
Cost-based Query Scrambling for Initial Delays
�

Tolga Urhan
�

University of Maryland
urhan@cs.umd.edu

Michael J. Franklin
�

University of Maryland
franklin@cs.umd.edu

Laurent Amsaleg
�

IRISA
Laurent.Amsaleg@irisa.fr

Abstract

Remote data access from disparate sources across a wide-area net-
work such as the Internet is problematic due to the unpredictable
nature of the communications medium and the lack of knowledge
about the load and potential delays at remote sites. Traditional,
static, query processing approaches break down in this environ-
ment because they are unable to adapt in response to unexpected
delays. Query scrambling has been proposed to address this prob-
lem. Scrambling modifies query execution plans on-the-fly when
delays are encountered during runtime. In its original formulation,
scrambling was based on simple heuristics, which although provid-
ing good performance in many cases, were also shown to be sus-
ceptible to problems resulting from bad scrambling decisions. In
this paper we address these shortcomings by investigating ways to
exploit query optimization technology to aid in making intelligent
scrambling choices. We propose three different approaches to using
query optimization for scrambling. These approaches vary, for ex-
ample, in whether they optimize for total work or response-time, and
whether they construct partial or complete alternative plans. Using
a two-phase randomized query optimizer, a distributed query pro-
cessing simulator, and a workload derived from queries of the TPC-
D benchmark, we evaluate these different approaches and compare
their ability to cope with initial delays in accessing remote sources.
The results show that cost-basedscrambling can effectively hide ini-
tial delays, but that in the absence of good predictions of expected
delay durations, there are fundamental tradeoffs between risk aver-
sion and effectiveness.

1 Introduction

The ubiquity of wide-area connectivity has led to tremendous in-
creases in the number, variety, and distribution of data sources that
can be accessed from one’s desktop. At present, most such access

�
This work was partially supported by the NSF under grant IRI-94-

09575, by the Office of Naval Research under contract number N66001-97-
C8539 (DARPA order number F475), by Bellcore, and by an IBM Shared
University Research award.�

Laurent Amsaleg’s work was partially supported by an INRIA fellow-
ship. He performed this work while he was with the University of Maryland.

is performed in a browsing mode, either by navigating through hy-
perlinks or by performing word-based searches via search engines.
Distributed query processing, as developed for relational and object
relational database systems, currently plays little role in wide-area
data access. As a result, the benefits of declarative query process-
ing, such as the expressive power of query languagesand automated
optimization of query plans, are largely unavailable when accessing
wide-spread data sources across the internet.

The absence of declarative query processing places unneces-
sary restrictions on the types of applications that can exploit the in-
creased interconnectivity of data sources. The severity of such a
limitation has been demonstrated before, most recently in the bat-
tle between object-oriented database (OODB) and object-relational
database (ORDB) systems. To date, navigation-oriented OODB ap-
proaches have remained largely niche solutions, while the query-
oriented ORDB approach has been embraced by most of the ma-
jor database vendors [CD96]. Given the importance of declarative
query processing for many applications, it is natural to investigate
ways to provide such functionality over the wealth of data that is
available across current wide-area networks.

Query processing in wide-area distributed environments poses
a number of difficult technical challenges. Issues such as semantic
heterogeneity, manipulation of semi-structured data, and resource
discovery (i.e., locating relevant sources) have been the subject of
much research in recent years [Kim95, SAD � 95, TRV96]. While
these problems are daunting in their most general forms, pragmatic
approaches that provide useful functionality for many typical sit-
uations are starting to appear. In particular, solutions based on
the wrapper-mediator model and other non-traditional techniques
(eg. [MMM97]), provide the abstractions necessary to implement
applications that utilize multiple sources on the Internet.

While significant effort has been placed on addressing the se-
mantic issues of wide-area data access, relatively little effort has
been put into solving the performance problems that are inherent
in such access. A key performance issue that arises in wide-area
distributed information systems is response-time unpredictability.
Data access over wide-area networks involves a large number of re-
mote data source, intermediate sites, and communications links, all
of which are vulnerable to congestion and failures. Such problems
can cause significant and unpredictable delays in the access of in-
formation from remote sources.

Traditional distributed query processing strategies break down
in the wide-area environment because they are unable to adapt in
response to unexpected delays. Query execution plans are typically
generated statically, based on a set of assumptions about the costs of
performing various operations and the costs of obtaining data. Due
to the apparent randomness of delays when accessingremote data, it
is not possible to optimize for such delays a priori. Thus, the execu-
tion of any statically optimized query plan is likely to be sub-optimal
in the presence of the response time problems that will inevitably
arise during the query run-time.



1.1 Query Scrambling
To address the issue of unpredictable delays in the wide-area en-
vironment, we proposed a dynamic approach to query execution
called query scrambling [AFTU96]. Query scrambling reacts to
unexpected delays by rescheduling, on-the-fly, the operations of a
query during its execution. In a remote access setting, query scram-
bling hides delays encountered when obtaining data from the re-
mote sources by performing other useful work, such as transferring
other neededdata or performing query operations, such as joins, that
would normally be scheduled for a later point in the execution.

Query scrambling as defined in [AFTU96] consists of two dif-
ferent phases: a rescheduling phase, in which the scheduling of the
operators of an active query plan is changed when a delay is de-
tected, and an operator synthesis phase in which the query plan is
restructured, typically by creating new operators that are not in the
current query plan. In the original algorithm, both of these phases
were heuristic-driven. That is, the algorithm was specifiedas a set of
heuristic rules that were activated as delays in obtaining remote data
were detected. The heuristics described in that paper were shown to
be very effective at hiding delays in some situations, but they were
also shown to be prone to making poor scrambling decisions in other
cases. In some cases, the proposed heuristics could result in perfor-
mance that is worse than simply waiting for the delayed data to ar-
rive.

In this paper, we address the shortcomings of the heuristic-based
approach by investigating ways to introduce query optimization into
the scrambling decision making process. For simplicity, we focus
on the problem of initial delay, in which delays are manifested as
problems in receiving the first tuple from a particular remote source.
Initial delays typically arise when there is difficulty in establishing a
connection to a remote source or the source is heavily loaded. Also,
in the absence of global query optimization (i.e., optimization that
considers costs at both the query site and the remote sources such
as [RAH � 96, TRV96]), initial delays can arise if a remote source
must perform a significant amount of work before it can return the
first tuple.

1.2 Making Cost-based Decisions
There are a number of fundamental issues that arise when trying
to exploit database query optimization technology for scrambling.
A basic question is whether the objective function of optimization
should be based on total work or response time.

Relational optimizers traditionally aim to reduce total work (or
“cost”). For example, the cost model of the classic System R-type
optimizer includes terms for cpu and disk usage, but does not model
the possible overlap of cpu and disk processing [SAC � 79]. Like-
wise, the distributed extensions to this optimizer for the R* system
added additional terms for message costs, but also did not model the
overlap of such costs [ML86]. In contrast, a response time-based
optimizer predicts the overlap of work in addition to the total amount
of work [GHK92]. Thus, a response time optimizer might choose a
plan with higher total work but more parallelism over a plan with
less work but higher sequentiality.

The notion of delay, as arises in wide-area remote access is in-
herently a response time issue. Delays incur no work but still post-
pone the completion of a given query. We therefore investigate the
use of response time-based optimization for query scrambling. In
fact, a major result of our work is that if a response time-based op-
timizer is given an estimate of an expected delay, it can place the
access to the delayed data at the proper point in the query execu-
tion plan. The quality of such placement of course, depends upon
the accuracy of the delay prediction. The current state-of-the-art in
delay prediction on the Internet is quite primitive. We therefore in-

vestigate two approaches for integrating a responsetime-based opti-
mizer into the scrambling process. One approach is very aggressive
in its scrambling (i.e., it assumes that delays will be long), the other
approach is more conservative. In addition, we also develop an al-
gorithm for performing scrambling using an optimizer that is based
on total work.

