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Abstract
Cross-domain sequential recommendation (CDSR)
shifts the modeling of user preferences from flat
to stereoscopic by integrating and learning inter-
action information from multiple domains at dif-
ferent granularities (ranging from inter-sequence to
intra-sequence and from single-domain to cross-
domain). In this survey, we first define the CDSR
problem using a four-dimensional tensor and then
analyze its multi-type input representations under
multidirectional dimensionality reductions. Fol-
lowing that, we provide a systematic overview
from both macro and micro views. From a macro
view, we abstract the multi-level fusion structures
of various models across domains and discuss their
bridges for fusion. From a micro view, focusing
on the existing models, we first discuss the basic
technologies and then explain the auxiliary learn-
ing technologies. Finally, we exhibit the available
public datasets and the representative experimental
results as well as provide some insights into future
directions for research in CDSR.

1 Introduction
In real life, people always leave interaction traces in mul-
tiple scenarios (e.g., shopping scenarios, reading scenarios,
etc.), multiple platforms (e.g., Amazon, Taobao, etc.), and
even multiple boards (e.g., books and movies in Douban,
etc.). Considering all these as different domains, combining
in-depth information across domains is a critical step for the
development of recommender systems. It makes the data of
user preferences no longer fragmented and shifts the mod-
eling from flat to stereoscopic. As shown in Table 1, recom-
mender systems focus on information that is becoming deeper
and more comprehensive, starting from traditional one-class
collaborative filtering (OCCF), further progressing to sequen-
tial one-class collaborative filtering (SOCCF) and to cross-
domain one-class collaborative filtering (CD-OCCF), and fi-
nally to cross-domain sequential one-class collaborative fil-
tering (CD-SOCCF, also called cross-domain sequential rec-
ommendation, CDSR).
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Problem

Information Single-Domain Cross-Domain
Inter-

sequence
Intra-

sequence
Inter-

sequence
Intra-

sequence
OCCF ✓

SOCCF ✓ ✓
CD-OCCF ✓ ✓

CD-SOCCF (a.k.a. CDSR) ✓ ✓ ✓ ✓

Table 1: A table summarizing OCCF, SOCCF, CD-OCCF and CD-
SOCCF (CDSR) based on information from different granularity.

Time

User 1User 1

User 2User 2
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Single-domain

Inter-sequence in 
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Intra-sequence in 
Single-domain

Intra-sequence in 
Single-domain
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Intra-sequence in 
Cross-domain

Figure 1: Illustration of CDSR.

In the case of OCCF [Rendle et al., 2012], the available in-
formation is limited to whether a user interacts with an item.
As illustrated in Figure 1, we only know all the items that
User 1 and User 2 have interacted with in a single domain,
without considering the sequential pattern among successive
items. SOCCF [Lin et al., 2020], building upon OCCF, places
greater emphasis on the order relationships between items
within a sequence, i.e., the information of intra-sequence in a
single domain, which enables the model to capture the user’s
long-term and short-term preferences. At a large granularity,
expanding from a single domain to multiple domains offers
a fresh perspective to address the data sparsity issue in rec-
ommender systems, thus constituting CD-OCCF [Hu et al.,
2018]. For instance, as shown in Figure 1, users have inter-
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actions not only in the book domain but also in the closely
related movie domain. In a cross-domain scenario, we must
meet the following challenges: how to transfer or aggre-
gate interaction records from multiple domains and how to
align representations of users or items across different do-
mains [Zhu et al., 2021b].

Indeed, CDSR combines all of the aforementioned di-
rections and further incorporates sequential information
based on CD-OCCF and cross-domain information based on
SOCCF. As indicated by the purple arrows in Figure 1, CDSR
necessitates the precise capturing of sequential relationships
between items across different domains. For example, User 1,
after reading two books in the Harry Potter series, chooses
to watch the corresponding Harry Potter movie. Simi-
larly, User 2 who enjoys watching romantic movies also reads
the original novels after watching the Pride and Prejudice
movie. Besides, it is also worth considering in CDSR how to
fuse sequential information from different domains as well as
how to distinguish between users’ specific preferences within
a single domain and global preferences shared across multiple
domains.

In this survey, we first formulate the CDSR problem and
modeling tasks, considering various dimensionality reduc-
tions and different input representations. Then we adopt both
macro and micro views to summarize the existing works in
CDSR. From a macro view, we present an overview of multi-
level fusion structures, discussing how to fuse information
across different domains and exploring bridges for cross-
domain fusion. From a micro view, we conduct a detailed
analysis of various technologies employed by existing works
that are categorized into basic and auxiliary learning tech-
nologies. Based on this analysis, we obtain a comprehensive
classification (shown in Table 2) and framework figure of the
key technologies (shown in Figure 5). Furthermore, we list
the datasets commonly used in CDSR and the representative
experimental results as well as provide some insights into po-
tential future directions.

