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INTRODUCTION 

Robotics is defined practically as the study, 

design and use of robot systems for 

manufacturing and generally are used to 

perform highly repetitive, unsafe, hazardous, 

and unpleasant tasks. Robotics many different 

functions that used either in industry and 

manufacture or in complex, clatter and changing 

environment such as pick and place, assembly, 

drilling, welding, machine tool load and unload 

functions, painting, spraying, etc. or in A 

delivery in a hospital and Hotels, Discovering 

the space As a results of these different tasks 

there are different robot arm configuration such 

as rectangular, spherical, cylindrical, revolute 

and prismatic jointed. 

A pick and place robot arm is used to ease 

process of moving materials and supplying the 

motion required in the manufacturing processes. 

The transfer process of the materials is usually 

being accomplished, using man power and as 

the transfer process is repeated for a period of 

time, it can cause injuries to the operator. the  

robot arm preventing injuries and increasing the 

efficiency of the work, with reducing the human 

being errors that cost highly time and martial. 

The proportional-integral-derivative (PID) 

control has simple structure for its three gains. 

The control performances are acceptable in the 

most of industrial processes. Most robot 

manipulators found in industrial operations are 

controlled by PID algorithms independently at 

each joint. 

There are many control techniques used for 

controlling the  robot arm.  

The most familiar control techniques are the 

PID control, adaptive control, optimal control 

and robust control. As the final goal is to design 

and manufacturing real robots, it's helpful doing 

the simulation before the investigations with 

real robots, to enhance the final real robot 

performance and behavior.  

ROBOT SPECIFICATION AND KINEMATICS  

Robot Specification 

A two degree of freedom robot arm is described 

in Figure(1)  

which consists primarily of two links with the 

following specifications in OXY coordinates: 

𝐿1 = 1 m is the length of the first link. 

 𝐿2 = 1 m is the length of the second link. 

𝑚1 = 1 kg is the mass of the first link. 

 𝑚2 = 1 kg is the link of the second link. 

𝜃1 = the rotation angel of the first link.  

𝜃2 = is the rotation angel of the second link. 

ABSTRACT 

This paper presents a Modeling, Simulation and Control of a Two Degree of  Freedom (2-DOF) robot 

arm.This Work is taken from the Final Year capstone project.  First The Robot specifications , Robot 

Kinematics with Denavit-Hartenberg parameters (DH)for Forward kinematics and Inverse Kinematicsof 2-

DOF robot armwere presented. Then The dynamics of the 2-DOF robot arm was studied to derive the 

equations of motion based on Eular-Lagrange Equation of motion. A Control Design was performed using 

PID controller for the modeling and control Technique. The models has been done based on 

Matlab/Simulink software. 

Keywords: Robotics, 2-DOF Robot arm, Kinematic, Dynamic, PID Control and Modeling. 

 

 



Modeling and Control of 2-DOF Robot Arm 

25                      International Journal of Emerging Engineering Research and Technology V6 ● I11 ● 2018  

 

Figure 1. Two degree of freedom Robot Arm 

Robot Kinematics 

Forward Kinematics 

The Forward kinematics of a robotic arm is 

determined  a group of parameters called 

Denavit-Hartenberg (DH) parameters which 

used for deriving the homogenous 

transformation matrices between the different 

frames assigned on the robot arm structure. The 

DH parameters for a two degree of freedom 

robotic arm are defined as follows: 

Table 1. DH-parameters for the 2-DOF robotic arm  

The homogenous transformation matrices for the 2-DOF robotic arm shown in Figure(1) are derived 

as follows: 

𝑻𝟏
𝟎

 =  

cos 𝜃1 − sin 𝜃1

sin 𝜃1

0
0

cos 𝜃1

0
0

0
 0

     1    

𝐿1 cos 𝜃1

𝐿1 sin 𝜃1

0
0 1

    (1)    

𝑻𝟐
𝟏

 =  

cos 𝜃2 − sin 𝜃2

sin 𝜃2

0
0

cos 𝜃2

0
0

0
 0

     1    

𝐿2 cos 𝜃2

𝐿2 sin 𝜃2

0
0 1

  (2)   

Using the Eq. (1) and (2), the homogenous transformation matrix 𝑇2
0 can be derived as follows: 

𝑻𝟐
𝟎

 =  

cos(𝜃1 + 𝜃2) − sin(𝜃1 + 𝜃2)
sin(𝜃1 + 𝜃2)

