
                                                    International Journal of Engineering Research And Management (IJERM) 

ISSN: 2349- 2058, Volume-11, Issue-03, March 2024 

                                                                                              41                                                                                    www.ijerm.com  

 

 
Abstract—With the rapid development of deep learning 

technology, deep neural networks have achieved remarkable 

achievements in fields such as computer vision, natural language 

processing, and speech recognition. The core lies in constructing 

multi-layer neural networks to learn and represent data, 

thereby accomplishing complex tasks such as image recognition, 

speech recognition, and natural language processing.This paper 

designs a highly parallel systolic array on FPGA to accelerate 

Vision Transformer networks. For the multi-head attention 

mechanism, a scalable and variable systolic array architecture is 

designed. This architecture significantly reduces data 

transmission latency by directly transferring data between 

processing units and achieves highly parallel computation. 

Besides，Designed a simple and efficient data flow for matrix 

multiplication operations. 

 
Index Terms—FPGA, Matrix Multiplication, Systolic 

Array 

I. INTRODUCTION 

The rapid advancement of artificial intelligence technology 

has accelerated the pursuit of custom AI chips[1]. These chips 

are specially optimized compared to traditional processors 

(such as CPUs), offering superior computational efficiency 

and energy use benefits for complex tasks, and demonstrating 

excellent performance in accelerating deep learning 

algorithms. AI chips not only facilitate the widespread 

application of AI technology in cloud computing and data 

centers but also play a crucial role in the field of edge devices, 

providing robust computational support in smartphones, 

wearable devices, and autonomous vehicles. Research and 

development of AI chips have a profound impact on 

technological progress and economic development, serving as 

a key driver for innovation in future intelligent systems. 

Deep Neural Networks (DNNs) have become the 

cornerstone of modern AI applications, capable of distilling 

complex patterns and decision logic from vast amounts of 

data. Over time, the scale of DNNs and the volume of data 

they process have been growing, leading to an increased 

demand for computational resources during the training and 

inference processes of these large-scale networks. 

Consequently, the energy efficiency ratio[6] of DNNs has 

become a critical factor to consider in the design and 

deployment of AI systems. Against this backdrop, the 

development of AI chips that can effectively support DNN 

operations, especially accelerators for specific models like 

Convolutional Neural Networks (CNNs)[2] and 
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Transformers[3], has emerged as an important direction to 

advance AI technology. Since its introduction in 2017, the 

Transformer model has made revolutionary progress in fields 

such as natural language processing (NLP). Its uniqueness lies 

in the adoption of the self-attention mechanism, which 

effectively captures long-distance dependencies within the 

input data, significantly enhancing model performance. As 

research has progressed, the Transformer model has been 

successfully applied to tasks such as image recognition and 

speech processing, demonstrating its potential beyond 

traditional deep learning models. The Vision Transformer 

(ViT)[4] model, in particular, has garnered widespread 

attention due to its outstanding performance across various 

visual tasks. However, the high demand for computational 

resources by the ViT model also presents new challenges, 

prompting researchers to explore more efficient model 

acceleration methods. 

To address the computational challenges of the 

Transformer model, research and development of dedicated 

hardware accelerators have become a hot research area. 

Especially for ASIC (Application-Specific Integrated Circuit) 

accelerators, although they provide exceptional performance, 

their highly specialized design limits adaptability to new 

neural network architectures and is difficult to widely apply 

due to high development costs. Field-Programmable Gate 

Arrays (FPGAs) stand out for their unique programmability, 

offering flexibility that allows developers to reconfigure 

hardware resources to accommodate specific circuit functions 

as needed. For new algorithm designs, FPGAs offer an 

efficient path, enabling updates by simply adding new design 

elements to existing circuits without undergoing a complex 

hardware design process anew. Additionally, FPGAs 

inherently possess parallel processing capabilities and 

low-power characteristics, making them an ideal choice for 

applications requiring rapid iteration and strict energy 

efficiency. CNNs and Transformer models hold a central 

position in the field of deep learning and artificial 

intelligence. Moreover, some deep learning networks employ 

both convolutional layers and self-attention mechanisms, so 

developing an FPGA accelerator capable of effectively 

accelerating both types of models would have significant 

value in improving energy efficiency and reducing 

computational costs. 

In recent years, researchers have begun exploring unified 

hardware accelerators capable of simultaneously accelerating 

Transformer and CNN models. This type of accelerator 

design aims to be compatible with these two mainstream deep 

learning architectures. For convolution and attention 

mechanisms, Li[5] and others implemented a unified 

FPGA-based accelerator, with the proposed unified 
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accelerator's computational efficiency surpassing the most 

advanced Transformer and ResNet-50 accelerators by 

11.86% and 28.29%, respectively. Considering the above, 

designing a high-performance Transformer accelerator is 

crucial. The main contributions of this work are as follows: 

1) An efficient data flow method for matrix multiplication 

has been designed, thereby accelerating the inference speed of 

neural network. 