2 Formulation
In this section, we first present the problem definition of
CDSR using a four-dimensional tensor. Then, referring to
Figure 2, we delve into the various directions of dimensional-
ity reduction that are often adopted in practical modeling and
the corresponding multi-type input representations.

2.1 Problem Definition
As temporal information and cross-domain information are
incorporated, the interaction data between users and items in
CDSR undergoes a gradual expansion into a four-dimensional
data tensor, consisting of dimensions about users, items, time,
and domains. We denote this four-dimensional tensor with
Γ ∈ Rn×m×s×k, where n and m is the number of users and
items in all domain, s is the discrete time intervals, and k is
the number of domains. Each element γ(u,i,t,d) in it signifies
whether there is an interaction between user u and item i at
time t in domain d. The goal of CDSR is to estimate the
probability for all candidate items in each domain, and then
to recommend the most probable next item to each user. The
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Figure 2: A visualization of dimensionality reduction for a four-
dimensional data tensor in CDSR scenarios. We represent the di-
mensions contained in the data using wireframes and simulate ten-
sors using blocks. The colored blocks indicate records of user inter-
action with items within the domain at a given moment. In this case,
both domains share the same set of users, but there is no overlap in
the items they interact with.

estimated probability can be formalized as follows,

P ( î | Γ ) ∼ f( Γ ) (1)

where î denotes the candidate item of each user in each do-
main, Γ is the four-dimensional tensor containing all interac-
tion information, and f( Γ ) indicates the learned function to
estimate P ( î | Γ ).

Notice that most existing works in CDSR are primarily es-
tablished on two domains, i.e., k = 2. Therefore, for the
subsequent discussion, we take two domains as an exam-
ple and represent them as domain A and domain B, respec-
tively. In fact, some researchers [Bi et al., 2020; Xu et al.,
2023c] also refer to the two domains as a source domain and
a target domain. Moreover, some works [Ma et al., 2019;
Sun et al., 2023; Guo et al., 2021; Guo et al., 2023c] intro-
duce an additional assumption with a shared account. They
assume that within a real account, there are q virtual users
(uj , j ≤ q) simultaneously active. Regarding the shared ac-
count issue, it is applicable not only in cross-domain scenar-
ios but also in single-domain scenarios.

2.2 Multidirectional Dimensionality Reduction
For computational and modeling convenience, the four-
dimensional tensor is often reduced to some three-
dimensional tensors from various directions (as shown in Fig-
ure 2). Below, we explain dimensionality reduction from
three directions:

W/o User Dimension. For a user, his or her interactions
in chronological order can form a sequence in each domain.
These sequences reflect the user’s personalization as well as
long and short-term preferences in different domains, and can
further serve as the basis for constructing a local graph in
subsequent work.

W/o Time Dimension. Mapping the tensor along the tem-
poral dimension and aggregating interactions within a time
lays the groundwork for a global graph. It allows models
to learn user-to-user and user-to-item connections, which are
more skewed toward users’ global preferences.
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W/o Domain Dimension. Blending two or more domains
into a hybrid domain, a model can clarify the passing relation-
ships between items originally in different domains. Many
existing studies treat the hybrid domain as an independent
domain, and design model fusion structures that incorporate
all three domains in parallel, which is shown in Section 3.1.

Indeed, these dimensionality reduction directions are often
combined and used in conjunction rather than being treated
as independent. Adopting only one reduction direction may
result in missing information to a certain degree. Next, we
visualize these reduction processes on different input repre-
sentations.

2.3 Multi-Type Input Representations
Researchers’ considerations on dimensionality reduction di-
rections in CDSR are first reflected in the input represen-
tations. Here, we categorize conventional input representa-
tions into pure sequential representation and graph-encoded
sequential representation. Subsequently, we analyze uncon-
ventional inputs, including side information and pre-trained
features.

