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1. INTRODUCTION 

Accurate detection and forecast of hydrocarbon pollution in a 

timely manner would be beneficial to resource management for 

monitoring the marine environment. It is one of the most 

important applications for operational oceanography. Among 

remote sensing systems (which is a tool that offers a non-

destructive investigation method), synthetic aperture radar 

(SAR) can provide valuable synoptic information about the 

position and size of the oil spill due to its wide area coverage 

and day/night, and all-weather capabilities (Taravat et al., 

2013). Oil spills detection from SAR images divides into three 

steps: (1) Dark feature detection, (2) Physical feature extraction, 

and (3) Accurate discrimination between oil spills and look-

alikes (such as internal waves, natural organics, algae and rain 

cells) (Solberg et al., 2007).  

The extraction of the dark spots in SAR images is the prior step 

towards oil spill detection which is the most time consuming of 

the three steps.  On the other hand, the accuracy of the further 

steps greatly rely on the accuracy of the extraction step. Aside 

from the accuracy of the segmentation results, one of the most 

significant parameters for evaluating the performance in this 

context is the processing time which is necessary to provide the 

segmented image.  

In this paper we present a new fast, robust and effective 

automated method for oil-spill monitoring. A new approach 

from the combination of Weibull Multiplicative Model (WMM) 

and Neural Network models (Pulse Coupled Neural Networks 

(PCNN) and Multilayer Perceptron Neural Networks (MLP)) is 

proposed for achieving this goal.  

The idea is to separate the detection process into two main 

steps, WMM enhancement and PCNN or MLP segmentation. 

The paper is organized in four sections. Section 2 contains a 

description of the models (WMM, PCNN, and MLP). In Section 

3, a description of the experimental results obtained using 

ENVISAT, ERS2 images are analysed and explained. Section 4 

contains the conclusion. 

 

 

2. METHODS 

Dark spot detection by the proposed approach can be grouped 

into two phases: First, the filter created based on weibull 

multiplicative model is applied to each sub-image which 
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contains dark spots. Second, the sub-images are segmented by 

neural networks models (PCNN or MLP) (Brekke and Solberg, 

2005; Taravat et al., 2013). As the last step, a very simple 

filtering process is used to eliminate the false targets. 

 

2.1 Weibull Multiplicative Model (WMM) 

The first step of dark feature detection is applying a filter which 

is used for removing image speckles and smoothing the image 

values. Traditionally, it has been assumed that the real and the 

imaginary parts of the received wave follow Gaussian 

distribution (Fernandes, 2001; Kuruoglu and Zerubia, 2004; 

Taravat et al., 2013). Another popular model is the Weibull 

distribution which has shown high degree of success in 

modeling urban scenes and sea clutter. WMM applies a non-

linear transformation to generate the texture image from the 

original image (Fernandes, 1998). 

The Weibull-distributed random variable x with form parameter 

   > 0 and scale parameter    > 0, has a probability density 

function given by: 

 

     
  

  
 

 

  
 

    

         
 

  
 
  

  

 

The m-order moment can be expressed as, 

 

         
                 

 

For   = 2, the Weibull distribution becomes a Rayleigh 

distribution, for    = 1, it becomes an exponential distribution. 

It can be shown that    with a > 0 is also Weibull distributed. 

If,       with form and scale parameters given by,         

and      
   follows that,  

 

     
  

  
 

 

  
 
    

      
 

  
 
  

  

 

Consider b, with a > b > 0 in such a way that: 

 

              
  

     
             

 

Where (s) is the speckle, with unitary mean and (t) is the texture 

of the Weibull-distributed variable (z). z is the variable for the 

SAR image. 

 

                                                      

 

In this form, it is possible to express z as a multiplication of s by 

t, where s is the speckle and t is the texture of the Weibull-

distributed variable z. The texture t has Weibull distribution 

with form and scale parameter given, respectively, by: 

 

   
  

                                        
         

 

and the speckle has Weibull distribution with form and scale 

parameter given, respectively, by: 

 

   
  

                                             
        

 

Let  

 

          0  p < 1 

Then 

 

                                         

 

Using p-order moment equation E      ,  

 

     
 
            

        

 

Where t can be considered as the filtered image and the factor 0 

 p < 1 gives the filtering intensity. p value close to one makes a 

≈ b and the texture t will be constant (high filtering) and if p is 

close to zero then a>>b and t ≈ z (low filtering). 

 

 

2.2 Pulse Coupled Neural Networks (PCNNs) 

Pulsed Coupled Neural Networks have been used for different 

fields (object extractions, edge detection, and texture analysis) 

of image processing (Del Frate et al., 2012; Lindblad and 

Kinser, 2005; Wang et al., 2010). The PCNN is a single layer, 

two-dimensional, laterally connected network of integrate-and-

fire neurons, with a 1:1 correspondence between the image 

pixels and network neurons (Taravat et al., 2013). The PCNN is 

categorized in the unsupervised neural networks group so it 

does not need any training stage (Del Frate et al., 2012; 

Lindblad and Kinser, 2005). 

