Adaptive vs. Static strategies).

Fig. 2 shows that GSE-Lin-FWG is the second-best algo-
rithm for smaller K and the best for larger K. BayesGap-Lin
performs poorly here, and thus, we omit it. We conjecture
that BayesGap-Lin fails because it uses Gaussian processes
and there is a very low correlation between the arms in this
experiment. LinGapE wins mostly for smaller K and loses
for larger K. This could be because its regret is linear in K
(Appendix D). Peace has lower accuracy than several other
algorithms. We could only simulate Peace for K ≤ 16, since
its computational cost is high for larger values of K. For in-
stance, at K = 16, Peace completes 100 runs in 530 seconds;

3In Appendix D, we argue that this is a reasonable stopping rule.

Figure 2: Adaptive instance for d = K − 1.

while it only takes 7 to 18 seconds for the other algorithms.
At K = 32, Peace completes 100 runs in 14 hours (see Ap-
pendix E.1).

In this experiment, K ≈ d and both OD-LinBAI and GSE
have log(K) stages and perform similarly. Therefore, we
only report the results for GSE. This also happens in Sec-
tion 8.2.

8.2 Linear Experiment: Static Allocation
As in Xu et al. [2018], we take arms e1, e2, ..., e16 and θ∗ =
(∆, 0, . . . , 0), where K = d = 16 and B = 320. In this
experiment, knowing the rewards does not change the alloca-
tion strategy. Therefore, a static allocation is optimal [Xu et
al., 2018]. The goal is to evaluate the ability of the algorithm
to adapt to a static situation.

Our results are reported in Fig. 1. We observe that LinUCB
performs the best when ∆ is small (harder instances). This
is expected since suboptimal arms are well away from the
optimal one, and CR algorithms do well in this case (Ap-
pendix D). Our algorithms are the second-best when ∆ is
sufficiently large, converging to the optimal static allocation.
BayesGap-exp, LinGapE, and Peace cannot take advantage
of larger ∆, probably because they adapt to the rewards too
early. This example demonstrates how well our algorithms
adjust to a static allocation, and thus, properly address the
tradeoff between static and adaptive allocation.

8.3 Linear Experiment: Randomized
In this experiment, we use the example in Tao et al. [2018]
and [Yang and Tan, 2021]. For each bandit instance, we gen-
erate i.i.d. arms sampled from the unit sphere centered at the
origin with d = 10. We let θ∗ = xi+0.01(xj−xi), where xi

and xj are the two closest arms. As a consequence, xi is the
optimal arm and xj is the disturbing arm. The goal is to eval-
uate the expected performance of the algorithms for a random
instance to avoid bias in choosing the bandit instances.

We fix B/K in Fig. 3 and compare the performance for
different K. GSE-Lin-FWG has competitive performance with
other algorithms. We can see that G-optimal policies have
similar expected performance while FWG is slightly better.
Again, LinGapE performance degrades as K increases and
Peace underperforms our algorithms. Moreover, the perfor-
mance of OD-LinBAI worsens as K increases, especially for
K > d(d+1)

2 . We report more experiments in this setting,
comparing GSE to OD-LinBAI, in Appendix E.3.
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Figure 3: Randomized linear experiment.

Figure 4: Logistic bandit experiment for K = 8.

8.4 GLM Experiment
As an instance of GLM, we study a logistic bandit. We gener-
ate i.i.d. arms from uniform distribution on [−0.5, 0.5]d with
d ∈ {5, 7, 10, 12}, K = 8, and θ∗ ∼ N(0, 3

dId), where Id
is a d × d identity matrix. The reward of arm i is defined as
yi ∼ Bern(h(x⊤

i θ∗)), where h(z) = (1 + exp (−z))−1 and
Bern(z) is a Bernoulli distribution with mean z. We use GSE
with a logistic regression model (GSE-Log) and also with the
linear models to evaluate the robustness of GSE to model mis-
specification. For exploration, we only use FWG (GSE-Log-
FWG), as it performs better than the other G-optimal alloca-
tions in earlier experiments. We also use a modification of
UCB-GLM [Li et al., 2017], a state-of-the-art GLM CR algo-
rithm, for FB BAI.

The results in Fig. 4 show GSE with logistic models out-
performs linear models, and FWG improves on uniform explo-
ration in the GLM case. These experiments also show the
robustness of GSE to model misspecification, since the linear
model only slightly underperforms the logistic model. UCB-
GLM results confirm that CR algorithms could fail in BAI.
BayesGap-M falls short for B/K ≥ 50; the extra B in their
error bound also suggests failure for large B. In contrast, the
performance of GSE keeps improving as B increases.

9 Conclusions
In this paper, we studied fixed-budget best-arm identification
(BAI) in linear and generalized linear models. We proposed

the GSE algorithm, which offers an adaptive framework for
structured BAI. Our performance guarantees are near-optimal
in MABs. In generalized linear models, our algorithm is the
first practical fixed-budget BAI algorithm with analysis. Our
experiments show the efficiency and robustness (to model
misspecification) of our algorithm. Extending our GSE algo-
rithm to more general models could be a future direction (see
Appendix H).
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[Degenne et al., 2020] Rémy Degenne, Pierre Ménard, Xue-
dong Shang, and Michal Valko. Gamification of pure ex-
ploration for linear bandits. In International Conference
on Machine Learning, pages 2432–2442, 2020.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2803



[Fedorov, 1972] Valerii Vadimovich Fedorov. Theory of Op-
timal Experiments. Probability and Mathematical Statis-
tics. Academic Press, 1972.

[Filippi et al., 2010] Sarah Filippi, Olivier Cappe, Aurélien
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