Pure Sequential Representation
Arranging the interacted items of a user in chronological or-
der yields a sequence. For each user u, we define SA

u =
{iA1 , iA2 , . . . } and SB

u = {iB1 , iB2 , . . . } as his or her inter-
action sequences in domain A and domain B, respectively.
If u is an overlapping user who has interactions both in
domain A and domain B, we can mix SA

u and SB
u to a

hybrid sequence in chronological order (e.g., Shybrid
u =

{iA1 , iB1 , iA2 , iA3 , iB2 , . . . }), which is viewed as a sequence of
the hybrid domain. From a pure sequential perspective, we
can substitute the four-dimensional tensor in Eq.(1) with the
set of sequences in each domain, as follows,

P ( î |SA, SB) ∼ f(SA, SB) (2)

Graph-Encoded Sequential Representation
Some researchers [Guo et al., 2021; Zheng et al., 2022;
Cao et al., 2022; Zhang et al., 2023b] turn to construct di-
rected graphs G = {V,E} to model sequential informa-
tion, where V is a set of items that have been interacted
with and E is the edges that represent relations of the se-
rial relationship from item to item. Constructing a user’s
sequence within a domain or a sequence within a session
as a local graph is a common practice [Zheng et al., 2022;
Chen et al., 2021]. In the global graph construction scenario,
E is also utilized to denote the relations between users and
items [Xu et al., 2023c]. We represent the raw data in its
graph-encoded form to extend Eq.(1), where Gl denotes all
local graphs and Gg denotes the global graph, as follows,

P ( î |Gl, Gg) ∼ f(Gl, Gg) (3)

Side Information
More and more researchers consider incorporating side in-
formation to enrich the semantic representation of users’ his-
torical behaviors. In this section, we divide the most com-
mon side information into three categories: time, text (e.g.,
user/item contexts and reviews), and knowledge graph.

Time. Previously the timestamps are only used to order the
items, but some researchers [Xiao et al., 2023; Wang et al.,
2022; Guo et al., 2022] define tij = |ti − tj | to model the
time interval and apply it to the subsequent learning of model,
where ti and tj are the timestamps that the item i and the
item j are interacted with, respectively. Besides, we can also
mine more information about time, such as periodicity and
the duration of the interaction, etc.
User/Item Contexts and Reviews. Except for the user ID,
triples composed of multiple contextual information (e.g.,
(“UserID”, “City”, “Age”, · · · )) are utilized as a basis for
finding user-user relationships [Ouyang et al., 2020]. Simi-
larly, the context information that consists of categories, tags,
keywords, etc, is used as a supplement to item ID [Xiao et al.,
2023; Ouyang et al., 2020; Zhuang et al., 2020]. Review as a
type of available text message can associate users and items
well. A common way to encode these texts is through some
pre-trained models, such as BERT [Devlin et al., 2018].
Knowledge Graph. Knowledge graphs [Bi et al., 2020;
Ma et al., 2022] deal with information from both entity
and relationship views. It not only contains structural in-
formation between nodes but also implies some relation-
ship description. A knowledge graph defines an entity
set EKG and a relation set RKG, which consists of mul-
tiple entity-relation-entity triples < ei, r, ej > (e.g., <
eiA1 , Is the same category, eiB1 > meaning that the entity
eiA1 from domain A has the same category as entity eiB1 from
domain B).

Considering the aforementioned side information, we can
extend Eq.(1) as follows,

P ( î | Γ , D) ∼ f( Γ , D) (4)

where D is the side information mentioned above and often
serves as supplementary data to conventional inputs.

Pre-trained Features
Considering the privacy issues in two or more domains, some
works [Ding et al., 2023; Zhang et al., 2023a; Lei et al., 2021]
use model-trained features as the input from the source do-
main, instead of raw data. [Ding et al., 2023] directly com-
bines the pre-trained user features from one domain with an-
other domain. [Zhang et al., 2023a] utilizes federated learn-
ing to fetch the global representation from the server, and then
injects it into the local model.

We take domain A as an example and revise Eq.(1) as fol-
lows,

P ( î | ΓA ,MB) ∼ f( ΓA ,MB) (5)

where MB are the features of domain B after pre-training and
ΓA denotes the interaction data exclusively within domain A.
Notice that in domain B, the equation is P ( î | ΓB ,MA) ∼
f( ΓB ,MA).

3 Macro-View: What Structure Is Used to
Fuse the CDSR Information?

In CDSR, the fusion structure serves as the primary skeleton
of a model, providing pathways for the separation and ag-
gregation of these features. In this section, we first describe
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Figure 3: The overview of multi-level fusion structures that are di-
vided into three levels. “A” and “B” represent domain A and domain
B, respectively, and “H” denotes a combination of two domains in
chronological order.

multi-level fusion structures and then elaborate on the bridge
for inter-domain fusion.

3.1 Multi-Level Cross-Domain Fusion Structures
For cross-domain fusion, researchers employ various struc-
tures to aggregate information from different domains. In this
section, we overview the various multi-level fusion structures
shown in Figure 3. Specifically, we introduce those struc-
tures from two parts, i.e., the one-level fusion structures and
the two/three-level fusion structures.