The rest of the paper is organized as follows. Section 2 gives
an overview of the cost based query scrambling and describes three
approachesfor integrating query optimization with scrambling deci-
sions. Section 3 describes the environment used in the experiments.
Section 4 analyzes the cost based scrambling algorithms using a
two-phase randomized query optimizer, a distributed query process-
ing simulator, and a workload derived from queries of the TPC-D
benchmark. Related work is discussed in Section 5. Finally Sec-
tion 6 presents our conclusions.

2 Cost-based Query Scrambling

2.1 Query Scrambling Overview
In this paper we assume a query execution environment consisting
of query sites and a number of remote data sources. The processing
work for a given query is split between the query source and the re-
mote sites.

�

Query plans are produced by a query optimizer based
on its cost model, statistics, and objective functions. This arrange-
ment is typical of mediated databasesystems that integrate data from
distributed, heterogeneous sources.

An example query execution plan for such an environment is
shown in Figure 1. The query involves five different base relations
stored at four different sites. In the example, relations A and B re-
side at separate remote sites, relation C resides locally at the query
site, and relations D and E are co-located at a fourth site.

A

C

 

Site 4

Site 2

 

 

D E

 

Site 3

B

Join

Select

Communication Link
Site 1 Query Result

Figure 1: Example of a Complex Query Tree

Using a static scheduling policy, a remote access query plan
such as this is susceptible to delays that arise when accessing
the remotely-stored data. For example, using an iterator ap-
proach [Gra93], the first data access would be to request a tuple of
Relation A (from site 2). If there is a delay in accessing that site then
the scan of A, and hence the entire query execution, is blocked until
the site recovers.

Query Scrambling reacts to such delays in two ways (referred to
as Phase 1 and Phase 2 respectively):

� Rescheduling - the execution plan of a query can be dynam-
ically rescheduled when a delay is detected. In this case, the
basic shape of the query plan remains unchanged (although

�

As currently specified, query scrambling treats remote sources as black
boxes, regardless of how the remote data is computed. Thus, it operates
solely at the query sites.



some additional “materialization” operators may be added as
discussed in Section 2.2).

� Operator Synthesis - new operators (e.g., a join between two
relations that were not directly joined in the original plan) can
be created when there are no other operators that can exe-
cute. In this case, the shape of the query plan can be sig-
nificantly modified through the addition, removal and/or re-
arrangement of query operators.

Query scrambling is an iterative process; it works by repeatedly
(if necessary) applying these two techniques to a query plan. For
example, assume that the query shown in Figure 1 stalls while re-
trieving tuples of A. Instead of waiting for the remote site to recover,
Query Scrambling could perform rescheduling, and retrieve the tu-
ples of B while A is unavailable. These tuples would need to be
stored temporarily at the query site. If, after obtaining B, A is still
unavailable, then rescheduling could be invoked again, for example,
to trigger the execution of (D

�
E) at site 4, and to join this result with

C. If at this point, A is still unavailable, then Operator Synthesis can
be invoked to create a new join between B and (D

�
E)
�

C. Opera-
tors initiated by Query Scrambling may as well experience delays,
which may cause Scrambling to be invoked further.

In this paper, we assume that once a scrambling step (i.e., the
rescheduling of a query sub-tree, or the execution of a synthesized
plan) has been started, the system does not check for the availability
of delayed data unless the delayed data is accessed during the step.
Once the step has been completed, the arrival of the delayed data is
checked. If the delayed data has still not arrived, another iteration of
the scrambling algorithm is begun. Likewise, if during scrambling,
a delay arises when accessing a remote source, the current scram-
bling step is abandoned, and a new one is started.

As discussed in Section 1.1, the original formulation of scram-
bling was heuristic-based [AFTU96]. In this paper, we address the
shortcomings of that earlier approach by incorporating query opti-
mization into the scrambling process. The focus of the paper is on
Phase 2 of scrambling, but we also apply cost-based decision mak-
ing in Phase 1. We therefore first briefly describe how cost informa-
tion is used during Phase 1, and then describe our three approaches
for integrating cost information into Phase 2. The comparison of
these latter three approaches is then addressed in detail in the re-
mainder of the paper.

2.2 Cost-Based Rescheduling (Phase 1)
Phase 1 starts by identifying runnable subtrees, i.e., sub-trees of the
plan that are made up entirely of operators that are not currently
blocked. A runnable subtree can be scheduled out of order by in-
serting a “materialization” operator between its root and the root’s
parent. These materialization operators issue Open, Next, and Close
calls to the root of the subtree and save the result in a temporary re-
lation to be used when the result is needed later.

The original scrambling algorithm rescheduled subtrees simply
by traversing the query plan from left to right, and choosing to run
each “maximal” runnable subtree (i.e., a runnable subtree whose
parent operator is blocked) it encountered. This approach was taken
because the original algorithm did not use query optimization for
scrambling.

In this paper, we use a query optimizer to compute the expected
cost (in terms of total work) of each runnable subtree. Three costs
are associated with each runnable subtree: 1) ��� , the cost of writ-
ing the materialized temporary result produced by the subtree to
disk; 2) ��� , the cost of reading the temporary from disk when it
is to be used; and 3) � , the cost of executing the subtree itself. Note
that ��� and ��� represent the additional cost incurred by run-

ning the subtree out of order. � Also note that ��� and ��� can
differ depending on the relative costs of disk writes and reads in a
system.

The efficiency of each runnable subtree is then computed as�
	����
�
��� . Intuitively ������� is how much work will be saved in

the future by scheduling this subtree, and ������� is the dura-
tion of the scrambled operation. Thus, the ratio gives the improve-
ment in response time per unit of scrambled execution. Phase 1 then
chooses to re-schedule runnable subtrees in decreasing order of effi-
ciency. Subtrees with efficiency below a certain threshold (currently
set at 0.75) are not consideredfor execution during Phase 1. This ap-
proach to using cost favors runnable subtrees that are materialized
by the original plan (they have efficiency = 1) and ones that produce
small results.

Each iteration of Phase 1 choosesa runnable subtree, runs it, and
then checks to see if the delayed data has started to arrive. If so,
then scrambling is terminated at this point. If the delayed data is
still missing, then another iteration of scrambling is initiated.

2.3 Cost-Based Operator Synthesis (Phase 2)
Phase 2 of query scrambling is invoked after no more progress can
be made in Phase 1. Unlike Phase 1, which simply changes the
scheduling of existing operators, Phase 2 actually creates a new
plan, which typically contains new operators. In this paper, we study
three approaches to using a query optimizer during Phase 2.

2.3.1 Optimization Strategies

As stated in Section 1.2, an optimizer can be integrated with scram-
bling using an objective function based on total work or response
time. In scrambling, we deal with these two types of optimization
differently.

Response time-based optimizers are naturally suited for query
scrambling because they are able to estimate not only the total work
to be done for a query, but also how that work can be overlapped.
The ability to consider such overlap can be exploited for query
scrambling. Simply by telling the optimizer how long a particular
data source will be delayed, the optimizer can be coerced into find-
ing plans that perform other useful work that is overlapped with the
delay. Of course, the work that the optimizer schedules to overlap
the delay can not be in any way dependent on the delayed data. For-
tunately, query optimizers must normally deal with such dependen-
cies, in order to generate valid query plans.

There is a problem with the above approach, however. It re-
quires that the duration of the delay of a source to be known a priori.
Of course, if such knowledge exists, then there is no need for scram-
bling. When dealing with delays of remote sources on the Internet
the current state of prediction is quite primitive (e.g., note the “time
remaining” line on the bottom of your browser window). The ap-
proach that we take in this paper is to “lie” to the optimizer by pro-
viding it a fixed estimate of the expected delay duration when scram-
bling is invoked. We propose two such approaches. One approach,
called Include Delay(IN), simply chooses a very long (relative to the
query response time) delay duration so that the optimizer will push
any accesses to the delayed data as far back in the plan as possible.
The other approach, called Estimated Delay (ED) initially assumes
that delays will be brief, and subsequently increases its estimate if a
delay turns out to be longer than the earlier guess.

