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ABSTRACT: 
 
The growth process of fruit trees is accompanied by a large number of monitoring and management activities, such as pruning, 
irrigation, fertilization, spraying, and harvesting, which are labour intensive and time consuming. In the context of precision agriculture, 
automation and precision orchard management not only saves labour resources and increases the income of growers, but also has great 
significance in improving resource utilization. Recent technological developments enable Unmanned Aerial Vehicles (UAVs, also 
commonly referred to as Unmanned Aerial Systems, or ‘drones’) to become an efficient monitoring tool for improving orchard 
management, that can provide growers much more detailed and precise information about fruit crops health status, geometric variables, 
physiological variables etc. This paper reviews the use of UAVs in orchard management, with a focus on recent UAV applications, 
synthetically describing the existing situation (e.g., general data processing approaches, sensing platform and sensor uploaded). The 
challenges and prospects of UAVs opportunities in orchard management are also summarized. 
 
 

1. INTRODUCTION 

For agriculture worldwide, feeding the growing population, 
reducing the rural poverty, and managing the natural resource has 
become the three major challenges (Mesas-Carrascosa et al., 
2018). Meanwhile, every aspect of the fruit production 
management process is closely linked to these challenges. 
Increasing fruit production is an efficient way to meet the scare 
demands taking orchard monitoring activities such as growth, 
nutrient status assessment (Johansen et al., 2018). Automation 
and precise orchard management not only brings more profits to 
growers, but also reduces the damage to the environment. Thus, 
various investigations associated to the fruit growth circle have 
been taken, such as yield prediction, harvesting time judgement, 
early warning of disease attacks, pruning assessment and 
irrigation management. In the context of precision agriculture, 
orchard management requires real-time monitoring of yield, 
health status and water stress precisely. However, these types of 
datasets are often difficult to obtain and mostly the acquisition 
cost is high. 
 
Earlier, growers have been making decisions for orchard 
management issues mainly based on visual inspection of color, 
shape, size and other information of fruits or fruit trees according 
to their own experience (Srivastava et al. 2017), which has 
professional experience requirements for observers, and often the 
observation results are inaccurate. Recently, more and more 
researcher have combined imaging technology with multiple 
monitoring platforms and applied them to orchard management, 
against empirical baseline monitoring. Varying the scale or the 
data collection mode of different monitoring platforms, the 
monitoring platforms includes manual observation (MO), 
handheld detection (HD), sensor network (SN), ground vehicle 
(GV), unmanned aerial vehicles (UAVs), aerial sensing (AS, 
included airdrone and plane), spectral satellite sensing (SSS) 
(Figure 1). For different application scenarios, each monitoring 
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method has its own advantages and applicability when the size 
and layout of the orchards are different(Shakoor et al. 2017) 
(Table 1). Ground-based platforms can monitor individual plants 
or 2 to 3 fruit trees in real time(Escola et al. 2017). Due to the 
small measurement distance, the obtained data is highly accurate 
(such as a large number of high-resolution images). Compared 
with ground-based platform, remote sensing is unique in terms of 
monitoring range and data acquisition efficiency. (Panda et al. 
2010) state that variable technology such as satellite imagery, still 
have great potential to prove successful for orchard management. 
Nevertheless, SSS also shows limitation for some 
characterization of the orchard management, like the water 
properties in open canopies, due to the lack of spatial resolution 
(Berni et al. 2009). With the emergence of a variety of sensor 
miniaturization，the increasing availability of UAVs provides a 
quite different market for quick and precise data acquirement 
integrating multiple module. 
 

 
Figure 1- Multi Monitoring Platforms 
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Table 1. Monitoring platforms and their attributes.  
The monitoring platforms includes manual observation (MO), handheld detection (HD), sensor network (SN), ground vehicle (GV), 
unmanned aerial vehicles (UAVs), aerial sensing (AS, included airdrone and plane), spectral satellite sensing (SSS). 

 
The objective of this research is to review current literature to 
make an inventory of the use of UAVs during the different phases 
of orchard management: identifying current practices and 
methodological issues still to be developed. 
 
 

2. MATERIALS AND METHODS 

In total 35 papers from the Web of Science database (keywords: 
UAV and orchard management) were found and evaluated for 
this review, either published or available online before 2nd April 
2019. For every paper, specifications of the study (e.g., 
application objectives, general data processing approaches, 
investigation regions, type of fruit, type of UAV) were derived 
from the paper. The UAVs applications and main investigation 
objectives fell into five broad groups (several papers cover more 
than one of these):  
 
1. Resource efficiency evaluation: To enhance the economical 
and environmental benefits, the inputs, e.g. water, pesticides, 
chemicals and fertilizers, should be used based on the individual 
fruit tree requirement evaluating the condition of each tree. 
 
2. Biophysical and geometrical parameters measurement: To 
monitor the growth of fruit crops, estimate leaf area index (LAI), 
tree height, canopy volume and delineate fruit crops trees. 
 
3. Applications in fruit harvest: To detect factors influencing fruit 
crops yield, like ethylene concentration, photosynthetically 
active radiation, the number of fruits on tree.  
 