2) A scalable and variable systolic array architecture has 

been designed and implemented, enabling high parallelism in 

computations. 

3) VIT-tiny algorithm achieves excellent performance 

when implemented on FPGA. 

II. RELATED WORK 

A. Vision Transformer 

Before ViT, CNNs were almost the dominant architecture 

for image recognition and visual tasks. Part of the success of 

CNNs is attributed to their ability to efficiently capture local 

structural information of images through local receptive fields 

and weight sharing mechanisms, which somewhat resembles 

the way the human visual system processes information. 

However, CNNs also face some limitations in processing 

images, such as difficulty in capturing long-distance 

dependencies, and a sharp increase in model complexity and 

computational cost with increasing network depth. ViT, 

through its self-attention mechanism, can establish direct 

associations between any two points in a sequence, allowing 

the model to have a global receptive field from the beginning 

and dynamically adjust its focus according to the task, 

concentrating on relevant areas of the image. Furthermore, 

ViT performs exceptionally well on large-scale datasets, with 

its performance improving as the amount of data increases, 

which is a clear advantage in data-rich application scenarios. 

 

 
Figure 1. Network Diagram of ViT 

 

Figure 1 depicts the network structure of the Vision 

Transformer (ViT). Initially, input feature maps are processed 

through a convolutional layer (Conv2d), which acts as the 

encoding process from images to patches, dividing the image 

into a series of small segments. Next, through a flattening 

operation (Flatten), the two-dimensional patches are 

transformed into a one-dimensional sequence. These 

sequences are then concatenated (Concat) with a class token. 

Subsequently, position embedding is added to the sequence to 

provide positional information for each element within the 

sequence. At this stage, it is evident that there is a need for 

acceleration in hardware for convolution operations, and 

Concat and Add operators, as well as a need for designing a 

matrix tiling form of data flow. 

Afterward, the sequence data enters one or multiple 

Transformer encoder blocks (Encoder Block), each 

comprising four parts. The first part is layer normalization 

(LayerNorm), which normalizes the input to accelerate 

training and enhance the model's stability. The second part is 

the multi-head self-attention mechanism (Multi-Head 

Attention), allowing the model to focus on different parts of 

the input at various positions simultaneously. The third part is 

the residual connection. The fourth part consists of a 

multilayer perceptron (MLP), which includes linear layers 

and activation functions (such as GELU). 

B. Systolic Array 

A Systolic Array is an efficient parallel computing 

architecture originally proposed by H.T. Kung and Charles 

Leiserson[6] in the early 1980s. It is designed to accelerate 

dense matrix and vector operations, particularly in the fields 

of digital signal processing and deep learning. The term 

"systolic array" comes from the way data flows between 

processing elements (PEs) in a manner similar to the pulsation 

of blood in the heart. Data and operation instructions flow 

between the processing elements in the array at a fixed 

rhythm, enabling efficient data movement and computation. 

In the hardware implementation field of matrix 

multiplication, the systolic array, as a classic design, offers 

two mainstream implementation modes: weight-fixed [7] and 

output-fixed [8]. In the weight-fixed systolic array, as 

illustrated in Figure 2, weight parameters are preloaded into 

each processing element (PE) before computation begins. 

This approach enables stable reuse of weights during 

computation, reducing the need for data movement. 

Additionally, continuous calculations can be performed as 

data flows through the processing elements, thus improving 

efficiency. 

 
Figure 2. The weight-fixed systolic array 

 
Figure 3 The output-fixed systolic array 
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Another mode is the output-fixed systolic array, depicted in 

Figure 3, where the transmission mode of input x remains 

unchanged, i.e., it is passed to the next PE once per clock 

cycle. However, unlike the weight-fixed mode, weight 

parameters are not statically loaded but dynamically flow, 

similar to input x, into the PEs for computation. This mode 

allows for more flexibility, particularly useful in scenarios 

with frequent weight updates, as it avoids the time and energy 

overhead required for reloading the entire weight matrix. 

Many accelerator core computational modules currently 

use systolic arrays for computation. In 2021, He et al. [9] 

designed and implemented a CNN accelerator based on 

RISC-V, with the core module utilizing a systolic array. 

Additionally, Xu et al. [10] proposed a heterogeneous systolic 

array architecture for compact CNN hardware accelerators. In 

2023, Chen et al. [11] developed a high-frequency systolic 

array in an FPGA-based Transformer accelerator. For MHA 

and FFN, they achieved working frequencies of 588 MHz and 

474 MHz, respectively, on different-sized arrays. The 

generator designed in this paper mainly generates 

two-dimensional systolic arrays for accelerator use. 