An alternative to using a response time-based optimizer is to use
a more traditional objective function based on total work (i.e., one
that ignores potential overlapping). Such an optimizer, however,

� Thus, ��� and ��� are zero for subtrees rooted at operators that write
their results to disk under the regular query schedule.



can not adequately cope with the notion of delay since delay infor-
mation is not taken into account in the objective function. Our solu-
tion to this problem is to simply remove the accesses to the delayed
data from the query. In this paper we explore an approach called
Pair, which has the optimizer generate plans for individual joins one
at-a-time. This policy is a cost-basedanalogueto the heuristic-based
Phase 2 of the original scrambling algorithm. In the following sec-
tions we briefly describe these three approaches: Pair, IN, and ED.

2.3.2 Pair

The Pair approach uses a total work-based optimizer to construct a
query plan containing only a single join using two relations that are
not currently known to be blocked. The optimizer analyzeseachpair
of non-blocked relations that share a join predicate (i.e., it avoids
Cartesian products) and calculates the cost of the best way of joining
them. It then chooses the join with the least total cost and executes
it. The cost computation includes costs associated with materializ-
ing the result. The result of this join is materialized to disk, and is
available for use in later scrambling iterations. In addition to avoid-
ing Cartesian products, the pair policy also avoids joins that produce
a result that takes longer to read from disk than it would take to com-
pute from scratch later. At the end of each join, the policy checks for
the arrival of delayed data. If the data has not yet arrived, another
iteration is begun. If Pair runs out of qualified joins before the delay
terminates, scrambling simply halts and waits for the delayeddata to
arrive. When all the blockedrelations become available the Pair pol-
icy constructs a single query tree that computes the result before the
normal execution resumes. This is necessarybecause during scram-
bling the Pair policy does not try to maintain a complete query plan
that represents the final result, but rather works on pairs of relations.
This phase, which is called reconstruction phase, utilizes the opti-
mizer to find the optimal query plan.

2.3.3 Include Delayed (IN)

In contrast to the Pair approach, IN uses a response time-based op-
timizer, and thus, each iteration of scrambling generates a complete
alternative plan. For all delayed data sources, the optimizer is told
that the delay duration will be very large (i.e., many times longer
than the expected response time of the non-delayed plan). This
approach results in delayed accesses being pushed far back in the
plan schedule. It is interesting to note however, that the optimizer
does not always push such accesses to the very end of the sched-
ule. In some cases, doing so would incur excessive work after the
delayed data has arrived, which would result in even worse perfor-
mance. The optimizer is naturally able to recognize such situations
and places delayed accesses in the “right place” in the plan.

One issue that arises when using a response time-based opti-
mizer in this manner is that the optimizer is geared towards choosing
the plan that ultimately results in the best response time for the delay
value that we give it. Since we really do not know what the delay
will be however, this single-mindedness can sometimes be harm-
ful. In general, when the scrambler decides to initiate work in order
to hide delay, it commits to performing an entire step. We refer to
the duration of the step as risk and to the potential improvement in
response time as benefit. The optimizer chooses the plan with the
greatest benefit whose risk can be overlapped with the expected de-
lay duration. This can cause problems when the delay turns out to
be relatively short.

In order to address this problem, we introduce a parameter called
the “risk/benefit knob” (RBknob), that prevents the optimizer from
choosing very high-risk plans for relatively small potential gains
over lower-risk plans. The RBknob is expressed as the ratio of the

amount of benefit the optimizer is willing to give up for a given sav-
ings in risk. Increasing the RBknob has the effect of making the pol-
icy more conservative. The performance of this knob is studied in
Section 4.3.

2.3.4 Estimated Delay (ED)

The Estimated Delay (ED) approach works similarly to IN except
that rather than starting by assuming a huge delay, it first tries rel-
atively short delays, and successively increases its delay estimates
if necessary. The motivation behind this approach is that assuming
a large delay initially may cause the optimizer to pick a risky plan
that has high payoff for long delays, but hurts performance for short
delays. Likewise, if the delay estimate is too small, scrambling may
be rendered ineffective for larger delays because the optimizer will
refuse to run high risk/high pay off plans.

ED works as follows: It starts by picking an estimated delay
value equal to the 25 % of the original query response time. Until
the delayed data arrives, iterations are repeated with this estimated
delay value as long as some progress is being made by each itera-
tion. When this value becomes too small to allow any progress, it is
increased to 50 % of the original query response time. Finally when
this becomes insufficient, we use a value of 100 % of the original
response time. This scheme allows scrambling to first perform it-
erations with low risk, but still make progress. Thus, in the event
that a delay turns out to be short, scrambling has helped rather than
hurt. In the event of longer delays, ED becomes more aggressive,
which allows it to attempt higher-risk plans. Note that the RBknob
described for the IN policy is also used for ED, but in general it has
less impact here, because ED is already a more conservative policy
than IN.

3 Experimental Environment

Our experiments are performed using a detailed simulator of a dis-
tributed query processing environment, a two-phase randomized
query optimizer, and a workload based on queries from the TPC-D
benchmark. We describe each of these in the following sections.

3.1 Simulation Environment
To study the performance of the cost-based scrambling approaches
we implemented them on top of a simulator that models a dis-
tributed, peer-to-peer database environment and that is capable of
realizing iterator-based or process-based scheduling of query oper-
ators. In this study, we used only a single join method, namely, hy-
brid hash [Sha86].

Table 1 shows the main parameters for configuring the simula-
tor and the main settings used for this study. There are two types
of sites. Data sources, which store base data that will be used in
queries, and Query sites, which execute queries. Every site has a
CPU whose speed is specified by the Mips parameter, NumDisks
disks, and a main-memory buffer pool of size SourceMem or QSite-
Mem. For the current study, the simulator was configured to have a
single query site and six remote data source sites. In all the exper-
iments described in this paper, we placed no additional load on the
source sites beyond what was generated by the query requests.

The simulator charges for all the functions performed by query
operators like hashing, comparing, and moving tuples in memory,
as well as for system costs such as disk I/O processing and network
protocol overhead as described below.

Disks are modeled using a detailed characterization and settings
adapted from the ZetaSim model [Bro92]. The disk model includes
costs for random and sequential physical accesses and also charges



Parameter Value Description
NumSources 6 number of data source sites
Mips 200 CPU speed (

�����
instr/sec)

NumDisks 1 number of disks per site
DskPageSize 4096 size of a disk page (bytes)
WriteBufSize 4 size of disk write buffer (pages)
RequestSize 40 size of a data request (bytes)
NetPageSize 4096 size of a data transfer (bytes)
Compare 4 instr. to apply a predicate
HashInst 25 instr. to hash a tuple
Move 2 instr. to copy 4 bytes
QSiteMem 300, 1,000 Query site memory size (pages)

or 10,000
SourceMem 10,000 Data source memory size (pages)
NetBw 12 network bandwidth (Mbits/sec)
MsgInst 20000 instructions to send or receive a message
PerSizeMI 3 instructions per byte sent
DiskInst 5000 instructions to read a page from disk

Table 1: Simulation Parameters and Main Settings

for software operations implementing I/Os. The unit of disk I/O for
the database is pages of size DskPageSize. The disks prefetch pages
when reads are performed. In the current version of the simulator,
4 pages are obtained for each read access request made to the disk.
In addition to the disk costs, there is a charge of DiskInst instructions
for each disk access. In our experiments, disks were seen to deliver
data at an average rate of approximately 10 Mbits/sec with sequen-
tial I/Os, and a rate of approximately 3 Mbits/sec with random I/Os.

In this study, the disk at the query site is usedmostly to temporar-
ily store intermediate query results and data obtained from remote
sources during a query execution. In addition, some small base rela-
tions can also be permanently stored at the query site. The other base
relations are stored on disk at the sources as described in Section 3.3.
Although sources are configured with memory, the workload used
in the experiments here is performed such that the server memory
is not useful (i.e., there is no caching across queries and relations
at the remote sites are accessed once per query). Thus, in the ex-
periments that follow, base relations are always read (sequentially)
from the sources’ disks for each query execution. In addition, any
selections or projections on base data that are required by a query
are performed at the sources before the data is shipped to the query
site.