0
0

cos(𝜃1 + 𝜃2)
0
0

0
 0

     1    

𝐿1 cos 𝜃1 + 𝐿2 cos(𝜃1 + 𝜃2)

𝐿1 sin 𝜃1 + 𝐿2 sin(𝜃1 + 𝜃2)
0

0 1

                            ( 3) 

Therefore, 

𝑻𝑯
𝑹

 =  

𝑛𝑥 𝑜𝑥
𝑛𝑦
𝑛𝑧
0

𝑜𝑦
𝑜𝑧
0

𝑎𝑥
𝑎𝑦
𝑎𝑧

𝑝𝑥
𝑝𝑦
𝑝𝑧

0 1

                                    (4) 

𝑻  𝟐
𝟎  = 𝑻𝑯

𝑹                                                 (5)  

From Eq. (5), the position coordinates of the 

manipulator end-effector is given by: 

𝑃𝑥 = 𝐿1 cos 𝜃1 + 𝐿2 cos(𝜃1 + 𝜃2)  (6)               

𝑃𝑦 = 𝐿1 sin 𝜃1 + 𝐿2 sin(𝜃1 + 𝜃2)  (7) 

And the end-effector's orientation matrix is 

defined by the first three rows and three 

columns of the transformation matrix in Eq.(3). 

Inverse Kinematics 

The inverse kinematics of a robotic arm is a 

solution of finding the robot arm joint variables 

of given the position Cartesian coordinates of 

the end-effector. The mathematical equations 

used to solve the inverse kinematics problem 

can be derived either algebraically or 

geometrically. The geometrical approach is 

considered to be much easier for robot arms of 

high degrees of freedom. In our Case, we solved 

the inverse kinematics equations for the 2-DOF 

robotic arm shown in Figure(2) using the 

geometrical method. 

 

Figure 2. Two degree of freedom Robot Arm Inverse 

Kinematic 

From Figure2, a mathematical equation for 

Link ai αi di 𝜽𝒊 

1 L1 0 0 𝜃1  

2 L2 0 0 𝜃2 
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solving the elbow joint angle 𝜽2 can be derived 

using Pythagoras theorem as follows: 

𝑝𝑥
2 + 𝑝𝑦

2 = 𝐿1
2 + 𝐿2

2 + 2𝐿1𝐿2cosθ2         (8) 

cosθ2 =
1

2𝐿1𝐿2
 (𝑝𝑥

2 + 𝑝𝑦
2 − 𝐿1

2 − 𝐿2
2)         (9) 

sinθ2 = ± 1 − cosθ2
2
         (10) 

Therefore, 

𝜃2= ± 𝑎𝑡𝑎𝑛
sin θ2

cos θ2
        (11) 

For The joint variable 𝜃1: 

𝑝𝑥 = (𝐿1 + 𝐿2cosθ2) cosθ1 − 𝐿2sinθ1sinθ2        (12) 

𝑝𝑦 =  𝐿2  sinθ2cosθ1 + (𝐿1 + 𝐿2cosθ2)sinθ1      (13) 

∆=  
𝐿1 + 𝐿2cosθ2 −𝐿2sinθ2

𝐿2sinθ2 𝐿1 + 𝐿2cosθ2
       (14) 

𝑝𝑥
2 + 𝑝𝑦

2 = (𝐿1 + 𝐿2cosθ2)2 + (𝐿2sinθ2)2       (15) 

∆sinθ1 =  
𝐿1 + 𝐿2cosθ2 𝑝𝑥

𝐿2sinθ2 𝑝𝑦
         (16) 

∆cosθ1 =  
𝑝𝑥 −𝐿2sinθ2

𝑝𝑦 𝐿1 + 𝐿2cosθ2
         (17) 

sinθ1 =
∆sin θ1

∆
=

 𝐿1+𝐿2cos θ2 𝑝𝑦−𝐿2  sin θ2𝑝𝑥

𝑃𝑥 2+𝑝𝑦
2      (18) 

cosθ1 =
∆cos θ1

∆
=

 𝐿1+𝐿2cos θ2 𝑝𝑥+𝐿2  sin θ2𝑝𝑦

𝑝𝑥
2+𝑝𝑦

2     (19) 

𝜃1=𝑎𝑡𝑎𝑛
sin θ1

cos θ1
= 𝑎𝑡𝑎𝑛

 𝐿1+𝐿2cos θ2 𝑝𝑦 ±𝐿2sin θ2𝑝𝑥

 𝐿1+𝐿2cos θ2 𝑝𝑥±𝐿2  sin θ2𝑝𝑦
     (20) 