 

III. IMPLEMENTATION  

A. overall architecture 

Figure 4 illustrates a framework for implementing a ViT 

accelerator on an FPGA. The host PC or the processing 

system (PS) of Zynq serves as the host, controlling the FPGA 

through the PCIe interface. It is responsible for sending data 

to DDR memory and issuing instructions to the instruction 

registers inside the FPGA. This design allows the host to 

finely control the entire accelerator, including the data 

processing flow and parameter settings. The DMA module 

efficiently reads data from DDR based on instructions from 

the host and transfers it to the computation module. 

Simultaneously, the DMA is responsible for writing back 

processed data from the computation module to DDR 

memory. This process greatly enhances data processing 

efficiency by reducing CPU intervention and facilitating 

direct data transfer between memory and computation units. 

 

 
Figure 4 overall architecture of the ViT accelerator 

 

Firstly, the feature image data is transmitted from the Host 

to the FPGA and cached into the DataGenerate Buffer 

module. The DataGenerate Buffer serves as a temporary 

storage area to receive and organize image data, converting it 

into matrix format suitable for subsequent processing. This 

step ensures that the data can be efficiently handled by the 

systolic array. If the Embedding layer is not executed, there is 

no need to enter this module; the data can simply flow into the 

matrix cache module. 

Next, the processed matrix data stream, along with the 

corresponding weight data, is fed into the systolic array, 

where rapid data processing is achieved through its highly 

parallel structure. Here, each input data element undergoes 

multiplication with the corresponding weight, and the results 

are accumulated to produce the final output. Due to the 

parallel nature of the systolic array, this step significantly 

enhances computational throughput and efficiency. The 

computed data is then sent to the Output Buffer, another 

buffer for storing intermediate results generated by the 

systolic array. This buffer not only smooths the data flow to 

subsequent modules but also ensures that the processing 

speed matches that of the backend modules, preventing 

potential data congestion. 

Secondly, the computed data enters the de-quantization 

module, where the output results are re-transformed to 8-bit 

after the quantization step. After completing the quantization 

step, the data reaches the Switch Selection module. This 

module acts as the commander of data routing, determining 

which processing unit the next step data should flow to based 

on the instruction registers. Here, the data is meticulously 

routed, either entering the Softmax unit along the path to be 

transformed into a distribution representing category 

probabilities or flowing to the LayerNorm unit for 

normalization to ensure consistency and stability of the 

network layer outputs. 

Finally, the data enters the data reload module, responsible 

for transforming the rows and columns of the matrix to meet 

different data arrangement requirements. Finally, depending 

on the need, the data may undergo additional processing 

through Add, Concat modules. 

B. Systolic Array of architecture 

Figure 5 depicts an architecture design of a systolic array, 

widely employed in parallel computing and particularly in 

hardware accelerators for deep learning. The left side of the 

diagram illustrates the entire systolic array, while the right 

side shows the internal structure of a single processing 

element (PE). The array on the left consists of multiple PEs 

represented by boxes arranged in a matrix formation. Each PE 

is interconnected with its surrounding PEs, allowing data to 

flow between them. At the top of the systolic array, there is a 

group labeled "weight" serving as input, where each PE can 

receive weight data or matrix B data. Corresponding to the 

data inputs, there is a "w_valid" signal indicating the validity 

of the respective weight or matrix data. On the left side of the 

systolic array, there are inputs labeled "activate" and a 

"a_valid" signal, representing the input of the activation 

matrix and its validity, respectively. On the right side of the 

array, there is an output labeled "out," representing the output 

after data processing. Each PE has an output, and the results 

of each row flow out on the right side, similar to the 

connections of the last row of PEs in the array, as depicted in 

the diagram. 
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Figure 5 the architecture of Systolic Array 

 

The structure on the right side illustrates the internal 

composition of a single PE. The PE contains a multiplier and 

an adder. Inputs to the multiplier are labeled "A" and "B," 

indicating that it performs multiplication operations on A and 

B. The output of the multiplier is connected to an adder, 

which is then connected to a register (Reg) used to 

temporarily store intermediate results. Another input to the 

adder is the output of another register, indicating that some 

data may need to be held before addition operations. 

Additionally, there is a "valid" signal and a "singCount" 

signal input to this PE, which may be used for synchronization 

and counting functions. Finally, the output of the PE is labeled 

"PE_out," "account," and "bcount," where "account" and 

"bcount" may represent the outputs of two different types of 

counters or registers. 