At the query site, when scrambling is being used, the buffer
manager uses a special policy that pins any memory-resident data
that will be used in the next scrambling iteration. Any other cached
data is unpinned, and is managed using an LRU policy. In the case
that the amount of pinned data prevents the query from allocating the
additional buffer space it needs, some of the pinned data is released.
In particular, memory-resident relations, which do not have an im-
age on the local disk and are accessed early in the plan are given
preference to remain in memory over other relations. Disk writes for
intermediate results are buffered in groups of WriteBufSize in order
to increase the amount of sequential I/O. For join partitions, where
memory is at a premium, writes are done one page at-a-time.

The network is modeled as point to point connections between
each source and the query site. As such, link failures are indepen-
dent of each other. The speed of each link (NetBw Mbits/sec) is set
to be slightly higher than speed of sequential disk access at the data
sources, in order to make sure that network speed is not the bot-
tleneck in these experiments. The details of a particular network-
ing technology (e.g., Ethernet, ATM) are not modeled. The cost
of sending messages, however, is modeled as follows: the simu-
lator charges for the time-on-the-wire (depending on the message
size and the network bandwidth) as well as CPU instructions for net-
working protocol operations, which consist of a fixed cost per mes-

sage (MsgInst) and a per-byte cost based on the size of the message
(PerSizeMI). The CPU costs for messagesare paid both at the sender
and the receiver.

The query execution model uses a page-at-a-time (i.e., non-
streaming) approach to remote data access. That is, when an opera-
tor running at the query site needsdata from a remote source, it sends
a request (of RequestSize bytes) to that source and waits for the re-
ply. A source responds with a block of TransferSize bytes of data.
The query site employs prefetching (of one page) to reduce network
latency.

In the experiments, delays are modeled by simply blocking the
link between a remote source and the query site. Such delays could
also be modeled by suspending processing at the source. Since we
use point-to-point connections between the sources and the query
site, these two methods are equivalent.

3.2 The Query Optimizer
In the study, we use a two-phase randomized optimizer similar to the
one described in [IK90, IW87]. The optimizer first runs Iterative
Improvement (II) algorithm for some time, followed by Simulated
Annealing (SA). It is possible to trade off the quality of the chosen
query plan vs. the optimization time by changing two parameters,
OptTries and OptMoves, which control the number of starting points
in the search space and the number of iterations performed on each
starting point during the II phase. These variables (shown in Ta-
ble 2) are scaled with the number of relations used in the query. Thus
the number of plans generated by the optimizer increases quadrat-
ically with the number of relations. The search space for the opti-
mizer includes left deep, right deep and bushy plans.

Parameter Value Description
OptTries 10 � NR # of starting points in search space
OptMoves 1 � NR # of iterations performed on

a starting point
NR variable Number of relations in the query

being optimized
RBKnob 0.01 Risk/Benefit knob

Table 2: Optimizer Parameters and Main Settings

The optimizer can use any provided objective function to rate al-
ternative query plans. We use two such functions in this study: one
based on total work, and one based on response time. Our response
time model is derived from the one defined in [GHK92]. It calcu-
lates expected response times by considering potential parallelism
in addition to the work done by query operators.

The optimizer takes the following input: 1) information about
the relations that participate in the query including cardinalities,
fields, and the data source, etc.; 2) the join predicates between the re-
lations; and 3) the selection predicates on the relations together with
a selectivity factor for the predicate. Depending on the scrambling
approach used, information on all or only a subset of the relations
may be given to the optimizer. The Estimated Delay and Include
Delayed approaches also provide information about which relations
are delayed and an estimate of how long the delay is expected to last.
Recall that, as described in Section 2.3, the response time-based ap-
proaches also use a special “knob” to control the risk/benefit trade-
offs made by the optimizer. The default value of this knob is 0.01,
which is a very aggressive setting. The effect of more conservative
settings is investigated in Section 4.3.

3.3 Workload
As stated previously, we examine the performance of the cost-based
approaches using queries and a database derived from the TPC-D



benchmark. The database is based on a TPC-D Scaling Factor (SF)
of 1, and is described in Table 3. The table shows several different
data sizes for each relation. In the experiments, we model the ef-
fect of projections on the tuples processed at the query site by reduc-
ing the size of all projected tuples sent to that site to a fixed amount
(40 bytes). Selections and projections are pushed to the data sources
where possible. As a result, remote sources read TuplePages pages
from disk when scanning a relation but transmit only Projected-
Pages pages to the query source when a projection is applied at the
source (and possibly fewer if a selection predicate is also applied).
We also use 40 bytes as the size of the tuples produced by a join.

Table Tuples Tuple Pages Projected Primary Key
Size Pages

Region 5 120 1 1 regionkey
Nation 25 120 1 1 nationkey
Supplier 10 K 160 400 100 suppkey
Customer 150 K 180 6818 1486 custkey
Order 1,500 K 100 37500 14852 orderkey
Part 200 K 160 8000 1981 partkey
Lineitem 6,000 K 120 181818 59406 orderkey+

linenumber
PartSupp 800 K 140 28571 7921 suppkey+

partkey

Table 3: Database schema and data sizes

Two of the relations (REGION and NATION) are very small
“detail tables” that change very infrequently, so copies of these are
maintained and accessed at the query site. The remaining base ta-
bles are each placed at a separate remote server.

In terms of queries, we have chosen three of the TPC-D queries
(Q5, Q8, and Q9) for our experiments. These queries were chosen
because they are fairly complex (6 to 8-way joins) so they provide
significant opportunities for interesting scrambling behavior. Be-
cause our simulator does not model aggregate functions, GROUP
BY and ORDER BY clauses, or sub-queries, we have modified the
original queries slightly. The modified versions are described in
Section 4. It should be noted that our goal in using TPC-D queries
as a starting point is to allow us to examine the approaches using re-
alistic join graphs, cardinalities, and selectivities; we do not claim
to draw any conclusions about performance on an actual TPC-D
benchmark.

3.4 Experimental Methodology
All the graphs shown in the following section plot the duration of
an initial delay of a remote source vs. the response time achieved
with each of the scrambling approaches. The results for all of the
approaches tend to exhibit a step behavior due to the iterative nature
of the scrambling process. The graphs were generated as follows.

First, for each combination of query, memory allocation, and de-
layed relation, we ran each scrambling approach with a very long
delay to find the delay duration (i.e., the point on the x-axis) where
each iteration would occur for that approach. For all the delay du-
rations in the interval between two such points, the query response
time will be the same. This run, however does not show what the
value of that response time will be. We therefore pick one delay
value within each interval and run the scrambling approach to ob-
tain the response time with a delay of that duration. This response
time is the response time for the entire interval.

Because we are using a randomized optimizer, we needed to be
careful that both the initial plans and the scrambled plans that were
generated were good plans. Otherwise, particularly bad plans could
result in spurious effects that were not due to the scrambling ap-
proaches. To ensure that we had good plans we did the following:

First, we generated the intervals using higher values for the II pa-
rameters to increase the thoroughnessof the search. These runs were
repeated three times to ensure the repeatability of the scrambling it-
eration intervals. Then, we also ran each data point (i.e., combina-
tion of delay interval, scrambling approach, query, memory alloca-
tion, and delayed relation) at least three times (using the normal op-
timizer parameter settings), and checked that the plans generated at
each point conformed to the intervals found initially, and that the
generated response times were accurate to within plus or minus 2%.

Num.Relations Optim.Time
4 1.290 secs
5 2.528 secs
6 5.109 secs
7 8.308 secs
8 11.657 secs

Table 4: Optimization times for various numbers of base rela-
tions.

The results that we report in Section 4 do not include the time re-
quired for running the query optimizer. The goal was to avoid mix-
ing numbers from the real query optimizer with those from a sim-
ulated system. As can be seen in Table 4, the optimization times
obtained with our optimizer (on an IBM RS/6000 42T PowerPC)
are quite small compared to the 750+ second-response times of the
queries. These times were obtained using an optimizer that was not
tuned to reduce optimization time. Thus, we would expect to be able
to lower them even further if necessary, for example, in order to han-
dle queries larger than 8-way joins.