ROBOT DYNAMICS 

The dynamic model of a robot is concerned with 

the movement and the forces involved in the 

robot arm and establishes a mathematical 

relationship between the location of the robot 

joint variables and the dimensional parameters 

of the robot. There are two methods for 

performing the dynamics equations of a robot 

arm: Eular-Lagrange method and Newten-Eular 

method. in this work , We used the Eular-

Lagrange method which depends on calculating 

the total Kineatic and Potential Energies of the 

robot arm to determine the Lagrangian (ℒ) of 

the whole system in order to calculate the force 

or torque applied of each joint.With the 

Lagrangianℒ, we can solve the Euler- Lagrange 

equation which relies on the partial derivative of 

kinetic and potential energy properties of 

mechanical systems to compute the equations of 

motion and is defined as follow: 

F =
𝑑

𝑑𝑡
 
𝜕ℒ

𝜕𝜃 
 −

𝜕ℒ

𝜕𝜃
        (21) 

where F is the external force acting on the 

generalized coordinate, represents the torque 

applied to therobot and ℒ is the Lagrangian 

equation of the motion, given in Eq.(22)  

ℒ 𝑞 𝑡 , 𝑞  𝑡  = 𝐾𝐸 𝑞 𝑡 , 𝑞  𝑡  − 𝑃𝐸 𝑞 𝑡         (22) 

To solve the Lagrangian Eq.(22),we need first to 

calculate the kinetic Energy 𝐾𝐸 and potential 

Energy 𝑃𝐸 as follow: 

𝐾𝐸 =
1

2
𝑚𝑥 2     

𝑃𝐸 = 𝑚𝑔𝑙  

The velocity is determined by taking the 

derivative of the position respect to time. so the 

position in the end of the link is known using 

known familiar variables : 

𝑥1 = 𝐿1𝑠𝑖𝑛𝜃1 

𝑦1 = 𝐿1 cos 𝜃1 

𝑥2 = 𝐿1𝑠𝑖𝑛𝜃1 + 𝐿2sin(𝜃1 + 𝜃2)       (23)  

𝑦2 = 𝐿1 cos 𝜃1 + 𝐿2 cos(𝜃1 + 𝜃2)  

Then substitute in the kinetic's energy equation: 

𝐾𝐸 =
1

2
𝑚1𝑥 1

2 +
1

2
𝑚1𝑦 1

2 +
1

2
𝑚2𝑥 2

2 +
1

2
𝑚2𝑦 2

2 (24) 

After simplification,      

𝐾𝐸 =
1

2
(𝑚1 + 𝑚2)𝑙1

2𝜃1
 2

+
1

2
𝑚2𝑙1

2𝜃1
 2

+ 𝑚2𝑙2
2𝜃1

 𝜃2
 +

1

2
𝑚2𝑙2

2𝜃2
 2

+ 𝑚2𝑙1𝑙2𝑐𝑜𝑠𝜃2  𝜃1
 𝜃2

 + 𝜃1
 2
                 (25) 

The Potential energy equation is defined as: 

𝑃𝐸 = 𝑚1𝑔𝑙1 cos 𝜃1 + 𝑚2𝑔(𝑙1 cos 𝜃1 + 𝑙2 𝑐𝑜𝑠(𝜃1 + 𝜃2))                           (26) 

Substitute Eq.(25) and(26) in Eq.(21) to form the lagrangian equation as:  

ℒ =
1

2
(𝑚1 + 𝑚2)𝑙1

2𝜃1
 2

+
1

2
𝑚2𝑙1

2𝜃1
 2

+ 𝑚2𝑙2
2𝜃1

 𝜃2
 +

1

2
𝑚2𝑙2

2𝜃2
 2

+ 𝑚2𝑙1𝑙2𝑐𝑜𝑠𝜃2  𝜃1
 𝜃2

 + 𝜃1
 2
 −

         𝑚1𝑔𝑙1 cos𝜃1 + 𝑚2𝑔 𝑙1 cos𝜃1 + 𝑙2 𝑐𝑜𝑠 𝜃1 + 𝜃2                   (27) 

To calculate the force applied to the robot, we form the Lagrange-EularEq.(21)with the Lagrangian(ℒ) 

Fθ1,2
=

𝑑

𝑑𝑡
 

𝜕ℒ

𝜕𝜃 1,2

 −
𝜕ℒ

𝜕𝜃1,2
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After simplification, the force applied at joint 1is given by 

