Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Journal Track

Q-Learning-Based Model Predictive Variable Impedance Control for Physical
Human-Robot Collaboration (Extended Abstract)*

Loris Roveda' , Andrea Testa?, Asad Ali Shahid' , Francesco Braghin? and Dario Piga'
Istituto Dalle Molle di studi sull’Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale
della Svizzera Italiana (SUPSI), Universita della Svizzera italiana (USI), via la Santa 1, 6962, Lugano,

Switzerland
2Politecnico di Milano, Department of Mechanical Engineering, via La Masa 1, 20156, Milano, Italy
loris.roveda@idsia.ch, andrea8.testa@mail.polimi.it, asadali.shahid @idsia.ch,
francesco.braghin @polimi.it, dario.piga@supsi.ch

Abstract

Physical human-robot collaboration is increasingly
required in many contexts. To implement an effec-
tive collaboration, the robot should be able to rec-
ognize the human’s intentions and guarantee safe
and adaptive behavior along the desired directions
of motion. The robot-control strategies with such
attributes are particularly demanded in the indus-
trial field. Indeed, with this aim, this work pro-
poses a Q-Learning-based Model Predictive Vari-
able Impedance Control (Q-LMPVIC) to assist the
operators in physical human-robot collaboration
(pHRC) tasks. A Cartesian impedance control loop
is designed to implement the decoupled compliant
robot dynamics. The impedance control parame-
ters (i.e., setpoint and damping parameters) are then
optimized in an online manner to maximize the per-
formance of the pHRC. First, an ensemble of neural
networks is designed to learn the model of human-
robot interaction dynamics while capturing the as-
sociated uncertainties. The derived model is then
used by the model predictive controller (MPC), en-
hanced with stability guarantees through Lyapunov
constraints. The MPC is solved by making use of a
Q-Learning method that, in its online implementa-
tion, uses an actor-critic algorithm to approximate
the exact solution. The Q-learning method pro-
vides an accurate and highly efficient solution (in
terms of computational time and resources). The
proposed approach has been validated through ex-
perimental tests on a Franka EMIKA panda robot.

1 Introduction

To meet customers’ needs, which are becoming more and
more oriented on tailor-made products, companies are up-
dating their production processes by means of new flexi-

*This work is described in the paper [Roveda et al., 2022] Loris
Roveda, Andrea Testa, Asad Ali Shahid, Francesco Braghin, and
Dario Piga. Q-learning-based model predictive variable impedance
control for physical human-robot collaboration. Artificial Intelli-
gence, 312:103771, 2022.
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ble and agile tools [Fragapane er al., 2020]. In this con-
text, collaborative robotics plays a key role [Makris, 20211,
providing powerful solutions to assist the operators in the
execution of different activities, such as co-manipulation
[Roveda er al., 2018a; Roveda et al., 2019], task’s knowl-
edge transfer to the robotic system [Roveda et al., 2021b;
Roveda et al., 2021al, easily programmable and deployable
applications [Vicentini et al., 2020], etc. Physical human-
robot collaboration (pHRC) is currently one of the most in-
vestigated topics [Galin and Meshcheryakov, 2020]. In fact,
pHRC is nowadays demanded in many fields of applications,
both for collaborative robots [Roveda et al., 2018b] and ex-
oskeletons [Mauri et al., 2019]. However, many open issues
in the state of the art are still to be overcome, in particular
considering safety/stability guarantees in the human-robot in-
teraction, human-robot dynamics modeling, human intention
recognition (for active assistance/empowering purposes), and
computation efficiency (for real-time control adaptation and
optimization).