4 Experiments and Results

4.1 Experiment 1 - National Market Share
We begin by studying the performance of the three cost-based ap-
proaches when delays are encountered during the execution of a
modified version of TPC-D Query Q8, the National Market Share
Query (referred to as MQ8). The SQL statement for MQ8 is shown
in Figure 2.

SELECT O.ORDERDATE, L.EXTENDEDPRICE, N2.NAME
FROM PART, CUSTOMER, ORDER, LINEITEM,

SUPPLIER, NATION N1, NATION N2, REGION
WHERE P.PARTKEY = L.PARTKEY

AND L.SUPPKEY = S.SUPPKEY
AND O.ORDERKEY = L.ORDERKEY
AND C.CUSTKEY = O.CUSTKEY
AND C.NATIONKEY = N1.NATIONKEY
AND N1.REGIONKEY = R.REGIONKEY
AND R.NAME = ’EUROPE’
AND S.NATIONKEY = N2.NATIONKEY
AND O.ORDERDATE BETWEEN ’94-01-01’

AND ’95-12-31’
AND P.TYPE = ’SMALL PLATED STEEL’

Figure 2: Modified National Market Share Query (MQ8)

MQ8 is an 8-way join query, with selections on the REGION,
ORDER, and PART relations. Figure 3 shows the query graph cor-
responding to this query. In the query graphs, we abbreviate rela-
tion names using their first letters.

�

An edge between two relations
indicates a join predicate between those relations in the query; the
edge is labeled with the join attribute(s). Selection predicates are

�

In this query the detail relation NATION, which is kept at the query site
is used twice. We refer to these uses as N1 and N2.



P O C N1 R

S

N2

L

type

1/51/150 2/7

suppkey

nationkey

partkey orderkey nationkey regionkey

date region

custkey

Figure 3: Query graph for query MQ8

P L

O

R N1

C
N2 S

(a)

P L

O

R N1

C
N2 S

(b)

Figure 4: Query plans for (a) memory
�

1000 and (b) mem-
ory=300

indicated by boxes containing the selection attribute(s) and the se-
lectivity of the predicate is listed as a fraction below the selection
box.

We run the query using each of the three different memory al-
locations identified in table 1. Because we assume that selections
and projections (where appropriate) are applied at the remote data
sources, the amount of data that must be processed at the query site
is significantly less than the sum of the raw relation sizes. In this ex-
periment, a memory allocation of 1000 pages is more than sufficient
to run MQ8 with no hash partitioning. When the smaller memory al-
location (300 pages) is used, the two largest (intermediate) relations
(the result of PART

�
LINEITEM and ORDER) must be partitioned

in order to be joined.
The initial query plans generated by the optimizer for the 1000

page and 300 page allocations are shown in Figures 4(a) and 4(b),
respectively (the initial plan for a memory size of 10,000 is identical
to that of Figure 4(a)). All binary operations shown in the figures
are hash joins, and the bold edges indicate joins which require the
relations to be partitioned.

We now turn to the results of the experiment. Figures 5 and 6
show the results for MQ8 with 1000 page and 300 page memory al-
location, respectively. In all of the graphs shown in this paper the
x-axis indicates the initial delay (in seconds) of a remote relation (in
this case, the PART relation) and the y-axis indicates the query re-
sponse time (in seconds). In addition to the curves for each of the
scrambling approaches, the graphs also contain two parallel diag-
onal lines. The lower line simply indicates the magnitude of the
delay. Since a query cannot complete until all of the relevant data
has been accessed, this “delay” line represents a lower-bound on re-
sponse time. The higher diagonal line, labeled “No Scr” represents
the response time that would be obtained if scrambling is not used.

In both cases, we delay PART, which is the left-most relation of
the optimized query plan. PART is a very valuable relation in this
plan for two reasons. First, since the iterator execution model ac-
tivates operators in a pre-order manner, delaying the left-most re-
lation leaves the most possible remaining work to be done in the
absence of scrambling. Second, in query MQ8, the PART relation
plays the role of a reducer for LINEITEM, the largest relation in
the schema. That is, because of its selection predicate and the fact
that it participates in a functional join with LINEITEM (and assum-
ing uniform distribution and independence of the join attribute val-
ues), the selection on PART reduces the size of the intermediate re-
sult, PART

�
LINEITEM by the selectivity of its selection predicate.

Thus, the presence of PART is important here, because it signifi-
cantly reduces the number of tuples that must be processed later in
the query.

4.1.1 Query MQ8 - Large Memory Allocations

Turning to the 1000 page case (Figure 5), it can be seen that all three
of the cost-based scrambling approaches are very effective at hiding
the delay of PART. In fact, IN and ED are able to effectively hide

nearly 100% of the delay here; when the delay is 706 seconds or
less (i.e., up to the knee in the curve) the response time is virtually
unchanged from the non-delayed value of 730.5 seconds. In other
words, the two approaches are able to effectively hide a delay that
is nearly equal to the original response time of the entire query in
this case. Beyond a delay of 706 seconds, scrambling has run out
of additional work to perform, so the response time increases paral-
lel to the delay. The difference between the response time lines and
the delay line represents the amount of work that must be done after
the delayed tuples begin to arrive. Note that the Pair approach also
does well here; it performs slightly worse than IN and ED because
it materializes some intermediate results to disk. �

In this case the first phase is run when scrambling starts, materi-
alizing the subtree that contains relation REGION, NATION1 and
CUSTOMER. After this iteration the second phase begins. In this
case, all of the approaches are able to find alternative plans that per-
form well. As shown in Figures 3 and 4, the initial plan basically
traverses the graph from left to right. When PART is delayed this
traversal becomes impossible. It is, however, possible to start at the
other end of the query graph and traverse from right to left. This
traversal picks up the other reducers in the query (the result com-
puted in the first phase which contains the reducers REGION, and
ORDER) before accessing the large LINEITEM relation.

In contrast to the cost-based approaches, the original heuristic-
based scrambling algorithm [AFTU96] follows the policy of exe-
cuting the left-most runnable sub-tree of the query plan, which in
this case, results in joining LINEITEM and ORDER in the absence
of the other reducer, REGION (the heuristic-based algorithm is not
shown in the figure). With 1000 pages of memory, this join requires
partitioning, which results in a large performance hit. For this ex-
periment, the response time obtained with the heuristic-based ap-
proach jumps to 1621 seconds, for delays between 23 and 1542 sec-
onds long. Thus, for many delay values, that algorithm performs
significantly worse than simply waiting for the delayed relation to
arrive.

We also ran this experiment for a memory allocation of 10,000
pages (not shown). In this case all of the cost-based approaches
performed identically to the 1000 page case (because 1000 pages
is sufficient to run the scrambled plans without partitioning). The
main difference was that with this large memory (i.e., approximately
33 times more than what was allocated to the original query plan),
the heuristic-based algorithm performed roughly as well as the cost-
based approaches. � Its better performance here is due to the fact
that the extra memory allows even the inefficient joins that it picks
to run without partitioning. In this environment, the CPU costs are
a negligible portion of the query execution time so avoiding par-

� The extra materializations are due to our particular implementation of
Pair on our simulator, and could be avoided by using a more sophisticated
memory management approach in the simulator.

� Actually, in this case the original heuristic based algorithm works well
with as few as 5000 pages, or 16.67 times more memory than allocated to
the original query.



0

200

400

600

800

1000

0 200 400 600 800 1000

R
es

po
ns

e 
T

im
e

Delay

Pair
IN

ED
Delay
NoScr

Figure 5: MQ8, PART delayed, Memory=1000

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500

R
es

po
ns

e 
T

im
e

Delay

Pair
IN

ED
Delay
NoScr

Figure 6: MQ8, PART delayed, Memory=300

titioning leads to reasonable performance. The tradeoffs for the
heuristic-based algorithm are similar for the rest of the experiments
in this study, so we do not show any further results for that algo-
rithm. Rather, we focus on the tradeoffs among the three cost-based
approaches.