𝐹𝜃1
=

 𝑚1 + 𝑚2 𝑙1
2 + 𝑚2𝑙2

2 + 2𝑚2𝑙1𝑙2 cos 𝜃2) θ1
 +  𝑚2𝑙2

2 − 𝑚2𝑙1𝑙2 cos 𝜃2 θ2
   −

𝑚2𝑙1𝑙2 sin 𝜃2( 2𝜃1
 𝜃2

 + 𝜃2
 2

 ) −                𝑚1 + 𝑚2 l1gsinθ1 − 𝑚2𝑙2𝑔𝑠𝑖𝑛(𝜃1 + 𝜃2)              (28) 

and the force applied at joint 2 is given by 

𝐹𝜃2
= (𝑚2𝑙2

2  + 𝑚2𝑙1𝑙2 cos 𝜃2)θ1
 +  𝑚2𝑙2

2
θ2
 − 𝑚2𝑙1𝑙2 sin 𝜃2 𝜃1

 𝜃2
 − 𝑚2𝑙2𝑔𝑠𝑖𝑛(𝜃1 + 𝜃2)       (29) 

The motion of the systemis given by the following formof a nonlinear equation: 

𝐹 = 𝐵 𝑞  + 𝐶 𝑞 , 𝑞 + 𝑔 𝑞                                                                            (30) 

where, 

𝐹 =  
Fθ1

Fθ2

  

𝐵 𝑞  =  
( 𝑚1 + 𝑚2 𝑙1

2 + 𝑚2𝑙2
2 + 2𝑚2𝑙1𝑙2 cos 𝜃2) (𝑚2𝑙2

2 − 𝑚2𝑙1𝑙2 cos 𝜃2)

𝑚2𝑙2
2  + 𝑚2𝑙1𝑙2 cos 𝜃2 𝑚2𝑙2

  

𝐶 𝑞 , 𝑞 =  
− 𝑚2𝑙1𝑙2 sin 𝜃2( 2𝜃1

 𝜃2
 + 𝜃2

 2
 )

− 𝑚2𝑙1𝑙2 sin 𝜃2 𝜃1
 𝜃2

 
  

𝑔 𝑞 =  
− 𝑚1 + 𝑚2 l1gsinθ1 − 𝑚2𝑙2𝑔𝑠𝑖𝑛(𝜃1 + 𝜃2) )

−𝑚2𝑙2𝑔𝑠𝑖𝑛(𝜃1 + 𝜃2)
  

𝑞 =  
θ1

θ2
  

MATHEMATICAL MODELING OF ACTUATING 

SYSTEM 

The Permanent Magnet Direct Current PMDC 

motor is used to actaute the system, which has 

an Electrical part and a Mechanical part, as seen 

in Eq.(44) and Eq.(45), Describing the Electrical 

and Mechanical characteristics of PMDC motor, 

respectively, Using Newton's law, Kirchhoff’s 

law and Ohm’s law. 

[𝑉𝑖𝑛 (𝑠)  − 𝐾𝑏𝜔𝑚 ] ∗
1

 𝐿𝑎 𝑠+𝑅𝑎  
=  𝐼𝑎 𝑠   (31) 

𝜔 𝑠 = 𝐾𝑡 ∗ 𝐼𝑎 𝑠 ∗
1

(𝐽𝑚  𝑠+𝑏𝑚 )
      (32) 

The PMDC motor Transfer Function is derived, 

Subtituting the electrical part characteristics 

Eq.(44) in Eq.(45), gives Eq.(46): 

𝐾𝑡
1

 𝐿𝑎 𝑠+𝑅𝑎  
[𝑉𝑖𝑛 (𝑠)  − 𝐾𝑏𝜔𝑚 ] = 𝐽𝑚  𝑠𝜔 + 𝑏𝑚𝜔    (33) 

Rearranging Eq.(46), The PMDC motor open 

loop transfer function is obtained, given by 

Eq.(47), This equation shows that the PMDC 

motor is a second order system. 