To tackle the above-mentioned issues within the pHRC
scenario, this paper proposes a Q-Learning-based Model Pre-
dictive Variable Impedance Control (Q-LMPVIC) to assist
the operator while physically interacting with a collaborative
robot. Based on Cartesian impedance control (providing the
controlled manipulator a compliant and decoupled behavior
in the Cartesian space), an MPC is designed in order to on-
line optimize its parameters (i.e., setpoint and damping pa-
rameters) to assist the user along the detected intended mo-
tion direction(s), maximizing the collaboration performance.
The MPC exploits a learned human-robot interaction dynam-
ics model, obtained by means of an ensemble of neural net-
works. Therefore, the lack of sophisticated analytical mod-
els for the human-robot interaction dynamics is overcome, by
employing a method that is capable to capture the complexity
and uncertainties of such dynamics. An MPC objective func-
tion is designed in order to minimize the user’s effort during
the collaboration with the robot. Indeed, the user’s intention
of motion can be detected, making it possible to assist him/her
along the intended direction(s) of motion. The designed MPC
is also enhanced with stability guarantees by means of Lya-
punov constraints. In such a way, safety/stability issues are
tackled by the proposed methodology. The MPC is then (on-
line) solved by making use of a Q-Learning method, exploit-
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Figure 1: Overall Q-LMPVIC scheme. The training operations inside the dashed square are performed once the buffer is full,
leading to the update of the Q-LMPC controller, which regularly sends the optimal setpoint and damping parameters to the
impedance controller. The optimization variables (i.e., the Cartesian impedance control setpoint X; and damping D,) are used
as the control input W, to be computed on the basis of the robot state z

ing an actor-critic algorithm to approximate its exact solution.
The obtained solution is accurate and highly efficient, being
able to tackle the issue related to computation efficiency that
might compromise the implementation of the controller for
real applications. The proposed approach has been applied to
two complex use cases (a collaborative assembly task and a
collaborative deposition task) in order to show its applicabil-
ity to real industrial tasks.

While other approaches have been developed to deal with
the proposed topic (i.e., pHRC) [Roveda et al., 2020; Cre-
mer et al., 2019; Roveda et al., 2019; Dimeas and Aspra-
gathos, 2015; Medina et al., 2019; Peternel et al., 2017,
Zhang et al., 2020], they are indeed characterized by some
difficulties in the simultaneous optimization of the impedance
parameters. The online optimization of the setpoint and the
other impedance parameters is, in fact, important to obtain an
active target-oriented and compliant behavior of the manipu-
lator during pHRC task. In addition, it is commonly difficult
to ensure stability in such an optimization problem. More-
over, a reliable model of the target dynamics is not always
available, making it difficult to optimize the collaboration.
Besides, most of the strategies are based on the internal simu-

lation of the state evolution, exploiting the prediction capabil-
ities of dynamic models or Q-functions. However, the former
strategies are often not enough accurate or efficient to be im-
plemented for real applications execution, and the latter ones
are usually approximated with fuzzy logic, requiring a pre-
cise setting of the fuzzy rules and membership functions to
solve the “curse of dimensionality” problems.

2 Methodology

The proposed Q-Learning-based Model Predictive Variable
Impedance Control (Q-LMPVIC) for pHRC tasks is made up
of two main levels. In the first one (i.e., the low-level control
loop), a variable Cartesian impedance controller is realized,
such that the outer high-level controller could work consider-
ing the manipulator as a decoupled mass-spring-damper sys-
tem in the Cartesian space. The outer high-level controller
is then used to update the setpoint and the damping param-
eters of the inner controller in order to optimize the pHRC
performance (i.e., minimize the interaction force between the
human and the robot, and, therefore, the operator’s effort).
The outer high-level controller is composed of an actor and
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(a) Assembly task

(b) Deposition task

Figure 2: The tested (a) assembly task (where the gear has to be assembled into its shaft) and (b) deposition task (where the
material has to be deposited along the highlighted path) are shown.

a critic ANN, which implements a Q-Learning algorithm for
the resolution of a nonlinear optimal control problem. An en-
semble of ANNSs is exploited to estimate the model of the sys-
tem. An MPC enhanced with stability guarantees (by means
of Lyapunov constraints) is implemented to online compute
the low-level impedance control parameters, maximizing the
pHRC performance.