4.1.2 Query MQ8 - Small Memory Allocation

With the smaller memory allocation (300 pages, shown in Figure 6),
the story changes significantly. 300 pages is sufficient to run the
query when there are no delays with reasonable efficiency (the re-
sponse time here is 790.5 seconds, only slightly higher than in the
larger memory case). The smaller memory, however, causes prob-
lems when scrambling is required and results in different perfor-
mance for the various approaches. Query scrambling starts by run-
ning the first phase on the subtree containing REGION, NATION1,
and CUSTOMER. This result will be used by the subsequent steps of
the different scrambling algorithms.

The IN approach is the most aggressive — it assumes that the
delay of PART will be long, so it is willing to initiate a lot of scram-
bling work in order to be able to hide more delay. In this case, the
IN approach simply pushes PART to the far right of the query plan,
and joins the remaining relations in the same order as in the previ-
ous case. These joins are more expensive here, however, because
the lack of memory results in more partitioning and thus, more lo-
cal I/O. For delays less than 970 seconds, IN has the worst perfor-
mance of the scrambling approaches, even performing worse than
not scrambling for much of that range. Ultimately, however, at a de-
lay of 1576 seconds, IN manages to perform nearly all of the work
of the query during the delay, so its performance becomes nearly the
same as the delay.

The ED approach is more conservative here. It begins by
joining the result computed during the first phase (i.e. REGION�
NATION1

�
CUSTOMER) with ORDER, and NATION2 with

SUPPLIER (this is the second step in the curve). It then brings
LINEITEM over, writes it to the local disk, and waits for PART
to arrive (at this point, its curve goes diagonal). This more con-
servative behavior results in better performance than IN for shorter
delays, but ultimately worse performance for longer delays, since
more work remains to be done when the tuples of PART eventually
begin to arrive. Finally, Pair initially performs the same steps as ED,
but at 953 seconds (roughly when ED stops scrambling) it chooses
to perform a join that includesLINEITEM, which requires partition-
ing, and hence, is quite expensive. Given a long enough delay, this
additional join will eventually pay off, with Pair having similar per-
formance to IN after a delay of 2022 seconds. It is interesting to note

that while Pair performs the same joins as IN, it has worse perfor-
mancethan IN in the delay range of 953 to 2022 seconds. This worse
performance arises because Pair does not generate a complete plan,
but rather, makes local decisions one pair at a time. It is not able to
make intelligent decisions on how to partition the results of its joins,
becauseit does not know if or how those results will be used in a sub-
sequent operation. In other words Pair policy does not recognize in-
teresting orders and therefore cannot asses the future savings due to
executing a slightly more expensive plan which generates an inter-
esting order. As a result, Pair simply materializes its intermediate re-
sults, and re-reads them to partition them later if necessary. This re-
partitioning is expensive, because it generates significant amounts
of random I/O.

4.2 Experiment 2 - Local Supplier Volume
We now turn to our second set of experiments, which uses a modi-
fied version of TPC-D Query 5 that we call MQ5. The SQL for this
query is shown in Figure 7. This query is a 6-way join with two se-
lection predicates. As shown in figure 8, the query graph of MQ5
contains a cycle, unlike the “chain” graph of MQ8 in the previous
experiments.

SELECT N.NAME,L.EXTENDEDPRICE*(1-L.DISCOUNT)
FROM CUSTOMER, ORDER, LINEITEM,

SUPPLIER, NATION, REGION
WHERE C.CUSTKEY = O.CUSTKEY

AND O.ORDERKEY = L.ORDERKEY
AND L.SUPPKEY = S.SUPPKEY
AND C.NATIONKEY = S.NATIONKEY
AND S.NATIONKEY = N.NATIONKEY
AND N.REGIONKEY = R.REGIONKEY
AND R.NAME = "AMERICA"
AND O.ORDERDATE BETWEEN ’95-01-01’

AND ’95-12-31’

Figure 7: Modified Local Supplier Volume Query (MQ5)

Figures 9(a) and 9(b) show the initial optimized query plans for
memory allocation of 1000 pages or greater and a memory alloca-
tion of 300 pages, respectively. Notice that with the larger memory
allocation, the bulk of the query execution proceeds in a counter-
clockwise direction around the join cycle. For the smaller allocation
the execution proceeds in the opposite direction, and two of the joins
require partitioning. In both memory caseswe delayCUSTOMER. In
the large memory case, the hash table for SUPPLIER will be built



Date

1/7

R

Region

N

C

S L

O
1/5

orderkeynationkey

suppkey

custkey

regionkey

Figure 8: Query graph for query MQ5

R N
C

O

S

L
C

O
L

S
R N

(a) (b)

Figure 9: Query plans generated for (a) memory
�

1000 and
(b) memory=300

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

R
es

po
ns

e 
T

im
e

Delay

Pair
IN

ED
Delay
NoScr

Figure 10: MQ5, CUSTOMER delayed, Mem=1000

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

R
es

po
ns

e 
T

im
e

Delay

Pair
IN

ED
Delay
NoScr

Figure 11: MQ5, CUSTOMER delayed, Mem=10000

in the memory and REGION
�
NATION will be computed before

CUSTOMER is determined to be blocked. In the small memory case
the delayed relation is encountered immediately.

4.2.1 Query MQ5 - Large Memory Allocations

Figure 10 shows the results for an initial delay on CUSTOMER with
a memory allocation of 1000 pages. CUSTOMER is an important re-
lation in the query plan because it helps transmit the selection pred-
icates on REGION and ORDER to the large LINEITEM relation. In
this case, all of the algorithms provide benefits over not scrambling
beyond a delay of approximately 250 seconds, and hide nearly all of
the delay when the duration is about 950 seconds. The Pair and IN
approaches perform similarly here because they basically execute
the same operations, even though Pair produces its plan one join at-
a-time. Both of the approachesperform a join that requires partition-
ing (becauseit involvesORDER without first reducing it by joining it
with REGION as is done in the initial plan). As a result, the response
time of the scrambled plan is approximately 234 secondslonger than
that of the initial plan (with no delay). In contrast, ED performs
better for short delays (up to 122 seconds) due to its conservative
approach. It first brings ORDER from the remote site and stores it
on the local disk before committing to any other scrambling moves.
Fetching ORDER has little risk for short delays; if CUSTOMER ar-
rives during this time, ORDER can be used later in the query. ED’s
slight performance penalty between delays of 122 seconds and 908
seconds results from the fact that ORDER needs to be repartitioned
if CUSTOMER does not arrive in time and ED re-scrambles. Thus,
ED pays a small penalty for its conservative approach in this delay
range in order to win its advantage for small delays.

The results for the 10,000 memory allocation are shown in Fig-
ure 11. In this case the same initial plan is used, but in the presence

of delay, different scrambling plans are produced. Because of the
larger memory, these scrambled plans can be executed with no par-
titioning. Thus, they all provide excellent protection from delays of
CUSTOMER, up to approximately 683 seconds (or 97% of the non-
delayed query response time). As was seen in the experiments with
MQ8, Pair pays a slight penalty due to unnecessarymaterializations
of temporary results to the local disk.

4.2.2 Query MQ5 - Small Memory Allocation

We also experimented with query MQ5 using the small (300 pages)
memory allocation when CUSTOMER is delayed (not shown). In
this case all of the scrambling approaches perform well (i.e., the
response time is basically flat for delay durations up to the re-
sponse time of the non-delayed query). This is because the first
phase of scrambling (i.e., rescheduling) is able to perform all of the
joins except the one involving CUSTOMER (see Figure 9(b)) with-
out needing to create any new operators. That is, the entire sub-tree
which computes ORDER

�
REGION

�
NATION

�
SUPPLIER

�
LINEITEM is simply executed by rescheduling. Thus, the differ-
ent cost-based approaches do not come into play here.

4.3 Experiment 3 - Product Type Profit Mea-
sure

The third (and final) set of experiments we describe were performed
using a modified version of TPC-D Q9, shown in Figure 12. The
query graph for this query is shown in Figure 13. In this case, we ob-
tained similar results for all three memory sizes, so we show results
only for the 10,000 page allocation. The initial query plan in this
case is shown in Figure 14. For this experiment, we delay PART,
the only reducer in the query.