One-Level Fusion Structures
In earlier works, to combine the cross-domain information,
there are a lot of works that first learn user preferences
from domain A and domain B separately, and then fuse
the representations of the two domains using various op-
erations (as shown in Figure 3(a)). These operations in-
clude, but are not limited to, concatenation [Lei et al., 2021;
Guo et al., 2023c], summation [Alharbi and Caragea, 2021;
Ding et al., 2023], multi-layer perceptron (MLP) [Bi et al.,
2020], and some attention mechanisms [Ouyang et al., 2020;
Li et al., 2021].

Additionally, some works employ transfer learning to
transfer knowledge from a source domain to a target do-
main [Chen et al., 2021; Liu and Zhu, 2021], or train a dis-
criminator to bridge the representations of two domains with
the idea of adversarial learning [Li et al., 2022], as shown in
Figure 3(b).

In contrast to the above-juxtaposed structures, there are
also works utilizing a tandem structure to fuse informa-
tion [Alharbi and Caragea, 2022] (i.e., Figure 3(c)), or
directly tackling the problem from the perspective of a
hybrid-domain view (i.e., Figure 3(d)). For instance, some
works [Guo et al., 2021; Guo et al., 2022] construct a global
graph for the hybrid domain to combine the cross-domain
knowledge. And others like [Ma et al., 2019; Sun et al., 2023]
choose to learn the item transition patterns in the hybrid se-
quences Shybrid.

Two/Three-Level Fusion Structures
Considering the potential for further exploration and ad-
vancement in fusion structures, some works combine the sin-

With overlapping users Without overlapping users

A B
The same

 users A BContexts A B
Clusters/
Groups

Overlap in natural 
language

Science-
fiction

Romance
...

MoviesBooks

Science-
fiction

Romance
...

MoviesBooks

Partial 
overlap

Complete 
overlap

Basketball 
lovers Food 

lovers
...

Basketball 
lovers Food 

lovers
...

Figure 4: Examples of building cross-domain bridges relying on dif-
ferent information.

gle domain and the hybrid domain with a multi-level fusion
structure. As shown in Figure 3(e), in order to predict the
next item in a separate domain, the hybrid domain is utilized
as the main sharer [Cao et al., 2022; Wang et al., 2022] or
the bridge [Zheng et al., 2022] to transfer knowledge from
another domain. There are also some works [Ye et al., 2023]
that choose to combine the domain A and domain B first and
then fuse the hybrid information (i.e., Figure 3(f)).

To delve further into the fusion structures, some re-
searchers continue to extend the hierarchy, as illustrated in
Figure 3(g) [Xu et al., 2023c] which aggregates the represen-
tations again after combining the hybrid domain information
on the basis of Figure 3(e). Figure 3(h) [Zhang et al., 2023b]
proposes a more complex structure, which shares the coarse-
grained representations of the target domain A and the hybrid
domain with each other domain.

Discussion
Although there are various multi-level fusion structures, it
does not mean that a more complex structure will perform
better. Limited by the degree of fusion, the simple fusion
structures, i.e., one-level fusion structures, are easy to im-
plement but may not comprehensively model the domain-
specific and domain-generic features. While improving effec-
tiveness, multi-level fusion structures bring increased com-
plexity and reduced interpretability.

Considering the symmetry and asymmetry of the struc-
tures, which the researchers focus on each domain greatly
affects the design of a cross-domain fusion structure. For ex-
ample, some researchers [Ouyang et al., 2020; Bi et al., 2020;
Xu et al., 2023c] consider the two domains as source and
target domains and leverage the data-rich source domain to
assist the data-sparse target domain, which makes the tar-
get domain dominant in the fusion structure. Other re-
searchers [Guo et al., 2021; Li et al., 2021; Ma et al., 2022]
aim to improve the recommendation performance of both do-
mains simultaneously, making the fusion structure designed
tend to be more symmetric.

3.2 Bridges for Cross-Domain Fusion
When comes to cross-domain fusion, it is vital to clarify the
bridges for information sharing between domains. We divide
those bridges into three categories: same users, contexts, and
clusters/groups, as shown in Figure 4. The first is prevalent
in scenarios with overlapping users, while the latter two are
applied in scenarios without overlapping users.