The input compartment composed by both the feeding and the 

linking inputs can be defined by the following expressions: 

 

                                         

  

 

 

                                     

  

 

 

Where Sij is the input stimulus which is equal to the value of the 

pixel (ij). The compartment keeps memory of the previous state 

through the terms Fij[n-1] and  Lij[n-1], which both of them 

decay in time by the exponent terms αF and αL. The state of the 

feeding and linking inputs are combined into the linking 

compartment to create the internal state of the neuron “U” 

which is controlled by the linking strength, β (Taravat et al., 

2013). The internal activity is given by: 

 

                         

 

In the pulse generator compartment, the internal state of the 

neuron is compared to a dynamic threshold, Θ, to produce the 

output, Y, by: 
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The threshold mechanism is described as: 

 

                              

 

The parameter Vθ is necessary to adjust the effect of the neuron 

state to prevent the saturation and also to control the 

thresholding value. The term αθ adjust the level of decreasing 

the threshold value during the iteration process (Taravat et al., 

2013). 

 

 

2.3 Multilayer Perceptron Neural Networks segmentation 

A neuron k can be described by writing the following pair of 

equations: 

 

         

 

   

 

 

                               
 
       

 

   
 

 

Where            are the input signals, 

              are the synaptic weights of neuron k,    is 

the linear combiner output due to the input signals,    is the 

bias,         is the activation function, and    is the output 

signal of the neuron. Logistic function defines by the following 

equation where a > 0 is the slope parameter: 

      
 

       

 

Typically, MLPs consists of the input layer, one or more hidden 

layers of computation nodes, and an output layer of computation 

nodes (Del Frate et al., 2000; Taravat and Del Frate, 2012). 

IDL and the neural network simulator (SNNS) developed at the 

University of Stuttgart, Germany, has been used for developing 

WMM model and classification algorithm implementation, 

respectively (Zell A. et al., 1995). Both versions (Adaptive and 

Non-adaptive Weibull Multiplicative Model) can be obtained in 

IDL from Geoinformation Online (Taravat, 2013). 

 

 

3. RESULTS AND DISCUSSION 

The models have been tested on a dataset of ENVISAT-ASAR 

and ERS2-SAR images. Radiometric calibration has been 

applied to the dataset in order to generate a backscatter (σ0) 

image. The test dataset contains 20 images with 256×256 pixels. 

We applied WMM approach to all 20 test images using the 

filtering intensity P = 0.7 and a 3x3 kernel size (kernel sizes of 

5x5, 7x7 and 9x9 blur the image) surrounding the pixel to be 

filtered. 

In MLP model the number of units in the hidden layer and the 

training/testing phase settings represent the fundamental tasks. 

The pixels for train/test the net are 1200 pixels which extracted 

from different types of dark spot and different sea status. The 

training sets contain 60% and the test sets contain 40% of all 

pixels which are not belonging to the training sets. 

Pixel selection for train/test set has been done randomly and 

repeated four times. The topology 1-4-2 has been finally chosen 

for its good performance in terms of classification accuracy and 

RMSE. The number of about 11,000 training cycles was 

sufficient to get the network learned. One MLP NNs has been 

used for classifying all images. 

For the PCNN model a unique best setting has been obtained for 

both ENVISAT and ERS products, using parameter’s values as 

follow: αL=0.2, αF=2, αθ=2, VL=0.6, VF=0.8, Vθ=1.5 and β=0.5. 

The 3x3 square matrixes of synaptic weights M and W are 

defined with a linking radius r=1.5. After segmentation phase, 

the area less than 20 pixels omit from the image to eliminate the 

regions which incorrectly detected as dark spots. 

For accuracy assessment, from each sub-image 250 pixels have 

randomly been selected and then labelling made by visual 

interpretation. Figure 1 and Figure 2 shows two sample test 

images from different types of dark spots and different sea 

status (a not well-defined massive dark spot located in a very 

heterogeneous background and a not well-defined linear dark 

spot within a homogeneous background).   

The accuracy of the test dataset segmented by MLP is 95.20 % 

with a standard deviation of 1.6 whereas the accuracy of the 

same dataset segmented by PCNN method is 94.05 % with a 

standard deviation of 2.1. Dark-spot detection by the PCNN 

model with a 256×256 image can be completed in about 4 

seconds on a pc with an Intel Pentium dual-core, a speed of 2.2 

GHz and a RAM memory of 2.00 GB which is rather 

competitive with respect to the existing methods in the 

literature. 

 

 
 

Fig.1. Results of the proposed approach on a not well-defined 

massive dark spot located in a very heterogeneous background 

(the boundary between the dark feature and the surrounding 

water is not well defined). (a) Original SAR images after pre-

processing. (b) WMM Filtering with P=0.7, window 3x3. (c) 

PCNN result. (d) MLP result. 
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4. CONCLUSION 

In the present study a detailed research on the ability of using 

WMM & MLP & PCNN model for dark-spot detection in SAR 

imagery demonstrated. To test the performance of the proposed 

approaches, we applied it to a dataset containing 20 ENVISAT, 

ERS2 images which cover all potential anomaly cases. 

The average accuracy for the overall dataset segmented by 

PCNN was 94.05 % and the average computational time for a 

detection window was 4 seconds using IDL software whereas 

the average accuracy for the overall dataset segmented by MLP 

was 95.20 %. Results showed that MLP has higher performance 

in the situations where PCNN generates poor accuracy. 

Overall, the results demonstrate that the proposed approaches 

for dark-spot detection is effective, fast and robust. The 

proposed approach can be applied to the future spaceborne C-

band SAR with some parameters adjustment based on the type 

of data. 

 

 
 

Fig.2. Results of the proposed approach on a not well-defined 

linear dark spot within a homogeneous background. (a) Original 

SAR images after pre-processing. (b) WMM Filtering with 

P=0.7, window 3x3. (c) MLP result. (Fourth Col) PCNN result. 
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