SELECT N.NAME, O.ORDERDATE.YEAR,
L.EXTENDEDPRICE*(1-L.DISCOUNT) -

(PS.SUPPLYCOST * L.QUANTITY)
FROM PART, SUPPLIER, LINEITEM, PARTSUPP,

ORDER, NATION
WHERE S.SUPPKEY = L.SUPPKEY

AND PS.SUPPKEY = L.SUPPKEY
AND PS.PARTKEY = L.PARTKEY
AND P.PARTKEY = L.PARTKEY
AND O.ORDERKEY = L.ORDERKEY
AND S.NATIONKEY = N.NATIONKEY
AND P.NAME LIKE ’%magenta%’

Figure 12: Modified Product Type Profit Measure Query (MQ9)

The performance of the scrambling approaches for varying de-
lays of PART is shown in Figure 15. The IN approach joins all rela-
tions other than PART, which in query MQ9, results in intermediate
results that are 20 times larger than if PART had been used. These
intermediate results propagate through the entire plan, resulting in
a very high-risk move. The Pair approach performs the same joins
as IN, but performs them one-at-a-time. This has two effects: it re-
duces risk for short delays, but also incurs additional overhead for
long delays, due to the need to partition intermediate results that it
has saved to the local disk (a similar effect was seen in query MQ8).
The more conservative ED approach performs much better than IN
and as good as the Pair policy for delays up to about 2000 seconds
(i.e., more than twice the non-delayed response time). ED avoids
joining large relations, choosing rather to simply wait for the de-
layed relation beyond a certain point. As usual this conservatism
results in a penalty for longer delays, but in this case, the penalty
is quite small, and is more than outweighed by the advantages for
shorter delays.

The preceding experiment demonstrated clearly the potential
benefits of making conservative scrambling decisions. Recall that
the ED and IN approaches both incorporate a “risk/benefit” knob
(which is used by the response time based optimizer), that prevents
the policies from choosing very high-risk plans for relatively small
potential gains over lower-risk plans. In all of the experiments de-
scribed so far, this knob was set at 0.01 (as described in Table 2),
which means that the optimizer is willing to give up 0.01 units (e.g.,
seconds) of potential benefit for long delays to get a plan whose to-
tal work is 1 unit less, which results in less risky behavior for short
delays.

To study the effect of the setting of this knob, we repeated this
experiment using several different values (0, 0.10, 0.20, and 0.30).
The results using 0 and 0.10 were similar to the results using the de-
fault setting (0.01). The more conservative settings did have an im-
pact however. The results with a setting of 0.30 are shown in Fig-
ure 16 (the ones using 0.20 are similar). First, the knob has no effect
on the Pair approach, because that approach is based only on total
work; it has no notion of risk vs. benefit. In contrast, both the ED
and IN approaches are effected, but the more conservative setting
has a greater impact on IN. Overall, the conservative setting results
in substantially better performance for IN with short delays. For ex-
ample, for delays between 1 second and 837 seconds, the response
time using IN is 1184 seconds, and for delays between 837 and 1073
seconds the response time using IN is 1300 seconds, compared to
2263 seconds for these ranges with the aggressive setting. For these
additional benefits, IN pays only a 46 second cost in terms of the
amount of delay that it can hide for long delays, and this cost only
arises for delays over 2000 seconds. Thus, the advantages for short
delays clearly outweigh the costs at higher delays. It is interesting
to note that with the conservative knob setting, IN requires a second
scrambling iteration (for delays greater than 837 seconds), because

its first iteration produces a plan that leaves work remaining to be
done, even without the delayed relation.

The more conservative setting has a lesser effect on the ED ap-
proach. This is because ED already favors conservative decisions
for small delays. In this case, the higher knob value prevents ED
from performing its last iteration, which has an ultimate benefit of 5
seconds, at a risk of 472 seconds. This results in ED having better
performance here for delays between 1072 and 1539 seconds than
it did with the more aggressive knob setting.

4.3.1 Summary of Results

The experiments we have described in this section demonstrate sev-
eral important results for cost-based query scrambling. We briefly
summarize those results here. First, the experiments showed that
with sufficient memory, all of the cost-based approaches are able to
effectively hide initial delays for realistic data processing queries.
When the delayed relation is encountered early in the query exe-
cution, a delay as long as the normal (non-delayed) response time
of the query can be almost completely absorbed. In contrast, the
original heuristic-basedalgorithm can actually perform significantly
worse than simply waiting for the delay to end unless substantial ex-
tra memory is dedicated to scrambling.

Second, for the cost-based approaches, in the absence of a rea-
sonable prediction of delay duration there is a tradeoff between con-
servative approaches, which are safer for short delays, and more ag-
gressive approaches which lead to bigger savings in the event of
long delays. In general, the amount of delay that can be hidden by
scrambling (in the absence of creating additional parallelism, as is
discussed in [AFT98]) is limited by the normal response time of the
query. This is because scrambling hides delays by performing other
useful work, so its ability to hide delay is limited by the amount of
useful work that can be done. Thus, as the delay increases beyond
the normal responsetime of the original query, the benefits of scram-
bling as a percentageof total execution time begin to decrease. This
argument would lead towards favoring more conservative policies
rather than taking larger risks.

Third, as the memory available for scrambling is reduced,
scrambled plans in general become more expensive and hence, a
longer delay duration may be required in order for scrambling to pay
off. Thus, in a low-memory situation scrambling becomes less con-
servative, and therefore, in the absence of predictions of delay du-
rations, more dangerous.

Fourth, we showed how the aggressiveness of the IN and ED
policies can be adjusted through the use of a parameter that tells the
optimizer to give up potential gains for long delays in order to reduce
risk for short delays. As stated above, this tradeoff makes sense in
the absence of reasonably accurate predictions of delay durations.

A final important result from these cases, is that approaches that
lack a global view of the scrambled plan (e.g., Pair) may perform un-
necessary work. By considering only pairs of relations the Pair pol-
icy, is unable to pick slightly suboptimal plans that generate interest-
ing orders. In order to have a complete (and reasonable) scrambled
plan, however, one must use an optimizer that uses response time
as its objective function. A response time-based optimizer allows
the delayed relation to be placed at its proper point in the plan (for
a given predicted delay), which allows a complete alternative query
plan to be generated.

We have also conducted experiments using more than one de-
layed relation on synthetically generated queries. We have found
that when more relations are delayed, the risk associated with each
scrambling decision is increased, favoring more conservative algo-
rithms.



colorPS P

L OSN
nationkey orderkey

partkeysuppkey

1/20

Figure 13: Query graph for query MQ9

N S P

L
O

PS

Figure 14: Query plan generated for memory=10000

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500

R
es

po
ns

e 
T

im
e 

(s
ec

s.
)

Delay (secs.)

Pair
IN

ED
Delay
NoScr

Figure 15: MQ9, PART delayed, Mem=10000, RBknob = 0.01

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500
R

es
po

ns
e 

T
im

e
Delay

Pair
IN

ED
Delay
NoScr

Figure 16: MQ9, PART delayed, Mem=10000, RBknob = 0.30

5 Related Work

We now briefly discuss related work. The Vol-
cano optimizer [CG94, Gra93] provides dynamic query scheduling
by introducing choose-planoperators into a query plan above a set of
alternative subplans in order to compensate for the lack of informa-
tion about system parameters at compile time. At query startup time
the appropriate subplan is chosen depending on the current value of
the parameters. [INSS92] proposes a related approach that gener-
ates multiple alternative plans, and chooses among them when the
query is initialized. Neither of these approaches, however, can adapt
to changes in the system parameters that occur during the query ex-
ecution.

Rdb/VMS uses a different approach as described in [Ant93]. In
this approach, multiple different executions of the same logical op-
erator are started at the same time. When one execution of an op-
erator is determined to be better, the other execution is terminated,
and the winner is executed to completion.