Same Users. If some same users exist, then they are of-
ten the first choice as the bridge. Some works only focus on
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Data Structure
Basic Technology Auxiliary Learning

PaperGNN RNN Attention Contrastive
Learning

Transfer
Learning Others

Sequence

✓

π-Net [Ma et al., 2019], CDHRM [Wang et al., 2020],
SCLSTM [Yang et al., 2020], PSJNet [Sun et al., 2023]

✓ CDNST [Zhuang et al., 2020]

✓

DASL [Li et al., 2021], TJAPL [Xu et al., 2024]

✓

CMVCDR [Zang et al., 2023]
SEMI [Lei et al., 2021], DREAM [Ye et al., 2023], P-CDSR [Xiao et al., 2023],
Tri-CDR [Ma et al., 2023], CGRec [Park et al., 2023], LCN [Hou et al., 2023],
MACD [Xu et al., 2023a]
MiNet [Ouyang et al., 2020], CD-ASR [Alharbi and Caragea, 2021],
CD-SASRec [Alharbi and Caragea, 2022], MAN [Lin et al., 2023a]

✓ SATLR [Liu and Zhu, 2021]
Adversarial

Learning RecGURU [Li et al., 2022], TPUF [Ding et al., 2023], DA-DAN [Guo et al., 2023a]

Reinforcement
Learning RL-ISN [Guo et al., 2023c], O-SCDR [Nanthini and Kumar, 2024]

Prompt
Learning PLCR [Guo et al., 2023b]

MSECDR [Hong and Jung, 2023], AMID [Xu et al., 2023b]

Graph ✓

✓
DCDIR [Bi et al., 2020], MIFN [Ma et al., 2022]

✓

AGNNGRU-CDR [Qu et al., 2021]
✓ DAT-MDI [Chen et al., 2021], SGCross [Li et al., 2023]

DA-GCN [Guo et al., 2021], TiDA-GCN [Guo et al., 2022]

✓

C2DSR [Cao et al., 2022], EA-GCL [Wang et al., 2023], MGCL [Xu et al., 2023c]
Federated
Learning FedDCSR [Zhang et al., 2023a]

DDGHM [Zheng et al., 2022]
LEA-GCN [Zhang et al., 2023b], IESRec [Liu et al., 2023]
CsrGCF [Wang et al., 2022]

Table 2: A systematic overview of the existing models for CDSR.

the fully overlapping users, neglecting non-overlapping users,
while others [Li et al., 2022] consider both cases.

Contexts. If there are no common users, it is feasible to
leverage the semantic similarity of natural language. For in-
stance, we can replace traditional item IDs with item con-
texts to explore similarities between items of different do-
mains [Liu et al., 2023].

Clusters/Groups. Further restricting the condition to no
overlapping users and no side information, the clus-
ters/groups are another entry point since a specific group of
users could have similar preferences [Lin et al., 2023a].

Works relying on overlapping users often perform well
but their application scenarios may face limitations due to
the sparse real-world data. Conversely, works built on non-
overlapping users can be applied to a broader range of scenar-
ios but may have limited performance. In fact, cross-domain
can be built on more than one type of bridge.

4 Micro-View: What Technologies Are Used
to Address the CDSR Problem?

In this section, we take a more tangible perspective to sum-
marize the technologies adopted by the existing models in ad-
dressing the challenges in CDSR. In conjunction with Table 2
and Figure 5, we elaborate on the basic technologies and the
auxiliary learning technologies, respectively.

4.1 Basic Technologies
According to Section 2.3, the cross-domain information is
always considered as a pure sequential representation or a
graph-encoded sequential representation. So we illustrate the
utilization of sequence modeling technologies (i.e., recurrent
neural networks and attention mechanisms) and graph struc-
ture modeling technologies (i.e., graph neural networks) in

CDSR, respectively. Moreover, from Figure 5, we can ob-
serve that the three basic technologies are not independent
entities and can be applied interchangeably or in parallel
based on the characteristics of different technologies. No-
tice that multi-layer perceptron (MLP) is used in almost all
existing models for non-linear feature mapping or to sim-
ply aggregate cross-domain information [Xu et al., 2023b;
Hong and Jung, 2023], so we do not describe it separately.

Recurrent Neural Networks in CDSR
Recurrent neural networks (RNNs) model sequences, by tak-
ing the current time step’s representation and the hidden
features from the previous time step as input, and gener-
ating the output and hidden features for the current time
step. Due to the issues of vanishing and exploding gradi-
ents, its variants, i.e., gated recurrent unit (GRU) and long
short-term memory (LSTM) [Yang et al., 2020], are more
widely adopted. In CDSR, some works [Li et al., 2021;
Chen et al., 2021; Zang et al., 2023] directly employ GRUs
as encoders of sequences to get sequential representations.
While some works incorporate a shared unit into each step
of RNNs to transfer cross-domain information. The shared
unit could be a shared-account filter unit [Ma et al., 2019;
Sun et al., 2023] or the common representations of the over-
lapping users [Wang et al., 2020]. While RNNs are easy to
implement and are capable of modeling the temporal rela-
tionships in sequences, they still suffer from issues such as
vanishing and exploding gradients during training.