C. Matrix Multiplication Operation 

The computational mode employed in this paper is 

output-fixed for the systolic array, allowing it to perform 

matrix multiplication of arbitrary dimensions. In this mode, 

the data formats of matrices A, B, and C are all stored 

row-wise. This format offers the advantages of simplicity and 

ease of accessing input and output data formats. As a result, 

the design and implementation of the input control modules 

for matrices A and B become simpler, significantly reducing 

the workload of designing the data arrangement modules. As 

shown in Figure 6. 

 

Figure 6 Matrix multiplication computation diagram 

 

As shown in Figure 7, the left matrix cache employs a 

dual-BRAM strategy, allowing data reading and transmission 

to proceed in parallel through ping-pong operations. While 

the computation module processes data in the first buffer, the 

system can simultaneously write new data to or read from the 

second buffer. For the computation of matrices  and 

, assuming an 8×8 array, the first 8 rows of matrix A are 

initially loaded into Bram1. If the width of the systolic array is 

greater than n of matrix B, the calculation can be completed in 

one go. If it's smaller than n, the data in Bram1 needs to be 

cyclically read out, with the number of reads being n/8. 

Meanwhile, data is loaded into Bram2 while Bram1 is being 

read. After Bram1 data is read, data is then read from Bram2. 

The dual buffering ensures a continuous supply of data to the 

computation module, avoiding intermittent data flow due to 

buffer waiting for availability. This dual-BRAM approach 

reduces waiting time and improves processing speed. The 

RW state machine controls when to write data from DDR to 

BRAM and when to read data from BRAM to the array. The 

BramJudge state machine controls the read and write states of 

the two BRAMs to prevent data flow interruption. For the 

cache of the matrix above the array, n BRAMs are used for 

caching, where n is determined by the width of the array, and 

the address controller fetches data from different BRAMs. 

 

Figure 7 Matrix multiplication cache 

 

IV. EXPERIMENT AND RESULT 

This experiment compares the inference acceleration of 

ViT-Base, to validate the flexibility and versatility of the 

accelerator designed by the generator. CIFAR-10 dataset is 

chosen for the experiment, which is a widely used benchmark 

dataset for image recognition and classification. The dataset 

consists of 60,000 32x32-pixel color images categorized into 

10 classes, with each class containing 6,000 images. These 

classes include airplanes, automobiles, birds, cats, deer, dogs, 

frogs, horses, ships, and trucks. Due to the lower pixel 

resolution of the images, they are first resized to 224×224. 

The experiment utilizes the AX7Z100 board, employing an 

overall architecture of ARM+FPGA. Image weights are 

transferred from the PS side to the PL side through the HP 

(High-Performance) port, while instructions are transferred to 

the register module through the GP (General-Purpose) port. 

The PS side utilizes Xilinx's SDK, while the PL side is built 

using Vivado.In this experiment, Zynq board, adopting an 

overall architecture of ARM+FPGA, is employed. Image 

weights are transferred from the HP port on the PS side to the 

PL side, while instructions are transmitted to the register 

module via the GP port. Xilinx's SDK is used for the PS side, 

and Vivado is used for the PL side. 
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Table 1 Comparison of performance between different 

arrays 

 Size of Array  

 8 8 8 24 

LUT 25200 35407 

LUTRAM 4087 3894 

FF 34454 42265 

BRAM 564 562.5 

DSP 201 329 

Performanc

e (GOP/s) 
25 75 

Power(W) 4.5 5.4 

In Chapter 3, the architecture of the systolic array was 

introduced. The size of the array is adjustable, and 

experiments were conducted with array sizes of 8x8 and 8x24 

for accelerating ViT inference. Power consumption and 

performance were tested. As shown in Table 1,the accelerator 

achieved low power consumption and good performance. 

V. CONCLUSION 

Existing FPGA-based deep learning accelerators primarily 

focus on optimizing on-chip computing modules. These 

solutions concentrate on optimizing opportunities for parallel 

computation of feature input/output and convolution kernels. 

They utilize a large number of FPGA computing units based 

on various computational patterns. Although significant speed 

improvements have been achieved, surpassing CPU 

performance, these designs still lead to power consumption 

and resource wastage. Other design approaches emphasize 

internal and external communication to achieve system-level 

high throughput and maximize data reuse, thereby optimizing 

bandwidth. However, they do not fully exploit the 

computational capabilities of FPGAs. Therefore, the right 

accelerator architecture becomes crucial, not only to provide 

excellent computational power but also to consider the degree 

of data reuse, minimizing the pressure on IO operations to the 

greatest extent. 

Based on the aforementioned issues, this paper designs a 

highly parallel systolic array architecture. With the systolic 

array structure as the computational core, the architecture's 

regular layout and localized interaction enhance the 

accelerator's computational throughput, while reducing data 

IO operations, thereby alleviating the bandwidth pressure on 

the AXI bus and reducing resource consumption. 
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