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Motivation

Tree transducer

• used in statistical machine translation [Knight, Graehl 2005]

• used in XML query processing [Benedikt et al. 2013]

Compositions

• τ1 ; τ2 = {(s, u) | (s, t) ∈ τ1, (t, u) ∈ τ2}
• support modular development

• allow integration of external knowledge sources

• occur naturally in query rewriting
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Problem

Question:

Given a class C of transformations, is there n ∈ N such that

Cn =
⋃
k≥1
Ck Ck = C ; · · · ; C︸ ︷︷ ︸

k times

Note

• Ck ⊆ Ck+1 for our classes C
→ we search least n such that Cn = Cn+1 (if it exists)
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Extended Top-down Tree Transducer

De�nition (XTOP)

Linear extended top-down tree transducer (Q,Σ,∆, I ,R)

• �nite set Q states

• ranked alphabets Σ and ∆ input and output symbols

• I ⊆ Q initial states

• �nite set R ⊆ TΣ(Q)× Q × T∆(Q) rules

� each q ∈ Q occurs at most once in ` and r (`, q, r) ∈ R
� each q ∈ Q that occurs in r also occurs in ` (`, q, r) ∈ R
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Extended Top-down Tree Transducer

Example

XTOP M1 = (Q,Σ,Σ, {?},R)

• Q = {?, q, id, id′}
• Σ = {σ(2), δ(2), γ(1), α(0)}
• the following rules in R :

σ(?, q)
?−→ σ(?, q) σ(?, q)

q−→ q

δ(id, id′)
?,q−→ δ(id, id′) γ(id)

id,id′−→ γ(id) α
id,id′−→ α
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Extended Top-down Tree Transducer

Graphical representation

σ

? q
?−→

σ

? q

δ

id id′
?,q−→

δ

id id′

σ

? q
q−→ q

γ

id

id,id′

−→
γ

id
α

id,id′

−→ α
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Extended Top-down Tree Transducer

De�nition (Syntactic properties)

XTOP (Q,Σ,∆, I ,R) is

• linear top-down tree transducer (TOP)
if ` contains exactly one element of Σ (`, q, r) ∈ R

• ε-free (resp. strict)
if ` /∈ Q (resp. r /∈ Q) (`, q, r) ∈ R

• delabeling if it is a TOP and
r contains at most one element of ∆ (`, q, r) ∈ R

• nondeleting
if the same elements of Q occur in ` and r (`, q, r) ∈ R
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Extended Top-down Tree Transducer

Rules

σ

? q
?−→

σ

? q

δ

id id′
?,q−→

δ

id id′

σ

? q
q−→ q

γ

id

id,id′

−→
γ

id
α

id,id′

−→ α

? ?
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Extended Top-down Tree Transducer

Rules
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Extended Top-down Tree Transducer

Look-ahead

XTOP with regular look-ahead add map c : Q → Reg(Σ)
(regular tree language)

σ

δ

α α

σ

? δ

α α

σ

δ

α α

δ

α α

Only insertion of t ∈ c(?) possible
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Extended Top-down Tree Transducer

Look-ahead

XTOP with regular look-ahead add map c : Q → Reg(Σ)
(regular tree language)

σ

δ

α α

σ

γ
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α α

σ

δ

α α

δ

α α
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Extended Top-down Tree Transducer

Semantics

• Computed dependencies:

Mq = {(t,D, u) | t ∈ TΣ, u ∈ T∆, (q,D0, q)⇒∗M (t,D, u)}

• Computed transformation:

τM = {(t, u) | (t,D, u) ∈
⋃
q∈I

Mq}

Zoltán Fülöp and Andreas Maletti Composition Closure of ε-free Linear XTOP



The problem
Upper bounds
Lower bounds

Contents

1 The problem

2 Upper bounds

3 Lower bounds

Zoltán Fülöp and Andreas Maletti Composition Closure of ε-free Linear XTOP



The problem
Upper bounds
Lower bounds

Overview

TOP XTOP

ε-free, strict, nondeleting 1

ε-free, strict 2

ε-free 2

otherwise (without delabeling) 2
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The problem
Upper bounds
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Overview

TOP XTOP

ε-free, strict, nondeleting 1 2

ε-free, strict 2 ??? (2)

ε-free 2 ??? (4)

otherwise (without delabeling) 2 ??? (∞)
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Delabelings move around

6ε = ε-free; d = delabeling

s = strict; n = nondeleting

Theorem

Switch delabeling from back to front:

6ε[s]-XTOPR ; [s]d-TOPR ⊆ 6ε[s]-XTOPR ⊆ [s]d-TOPR ; 6εsn-XTOP

Notes

• other transducer becomes strict and nondeleting

• other transducer looses look-ahead
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ε-free and look-ahead

6ε = ε-free; d = delabeling

s = strict; n = nondeleting

Theorem

( 6ε[s]-XTOPR)n ⊆ [s]d-TOPR ; 6εsn-XTOP2 ⊆ ( 6ε[s]-XTOPR)3

Proof.