Attention Mechanisms in CDSR
Attention mechanisms can selectively focus on the impor-
tance of different parts and weight their contributions ac-
cordingly, enabling effective aggregation. Attention mech-
anisms are utilized in two main ways in CDSR. One is to
use an attention-based encoder (e.g., Transformer [Vaswani
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Figure 5: A schematic overview of the key technical framework.
The color of the arrows represents the output after passing through
the components represented by different colors. While models rep-
resented via graph structures require encoding with GNN, the rela-
tionship between RNN and attention can be used in parallel or an
alternating fashion.

et al., 2017], SASRec [Kang and McAuley, 2018] or multi-
head attention blocks, etc.), replacing RNNs as a sequence
encoder [Ye et al., 2023; Xu et al., 2023c; Alharbi and
Caragea, 2022; Ding et al., 2023; Park et al., 2023]. The
other is to obtain learnable attention weights thus aggregat-
ing cross-domain information at multiple levels. For instance,
MiNet [Ouyang et al., 2020] designs item-level attention and
interest-level attention to learn which items are more impor-
tant and which of these items better matches a certain interest
of the user. With representation-level attention, C2DSR [Cao
et al., 2022] fuses the sequential representation and the graph
representation together. By adopting domain-level attention,
Tri-CDR [Ma et al., 2023] learns the weights of the fea-
tures from different domains and then aggregates them. And
MAN [Lin et al., 2023a] also proposes a group-level attention
to bridge the not-aligned information. In fact, attention strate-
gies need to be designed from multiple levels which poses a
challenge to researchers.

However, it needs to use the interaction of all the positions
when calculating the weights, so it contains a large number
of parameters and may suffer from the issue of data sparsity.

Graph Neural Networks in CDSR
Aware of the structural relationships of item-item and item-
user in a sequence, graph neural networks are used to model
such information. Some works construct a graph per ses-
sion [Chen et al., 2021] or per domain [Cao et al., 2022; Xu et
al., 2023c], or just construct a global graph [Guo et al., 2021;
Zhang et al., 2023b] based on the hybrid domain of all users.
Apart from that, DCDIR [Bi et al., 2020] and MIFN [Ma et
al., 2022] construct a knowledge graph to encompass more
semantic information. Most works combine graph encoders
(i.e., GNNs) and sequence encoders (i.e., RNNs or attention
mechanisms) as complementary parts in CDSR. For instance,
DA-GCN [Guo et al., 2021] utilizes graph convolutional net-
works to learn latent user representations and user-specific
item representations and then carries the weights from the
item and user neighbors to the target item in each domain

with an attention matrix. C2DSR [Cao et al., 2022] com-
bines the encoded representations from GNNs with the orig-
inal sequences and feeds them into the attention encoder for
further modeling. It supplementally learns complex informa-
tion about nodes and edges to capture more comprehensive
preferences of users. However, when GNNs are applied to
a large-scale data, the huge computational and storage over-
head is a major drawback in most cases.

4.2 Auxiliary Learning
In addition to the aforementioned key technologies, the uti-
lization of auxiliary learning technologies to facilitate the in-
tegration of cross-domain information garners significant at-
tention.

Transfer Learning
Transfer learning (TL) [Pan and Yang, 2009] is primarily em-
ployed to transfer knowledge learned from one task to another
task. For instance, CDNST [Zhuang et al., 2020] transfers the
novelty-seeking trait learned from a source domain to a target
domain. SATLR [Liu and Zhu, 2021] considers transferring
knowledge by multiplying the independently learned repre-
sentations from one domain with an orthogonal mapping ma-
trix. Some works adopt dual transfer learning to improve the
ability to transfer knowledge. DAT-MDI [Chen et al., 2021]
combines a dual transfer model with slot attention to self-
adapt item embedding from different domains. DASL [Li et
al., 2021] applies a dual embedding component to unify the
learning process of user representations and then proposes
a dual attention component to incorporate user behaviors in
multiple domains.