2

( )
( )

( ) ( ) ( ) ( )

t
speed

in a m a m m a a m t b

Ks
G s

V s L J s R J b L s R b K K


 

     

                          (34) 

PIDCONTROLLER DESIGN 

The nonlinear equation that are derived from 

Euler-Lagrange Eq. (30), where inputvariable F 

which represents the torque applied to the robot 

is unknown, so it's requires a control in the 

Force applied of the joints to reach the final 

position.In our case, we use the classical linear 

PID, Particularly we need Two PID controls 

since the first arm motion is dependent  from the 

second arm motion. In fact, still having a strong 

interaction between the two arms. The classical 

linear PID law is performed; 

𝐹 = 𝐾𝑃 𝑒 + 𝐾𝐷 𝑒 + 𝐾𝐼   𝑒 𝑑𝑡       (35) 

where𝑒 = qd − q , qd  is desired joint angle, Kp, 

Ki and Kd are proportional, integral and 

derivative gains of the PID controller, 

respectively. This PID control law can be 

expressed via the following equations. 

𝐹 = 𝐾𝑃 𝑒 + 𝐾𝐷 𝑒 + 𝜉    (36) 

𝜉 = 𝐾𝐼  𝑒 ;  𝜉 0 = 𝜉0 

where 𝜉  represents the  additional state variable 

that is the integral action of the PID control law 

formed and it's time derivative is 𝜉 = 𝐾𝐼𝑒. The 

closed-loop equation is obtained by substituting 

the control action F from Eq.(32) into the robot 

model Eq.(30), gives: 
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𝐵 𝑞  + 𝐶 𝑞 , 𝑞 + 𝑔 𝑞 = 𝐾𝑃 𝑒 + 𝐾𝐷 𝑒 + 𝜉 (37) 

From the system'smodel Eq.(30), we can have 

𝑞 = 𝐵(𝑞)−1 −𝐶 𝑞 , 𝑞 − 𝑔 𝑞  + 𝐹       (38) 

with 

𝐹 = 𝐵 𝑞 −1 𝐹 ⇔  𝐹 = 𝐵 𝑞 𝐹         (39) 

so, we decoupled the system to have the new 

(non-physical)input 

𝐹 =  
𝑓1

𝑓2
                       (40) 

however, the physical torque inputs to the 

system are 

 
𝑓θ1

𝑓θ2
 = 𝐵 𝑞  

𝑓1

𝑓2
         (41) 

The error signals of the system are 

e θ1 = θ1𝑓 − θ1 

 e θ2 = θ2𝑓 − θ2       (42) 

where θ𝑓  is the final positions. The final 

position is given by  

 
θ1𝑓

θ2𝑓
 =  

π
2 

−π
2 
  

and the initial position is  given by 

θo =  
− π

2 
π

2 
  

so,  in our case: 

𝑓1 = 𝐾𝑃1  θ1𝑓 − θ1 + 𝐾𝐷1 𝜃1
   + 𝐾𝐼1   𝑒(𝜃1) 𝑑𝑡

 𝑓2 = 𝐾𝑃2  θ2𝑓 − θ2 + 𝐾𝐷2 𝜃2
   + 𝐾𝐼2   𝑒(𝜃2) 𝑑𝑡 

However, the complete system equations with 

control would be 

𝑞 = 𝐵(𝑞)−1 −𝐶 𝑞 , 𝑞 − 𝑔 𝑞  + 𝐹       (43) 

with 

𝐹 =  
𝑓1

𝑓2
 =  

𝐾𝑃1  θ1𝑓 − θ1 + 𝐾𝐷1 𝜃1
   + 𝐾𝐼1   𝑒 𝜃1 𝑑𝑡

𝐾𝑃2  θ2𝑓 − θ2 + 𝐾𝐷2 𝜃2
   + 𝐾𝐼2   𝑒 𝜃2 𝑑𝑡

  (44) 

recalling the physical actual torques 

 
𝐹θ1

𝐹θ2
 = 𝐵 𝑞  

𝑓1

𝑓2
         (45) 

RecallingEq.(32) and Eq.(38), gives: 

𝜉1 = 𝐾𝐼1   𝑒 𝜃1 𝑑𝑡   ⇔ 𝜉1
 = 𝐾𝐼1 𝑒1 

𝜉2 = 𝐾𝐼2   𝑒 𝜃2 𝑑𝑡   ⇔ 𝜉2
 = 𝐾𝐼2 𝑒2      (46) 

So, the system equations are 

𝜉1
 = 𝐾𝐼1 𝑒1 

𝜉2
 = 𝐾𝐼2 𝑒2 

 
θ1
 

θ2
 
 = 𝐵(𝑞)−1 −𝐶 𝑞 , 𝑞 − 𝑔 𝑞  +  

𝐾𝑃1  θ1𝑓 − θ1 + 𝐾𝐷1 𝜃1
   + 𝜉1

 