( 6ε[s]-XTOPR)n+1

⊆
⊆
⊆
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ε-free and look-ahead

6ε = ε-free; d = delabeling

s = strict; n = nondeleting

Theorem

( 6ε[s]-XTOPR)n ⊆ [s]d-TOPR ; 6εsn-XTOP2 ⊆ ( 6ε[s]-XTOPR)3

Proof.

( 6ε[s]-XTOPR)n+1

⊆ 6ε[s]-XTOPR ; [s]d-TOPR ; 6εsn-XTOP2

⊆ [s]d-TOPR ; 6εsn-XTOP3

⊆
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ε-free and look-ahead

6ε = ε-free; d = delabeling

s = strict; n = nondeleting

Theorem

( 6ε[s]-XTOPR)n ⊆ [s]d-TOPR ; 6εsn-XTOP2 ⊆ ( 6ε[s]-XTOPR)3

Proof.

( 6ε[s]-XTOPR)n+1

⊆ 6ε[s]-XTOPR ; [s]d-TOPR ; 6εsn-XTOP2

⊆ [s]d-TOPR ; 6εsn-XTOP3

⊆ [s]d-TOPR ; 6εsn-XTOP2
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ε-free, but no look-ahead

Corollary

6ε[s]-XTOPn ⊆ QR ; [s]d-TOP ; 6εsn-XTOP2 ⊆ 6ε[s]-XTOP4

Proof.

Uses only standard encoding of look-ahead
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Partial results

TOP 6ε-XTOP

strict, nondeleting 1 2

strict, look-ahead 1

strict 2

look-ahead 1

� 2
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The problem
Upper bounds
Lower bounds

Partial results

TOP 6ε-XTOP

strict, nondeleting 1 2

strict, look-ahead 1

strict 2

look-ahead 1 ≤ 3

� 2 ≤ 4
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The problem
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Delabelings move around even more

Theorem

Delabeling homomorphism moving from front to back:

sd-HOM ; 6εs-XTOP ⊆ 6εs-XTOP ⊆ 6εsn-XTOP ; sd-HOM

Notes

• other transducer becomes nondeleting

• other transducer needs to be strict and have no look-ahead
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ε-free and strict

Theorem

( 6εs-XTOPR)n ⊆ 6εsn-XTOP ; 6εs-XTOP ⊆ 6εs-XTOP2

Proof.

(6εs-XTOPR)n+1 ⊆ (6εs-XTOPR)n ; 6εs-XTOP
⊆
⊆
⊆
⊆
⊆
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Upper bounds

TOP 6ε-XTOP

strict, nondeleting 1 2

strict, look-ahead 1

strict 2

look-ahead 1 ≤ 3

� 2 ≤ 4
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Known result

Theorem

6εs-XTOP ( 6εs-XTOPR ( 6εs-XTOP2 = (6εs-XTOPR)2

Proof.

• look-ahead adds power at �rst level

• none of the basic classes is closed under composition
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The problem
Upper bounds
Lower bounds

Properties of dependencies

De�nition

A set D ⊆ L of link structures

• is input hierarchical if for all D ∈ D, (v1,w1), (v2,w2) ∈ D

� w1 � w2 if v1 ≺ v2
� w1 � w2 or w2 � w1 if v1 = v2

• has bounded distance in the input
if ∃k ∈ N s.t. for all D ∈ D, (v ,w), (vv ′′,w ′′) ∈ D

there exists (vv ′,w ′) ∈ D with v ′ ≺ v ′′ and |v ′| ≤ k
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Dependencies

input hierarchical and output hierarchical
with bounded distance in the input and the output
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Dependencies

Theorem

Any XTOPR computes

• input and output hierarchical dependencies

• with bounded distance in the input and the output
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Main theorem

Theorem

6ε-XTOP2 ⊆ ( 6ε-XTOPR)2 ( 6ε-XTOP3 ⊆ ( 6ε-XTOPR)3
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Sketch of proof

v 6� vi−1 and v � vi and v � vi+1
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Summary

TOP 6ε-XTOP

strict, nondeleting 1 2

strict, look-ahead 1 2

strict 2 2

look-ahead 1 3

� 2 3�4 (4)
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