Figure 1 shows the proposed Q-LMPVIC schema,
highlighting each element composing the proposed method-
ology. In the following, all the elements composing the
Q-LMPVIC (i.e., the low-level Cartesian impedance control,
the human-robot interaction dynamics, the modeling esti-
mation methodology based on the ensemble of ANNSs, the
L-MPC, the Q-learning methodology, its actor-critic ANNS,
and the CEM algorithm) are described.

Remark 1. All the theoretical derivation of the approach is
available in the authors’ work [Roveda et al., 2022].
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3 Experimental Validation

The developed controller has been employed in two indus-
trial tasks to provide insights into its usage in real production
scenarios. In particular, (i) a collaborative assembly task of a
gear into its shaft [Roveda er al., 2021b] (Figure 2 (a)) and (ii)
a collaborative deposition task [Roveda er al., 2021a] (Figure
2 (b)) have been considered as target use-cases. (i) considers
the robot equipped with a gripper manipulating a gear to be
collaboratively assembled. (ii) considers the robot equipped
with a sealing gun operated by the human along the depo-
sition path, strictly related to the activities developed in the
H2020 CS2 ASSASSINN project. Both tasks can be executed
to demonstrate the application to the robot (e.g., in the con-
text of programming-by-demonstration) or to collaboratively
perform it.

The selected tasks allow the assessment of the adoption
of the proposed controller in real human-robot collaborative
industrial tasks. In fact, such tasks require a smooth human-
robot interaction, having the robot capable of quickly reacting
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to the intention of motion of the human in order to properly
execute the target task, guaranteeing the stability of the in-
teraction. In fact, instabilities, vibrations, or delays in the
controller reaction might cause task failures or unacceptable
output quality. Indeed, the proposed use-cases allow the eval-
uation of the effectiveness of the developed controller in com-
plex human-robot collaborative applications.

A video showing the performed assembly task is available
at the link, while a video showing the performed deposition
task is available at this link. As can be highlighted, the
proposed controller allows the implementation of a smooth
and reactive robot behavior (reflecting the performance eval-
uation provided in the previous Sections), making it possible
to perform complex human-robot collaborative tasks. Thus,
the proposed controller is proven to be applicable to real
industrial tasks.

Remark 2. The complete experimental analysis of the devel-
oped approach is available in the authors’ work [Roveda et
al., 2022], where the performance of the proposed controller
are compared with the ones achieved by [Roveda et al., 2020].

4 Conclusions

The presented work in this paper proposes a Q-Learning-
based Model Predictive Variable Impedance Control Q-
LMPVIC to assist the operators in physical human-robot col-
laboration (pHRC) tasks. The proposed methodology is com-
posed of two control loops, a low-level Cartesian impedance
controller, and a high-level methodology for the online opti-
mization of impedance control parameters (i.e., the setpoint
and damping parameters), allowing to minimize the human-
robot interaction force during the collaboration. The outer
high-level controller is composed of an actor and a critic
ANN, which implement a Q-Learning algorithm for the res-
olution of a nonlinear optimal control problem. An ensemble
of ANNSs is exploited to estimate the model of the system.
The MPC enhanced with stability guarantees (by means of
Lyapunov constraints) is, indeed, implemented to compute
the low-level impedance control parameters online. The pro-
posed Q-LMPVIC has been tested to assess its performance.
Two complex use-cases (a collaborative assembly task and
a collaborative deposition task) have been setup to show the
applicability of the proposed approach to real industrial tasks.

Future work is devoted to increasing the high-level control
loop frequency (imposed equal to 6 Hz in this paper) in order
to further improve the pHRC performance. To solve this is-
sue, parallelization with modern GPUs can be exploited. In
addition, external sensors (such as EMGs) can be exploited
to better capture the human-robot interaction modeling and
collaboration performance. The proposed strategy will also
be adapted (in terms of modeling and control objectives) and
applied to an exoskeleton device.
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