Contrastive Learning
Contrastive learning (CL) [Jing et al., 2023] is also a widely
applied technique that leverages the similarities and differ-
ences between samples to extract useful information. In the
case of Tri-CDR [Ma et al., 2023], it designs two contrastive
learning tasks, i.e., coarse-grained similarity modeling and
fine-grained distinction modeling. Coarse-grained similar-
ity modeling closes three domains’ sequence representations
of the same user, and fine-grained distinction modeling as-
sumes the distance between domain A and domain B should
be larger than the distance between domain B and the hybrid
domain. MGCL [Xu et al., 2023c] views the local and global
item representations of a user as the positive samples and the
representations from different users as the negative samples.
Additionally, some works aggregate the sequences and then
combine those processed sequences with CL. DREAM [Ye et
al., 2023] proposes supervised contrastive learning to mini-
mize the relevance among inter-sequences with different pref-
erences.

Other Auxiliary Learning Technologies
In addition to transfer learning and contrastive learning,
there are other auxiliary learning technologies. For instance,
RecGURU [Li et al., 2022] and TPUF [Ding et al., 2023]
train a discriminator until it is unable to distinguish whether a
feature belongs to domain A or domain B, thereby achieving
the goal of adversarial feature alignment. FedDCSR [Zhang
et al., 2023a] leverages federated learning [Yang et al., 2019]
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Datasets Domains Data types Scale Link

HVIDEO
[Ma et al., 2019]

V-domain:
family videos user ID, item ID, time 0.4 million + https://bitbucket.org/Catherine Ma/pinet sigir2019/src/master/HVIDEO

E-domain:
educational videos

Douban
[Zhu et al., 2021a]

Movies user ID, item ID, ratings,
labels, reviews, time, users contexts 1 millions + https://github.com/FengZhu-Joey/GA-DTCDR/tree/main/DataMusics

Books

Amazon
[McAuley et al., 2015]

Books

user ID, item ID, ratings,
time, reviews, item contexts 100 millions + https://jmcauley.ucsd.edu/data/amazon

Movies
Foods

Kitchens
. . .

Tenrec
[Yuan et al., 2022]

Videos QK-video user ID, item ID, multiple-behavior interactions,
video category, watching times, user gender, user age 100 millions + https://static.qblv.qq.com/qblv/h5/algo-frontend/tenrec dataset.html

QB-video

Articles QK-article user ID, item ID, multiple-behavior interactions,
read percentage, item contexts, read timeQB-article

Mybank-CDR
[Xu et al., 2023b]

Loan
user ID, interactive sequences 100 millions + https://github.com/WujiangXu/AMID/tree/main/mybank datasetFund

Account

Table 3: A summary of commonly used datasets for CDSR.

Foods Kitchens
MRR NDCG HR MRR NDCG HR
@10 @5 @10 @1 @5 @10 @10 @5 @10 @1 @5 @10

OCCF
BPRMF [Rendle et al., 2012] 4.10 3.55 4.03 2.42 4.51 5.95 2.01 1.45 1.85 0.73 2.18 3.43
ItemKNN [Sarwar et al., 2001] 3.92 3.51 3.97 2.41 4.59 5.98 1.89 1.28 1.75 0.58 1.99 3.26

SOCCF
GRU4Rec [Hidasi et al., 2015] 5.79 5.48 6.13 3.63 7.12 9.11 3.06 2.55 3.10 1.61 3.50 5.22
SASRec [Kang and McAuley, 2018] 7.30 6.90 7.79 4.73 8.92 11.68 3.79 3.35 3.93 1.92 4.78 6.62
SR-GNN [Wu et al., 2019] 7.84 7.58 8.35 5.03 9.88 12.27 4.01 3.47 4.13 2.07 4.80 6.84

CD-OCCF
NCF-MLP [He et al., 2017] 4.49 3.94 4.51 2.68 5.10 6.86 2.18 1.57 2.03 0.91 2.23 3.65
CoNet [Hu et al., 2018] 4.13 3.61 4.14 2.42 4.77 6.35 2.17 1.50 2.11 0.95 2.07 3.71

CD-SOCCF (a.k.a. CDSR)

π-Net [Ma et al., 2019] 7.68 7.32 8.13 5.25 9.25 11.75 3.53 2.98 3.73 1.57 4.34 6.67
MIFN [Ma et al., 2022] 8.55 8.28 9.01 6.02 10.43 12.71 4.09 3.57 4.29 2.21 4.86 7.08
C2DSR [Cao et al., 2022] 8.91 8.65 9.71 5.84 11.24 14.54 4.65 4.16 4.94 2.51 5.74 8.18
P-CDSR [Xiao et al., 2023] 9.87 9.57 10.72 6.66 12.34 15.94 4.78 4.37 5.08 2.69 6.06 8.27
DREAM [Ye et al., 2023] 9.33 10.05 11.25 6.08 13.75 17.45 4.82 5.19 6.15 2.74 7.52 10.51