𝐾𝑃2  θ2𝑓 − θ2 + 𝐾𝐷2 𝜃2
   + 𝜉2

 
                             (47) 

SIMULATION AND RESULTS 

Approximate mathematical models can be 

obtained and then simulated in combination 

with the designed control law, for providing a 

more realistic validation of the system behavior 

and control performance. First we made a 

mathematical model of the PMDC motor to 

determine the transfer function and then start the 

simulation of the actuator system without 

controller using MATLAB /Simulink as shown 

in Figure (3)to study the system performance 

and then improving the design by adding PID 

Controller as shown in Figure(4)and(5) for a 

more realistic validation of the system 

performance. 

The system reaches steady state value of 0.778 

rad/s in 1.27 s, with small overshoot and the 

system response is very fast as shown in 

Figure(3), so we need to add controller to 

improve the system behavior. PID controller 

simulinkis built to control the angular speed at a 

desired set point value (𝐾𝑎 ,𝑡 = 1)and improving 

the system performance as illustrate in Figure4. 

 

Figure3. Step Response of PMDC without controller. 

 

Figure 4. Simulink model of the actuator 

system(PMDC). 
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We have noticed from Figure(5) and (6) that the 

system is second order system (Under damped) 

and the values of the controller are getting with 

PID tuning by trial and error with system 

characteristicsvalues for the best performance 

and behavior:𝐾𝑝=13, 𝐾𝑖=39, 𝐾𝑑=1.056, OS (%) 

< 5, settling time < 2 sec, steady-state error <1% 

and 𝐾𝐷𝐶 = 1.  

 

Figure 5. System characteristics(With PID controller 

tuning). 

 

Figure6. Step response of the system with PID 

controller. 

Then we have built and studied the steady state 

dynamic model with PID control of single link  

by MATLAB simulation as illustrate in 

Figure(7). 

 

Figure7. PID Controller of One Single Link. 

After tuning by trial and error we got with the 

PID controller values :kp=40, ki=13,kd=5for the 

best performance, Also we have noticed from 

Figure(8) that the position error reaches at a 

considerable time to zero steady-state of 

constant input. 

 

Figure8. The position error. 

The force or torque applied can be shown in 

Figure(9) is zero at steady state. 

 

Figure 9. The torque error. 

Then we have studied the two degree of 

freedom with PID control as a whole system by 

trial and error,  

The PID parameters are manually tuned to get 

the best performance of the system. The best 

behavior and performance of the controller 

parameters values are as follows : 

𝐾𝑝1 = 250                     𝐾𝑝2 = 250 

𝐾𝑖1 = 200                     𝐾𝑖2 = 200 

𝐾𝑑1 = 30                      𝐾𝑑2 = 30 

By our approach trial and error, we have noticed 

that 𝐾𝑝1 is related to direct error and to speed of 

evolution, 𝐾𝑝1 is related to speed of interaction 



Modeling and Control of 2-DOF Robot Arm 

International Journal of Emerging Engineering Research and Technology V6 ● I11 ● 2018                      30 

with change in states and 𝐾𝑝1 is related to 

overall error cancellation. 

We have seen in the Figures (10) and (11) that 

the position error reaches zero at a reasonably 

fast time. 

 

Figure10. Theta 1 error. 

 

Figure11. Theta 2 error. 

 

Figure12. Torque of Theta 1. 

And from Figures (12) and (13), we have seen 

the force or torque applied slight overshot and 

quickly stabilize. 

By the experiment, we got that the slightest 

change in the controller parameters yields more 

overshoots and oscillations due to highly 

sensitive to initial and final positions.  

 

Figure13. Torque of Theta 1. 

CONCLUSION 

The main topic of this paper is modeling, 

simulation and control of two degree of freedom 

robot arm.  

The mathematical models of the actuator and 

whole system are illustrated.  Lagrangian and 

Euler-Lagrange used to derive a dynamic model 

that simulated the actual robot movement in real 

life and obtain sufficient control over the robot 

joint positions. The system was controlled in 

order to reach a desired joint angle position 

through simulation of PID controllers using 

MATLAB/Simulink. 

Also, the result showed that a slight changes in 

initial joint angle positions of the robot arm 

resulted in different desired joint angle positions 

and this necessitated that the gains of the PID 

controllers need to be adjusted and turned at 

every instant in order to prevent overshoot and 

oscillation that associated with the change in 

parameters values.  
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