The work most closely related to ours is the MIND heteroge-
neous database project [ONK � 97], which performs optimization
during the query execution. A query is divided into subqueries and
each subquery is sent to a participating site for execution. The re-
sults are then composed incrementally by dynamically introducing
operators that process them as the results arrive. As such, their algo-
rithm resembles our Pair algorithm with a different set of heuristics
that rely on statistical techniques in order to avoid bad decisions.

In [DSD95] the responsetime of queries is improved by reorder-
ing left-deep join trees into bushy join trees and creating subtrees
without increasing the cost. Several reordering algorithms are pre-
sented. Although this work is limited to left-deep queries and as-
sumes that reordering is done entirely at compile time, one can still
use it to bushify the plans during run time, possibly at the expenseof
a slight increase in total work. Bushy plans are generally less vul-
nerable to delays since different branches of tree can be found that
are not directly affected by the delayed relations; such subtrees can
be executed independently.

The research prototype Mermaid [CBTY89] and its commer-
cial successor InterViso [THMB95] are heterogeneous distributed
databases that perform dynamic query optimization. Mermaid con-
structs its query plan entirely at run-time, thus each step in query
optimization is based on dynamic information such as the intermedi-
ate relation cardinalities and system performance. Mermaid neither
takes advantage of a statically generated plan nor does it dynami-
cally account for a source which does not respond at run-time.

6 Conclusions and Future Work

In this paper, we proposed and investigated three different ap-
proaches to using a query optimizer to help make intelligent choices
during query scrambling. Two of the approaches used an optimizer
with an objective function based on response time, while the other
approach used a more traditional optimizer based on total work. In
general, the use of a response time optimizer has the advantage of
being able to construct complete query execution plans that include
access to delayed data. Based on an estimate of the expected de-
lay duration, the optimizer places the accesses to delayed data to the
proper place in the plan.

Given the poor state of current estimation techniques for wide-
area data access, we proposed two different ways of using a
response-time optimizer. We demonstrated that these approaches
exhibit fundamental tradeoffs between risk aversion (for short de-
lays) and the ability to hide large delays. However, we also showed
that in many cases the algorithms were very effective at hiding de-
lays over a wide range. In the best cases, the approaches were able
to hide delays of a duration equal to the response time of the query
in a non-delayed situation.

Due to the growing importance of wide-area data access, partic-
ularly in chaotic environments such as the Internet, there is much fu-
ture work that can be done on scrambling and related dynamic tech-
niques. First, although not discussed in this paper, the scrambling
techniqueswe have described here can be adapted for use with other



types of delay, such as bursty arrival, in which sites repeatedly stall
and recover. As described in [AFT98] such delays introduce a num-
ber of scheduling and memory management issues that must be ad-
dressed by scrambling. In addition, we would like to investigate the
use of delay prediction techniques in the scrambling approaches. Fi-
nally, as described in [ABF � 97], additional techniques are required
for dealing with very long periods of outage. Unlike scrambling,
these techniques necessarily change the answer that is returned to
the user, and thus, raise a number of interesting semantic questions
in addition to the performance-oriented questions that we have ad-
dressed here.

Our current focus is on incorporating the cost based query
scrambling into the query engine of PREDATOR [SLR97] and ex-
tending it by adding remote access capability. We plan to use this
system as a test bed for query scrambling over the Internet.

References

[ABF � 97] L. Amsaleg, P. Bonnet, M. Franklin, A. Tomasic, and
T. Urhan Improving Responsivenessfor Wide-Area Data Access.
IEEE Data Engineering Bulletin, Vol. 20, No. 3.

[AFT98] L. Amsaleg, M. J. .Franklin, and A. Tomasic. Dy-
namic Query Operator Scheduling for Wide-Area Remote Ac-
cess. Journal of Distributed and Parallel Databases, Vol. 6, No.
3, July 1998.

[AFTU96] L. Amsaleg, M. J. .Franklin, A. Tomasic, and T. Urhan.
Scrambling Query Plans to Cope With Unexpected Delays. PDIS
Conf., Miami, USA, 1996.

[Ant93] G. Antoshenkov. Dynamic Query Optimization in
Rdb/VMS. ICDE Conf., Vienna, Austria, 1993.

[Bro92] K. Brown. Prpl: A database workload specification lan-
guage. Master’s thesis, University of Winsconsin, Madison,
Winsconsin, 1992.

[CBTY89] A. Chen, D. Brill, M. Templeton, and C. Yu. Dis-
tributed Query Processing in a Multiple Database System. IEEE
Journal on Selected Areas in Communications, 7(3), 1989.

[CD96] M. J. Carey, D. J. DeWitt. Of Objects and Databases: A
Decade of Turmoil. 22nd VLDB Conf., Bombay, India, 1996.

[CG94] R. Cole and G. Graefe. Optimization of Dynamic Query
Execution Plans. ACM SIGMOD Conf., Minneapolis, MN, 1994.

[DSD95] W. Du, M. Shan, and U. Dayal. Reducing Multidatabase
Query ResponseTime by Tree Balancing. ACM SIGMOD Conf.,
San Jose, CA, 1995.

[GHK92] S. Ganguly, W. Hasan, R. Krishnamurthy. Query Op-
timization for Parallel Execution. ACM SIGMOD Conf., San
Diego, CA, 1992.

[Gra93] G. Graefe. Query Evaluation Techniques for Large
Databases. ACM Computing Surveys, 25(2), 1993.

[IK90] Y. E. Ioannidis, and Y. Kang. Randomized algorithms for
optimizing large join queries. ACM SIGCOM Conf., Atlantic
City, NJ, 1990.

[INSS92] Y. E. Ioannidis, R. T. Ng, K. Shim, and T. K. Sellis. Para-
metric Query Optimization. 18th VLDB Conf., Vancouver, BC,
Canada, 1992.

[IW87] Y. E. Wong, and E. Wong. Query optimization by simulated
annealing. ACM SIGMOD Conf., San Fransisco, CA, 1987.

[Kim95] M. Kim. Modern Database Systems: the Object Model,
Interoperability, and beyond. ACM Press, New York, NY, 1995.

[MMM97] A. O. Mendelzon, G. A. Mihaila, T. Milo. Querying the
World Wide Web. PDIS Conf., Miami, USA, 1996.

[ML86] L. F. Mackert, G. M. Lohman R* Optimizer validation
and Performance Evaluation for Distributed Queries 12th VLDB
Conf., Kyoto, Japan, 1986.

[ONK � 97] F. Ozcan, S. Nural, P. Koksal, C. Evrendilek, A. Dogac.
Dynamic Query optimization in Multidatabases. Data Engineer-
ing Bulletin, Vol. 20, No. 3, September, 1997.

[RAH � 96] M. T. Roth, M. Arya, L. M. Haas, M. J. Carey,
W. F. Cody, R. Fagin, P. M. Schwarz, J. Thomas, E. L. Wimmers.
The Garlic Project. ACM SIGMOD Conf., Montréal, Canada,
1996.

[SAC � 79] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, and T. G. Price. AccessPath Selection in a Relational
Database Management System. ACM SIGMOD Conf., Boston,
USA, 1979.

[SAD � 95] M. Shan, R. Ahmen, J. Davis, W. Du, and W. Kent.
Modern Database Systems: The Object Model, Interoperabil-
ity, and Beyond, chapter Pegasus: A Heterogeneous Information
Management System. ACM Press, 1995.

[Sha86] L. D. Shapiro. Join Processing in Database Systems with
Large Main Memories. ACM Trans. on Database Systems, Vol.
11, No. 3, 1986.

[SLR97] P. Seshadri, M. Livny, R. Ramakrishnan. The Case for En-
hanced Abstract Data Types. 23rd VLDB Conf., Athens, Greece,
1997.

[THMB95] M. Templeton, H. Henley, E. Maros, and D. Van Buer.
InterViso: Dealing with the Complexity of Federated Database
Access. VLDB Journal, 4(2), 1995.

[Tra97] Transaction Processing Council. TPC Benchmark D Stan-
dard Specification, Rev. 1.2.3.

[TRV96] A. Tomasic, L. Raschid, and P. Valduriez. Scaling Het-
erogeneous Databases and the Design of DISCO. ICDCS Conf.,
Hong Kong, 1996.