Table 4: Experimental results (%) on two domains of the Foods and Kitchen of Amazon. Notice that the results are copied from [Cao et al.,
2022; Xiao et al., 2023; Ye et al., 2023] for reference. We bold the best results and underline the second-best results.

to preserve data privacy. RL-ISN [Guo et al., 2023c] utilizes
rewards in reinforcement learning to determine whether to re-
vise the whole transferred sequence and selects which inter-
actions should be retained, thus alleviating the noise intro-
duced by transferring cross-domain information. PLCR [Guo
et al., 2023b] treats domain-specific contexts as the prompt
and feeds them with domain-agnostic contexts and label fea-
tures into self-attention blocks to learn prompt embedding.

Discussion
Incorporating auxiliary learning technologies aims to en-
hance a model’s ability to capture cross-domain information.
Contrastive learning can make learned representations more
discriminative and robust, but it is sensitive to the designed
contrastive strategy. Transfer learning enables the sharing of
information across domains, but the effectiveness of knowl-
edge transfer is affected by the correlation between domains,
i.e., there is vulnerability to negative transfer [Zhang et al.,
2023c]. Moreover, adversarial learning can unify representa-
tions from different domains but its training process is more
complex.

5 Datasets and Experimental Results
In this section, we summarize a list of commonly used
datasets of CDSR, including their corresponding domains,
data types, and scales shown in Table 3.

In order to more fully represent the advantage in CDSR
compared to other issues in Table 1 and the performance of
models with different technologies in CDSR, we quote the
results of representative models from [Cao et al., 2022; Xiao
et al., 2023; Ye et al., 2023] in Table 4. Notice that these
three papers are consistent in their treatment of this dataset.
The results show that with the increase in information and
advancements in methods, the results gradually improve.

6 Future Directions
In this section, we provide several promising directions in
CDSR for potential developments from different aspects.
Multi-Domain Simultaneous Improvement. As men-
tioned in Section 3.1 and shown in Figure 3, most existing
models are primarily established on two domains. In real-
world applications, users tend to have interactions in multiple
domains.Exploring how to integrate information from mul-
tiple domains (e.g., dozens of domains) and simultaneously
improve the performance of each domain is a crucial research
direction for the future of CDSR.
Heterogeneous Information Fusion. Apart from the side
information mentioned in Section 2.3, there is a large amount
of relevant heterogeneous information in real-world applica-
tions. For example, users are likely to transfer from brows-
ing short videos to purchasing items mentioned in the videos.
Therefore, it is worth investigating effective methods that
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combine heterogeneous information (e.g., image, video, etc.)
and traditional ID-based information, to address the chal-
lenges in cross-domain recommendation. Moreover, it is also
worth considering introducing heterogeneous sequential be-
haviors into cross-domain scenarios.

Deep Utilization of Non-overlapping Information. In-
deed, the majority of current models rely on overlapping
users to bridge different domains, but non-overlapping data
also contain rich semantic information that is worth exploring
and extracting [Liu et al., 2023]. So researchers can conduct
deeper studies on non-aligned information.

Privacy Preservation. When it comes to sensitive user in-
formation, encryption and protection of data is crucial. Partic-
ularly within the realm of CDSR, there is a greater inclusion
of user data. Therefore, designing effective federated learn-
ing methods to ensure privacy while minimizing the loss of
valuable information in the cross-domain scenario is a mean-
ingful but less studied area [Lin et al., 2023b].

Fairness and Interpretability. Fairness and interpretabil-
ity are crucial research topics in recommender systems. In
CDSR, it is essential to reduce the bias between different do-
mains and to interpret cross-domain sequential recommenda-
tion results to users.

More Advanced Technologies. In Section 4, we analyze
the technologies used in existing CDSR models from a micro
view. However, achieving greater leaps in performance de-
mands more advanced technologies. For instance, exploring
the application of large language models (LLMs) [Wu et al.,
2023] in the CDSR scenario is also a promising direction.

7 Conclusions
Cross-domain sequential recommendation (CDSR) extends
traditional recommender systems by incorporating sequen-
tial and cross-domain information, aiming to address the data
sparsity issue. In this survey, we approach CDSR with a four-
dimensional tensor and offer a comprehensive overview from
macro and micro views. From a macro view, we summarize
the existing models by abstracting multi-level fusion struc-
tures and discuss the bridges for cross-domain fusion. From
a micro view, we analyze and summarize the employed ba-
sic and auxiliary learning technologies. Finally, we include
some public datasets and experimental results for CDSR, and
provide some promising future research directions.
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