4. Health and notrient status monitoring: To monitor essential 
elements for fruit crops growth, like nitrogen. 
 
5. Diseases detection: To detect and diagnosis fruit disease at 
earlier stage to avoid economic losses. 
 
For every application, main system developments and methods 
have been described and relevant examples are provided. 
 
 

3. RESULTS 

Overall, diverse investigations from different countries have 
been identified mainly due to specialty fruit crop industry which 
is thriving in local regions (Figure 2). 

 
Figure 2 - Distribution of research locations and investigated 

fruits 
 
3.1 Resource efficiency evaluation 

Fruit crops are often exposed to water stress when water 
evaporates more than the amount stored in the soil, which leads 
to stomata closing and crops growth diminishing (Zhao et al. 
2017). Stomatal conductance is an indicator of water stress. 
Based on this, the correlation between UAV imagery data of 
which fruit crop, such as normalized difference vegetation index 
(NDVI), green normalized difference vegetation index (GNDVI), 
and canopy temperature, and the response variables, such as 
stomatal conductance and yield, was demonstrated (for 
correlation with yield, r = 0.68, 0.73, and −0.83, respectively, and 
with leaf stomatal conductance, r = 0.56, 0.65, and −0.63, 
respectively). The imagery include multispectral and thermal 
infrared images while stomatal conductance measured from a leaf 
porometer (Espinoza et al. 2017). Water status in the soil-plant-
atmospheric continuum can be indicated by Stem Water Potential 
(SWP) which is labour intensive and time consuming to measure. 
With the help of UAVs, canopy NDVI showed good correlation 
with SWP without average pixels calculation in an orchard level. 
In addition, the prediction result also provides a potential for 
water stress quantification (Zhao et al. 2017). Compared with 
vegetation indices, e.g. Green Ratio (GR), Intensity (I), 
Normalized Difference Green Near Infrared Index (NDGNI), 
Saturation (S), Enhanced Normalized Difference Vegetation 
Index (ENDVI) showed a better performance to evaluate orchard 
variation in water input (Bulanon et al. 2016). Based on previous 
investigation, a comparison between photochemical reflectance 
index (PRI570) and a chlorophyII ratio against Renormalized 
Difference Vegetation Index (RDVI), NDVI and Modified 
Triangular Vegetation Index (MTVI) was studied (Stagakis et al. 
2012). Plus, NDVI calculated from UAV-based images was 
found to be linearly correlated with leaf cholorophyII and LAI 
has been measured on the same data while canopy volume, height 
and diameter derived from UAV-based DSM was also correlated 
with the ones measured in the field. Additionally, relationship 
between the increased canopy volume value calculated from the 

Attributes MO HD SN GV UAVs AS SSS 
Scale Individual

/plot 
Individual Individual

/plot 
Individual
/plot 

Plot/field Plot/field Plot/field 

Sensor Payload 
Size 

- miniature Small/ 
Medium 

Medium/ 
large 

Small large Large 

Autonomous? - No Yes No No No Yes 
Data Post-
Processing 
level 

- Light Moderate Moderate Moderate Moderate Significan
t 

Platform 
Accessibility 

High Moderate Moderate Moderate High Moderate Low/ 
Moderate 
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aerial data and the daily water stress integral was demonstrated 
(Caruso et al. 2019).  
 
Another indicator is the Crop Water Stress Index (CWSI), which 
has been applied in several fruit crops. This concept could be 
understood by canopy (Tc) and air temperature (Ta) normalized 
difference index, basing on the fact of canopy temperature 
closely relates to transpiration (Gonzalez-Dugo et al. 2014). The 
slope of CWSI, derived from UAVs images, with time provides 
a novel method for water status tracking. From the investigation 
result, CWSI thresholds were also determined, which could help 
growers to make a precision irrigation management (Gonzalez-
Dugo et al. 2013). Further, a CWSI map derived from UAVs 
thermal images opens the possibility to assess spatial variability 
of water stress in orchard via using CWSI as a valuable index 
(Gonzalez-Dugo et al. 2014). Diverse cultivars or training 
systems in orchard impacts the thermal responses collected from 
UAVs images. To reduce this negative error, an adaptive CWSI 
performs a better correlation with both SWP and stomatal 
conductance, which contributes the application in the orchard 
with multi training sub-systems(Park et al. 2017). Two models, 
one is for canopy conductance (CC) calculation while the other 
is for CWSI, demonstrated the spatial analysis of water in olive 
orchards basing on the dataset from an airborne campaign and a 
UAV (Berni et al. 2009). ChIorophyII fluorescence derived from 
UAVs for water stress status assessment was produced, with 
determination coefficients of 0.57 and 0.54 for olive and peach, 
respectively (Zarco-Tejada et al. 2009). Besides, thermal, 
narrow-band indices and fluorescence retrievals derived from 
airborne data were also considered to be an good indicator 
(Zarco-Tejada et al. 2012). 
 
For all of these investigations, thermal camera is the main 
information collector. However, temperature drift error is often 
accompanied by data acquisition using system with no 
temperature control unit, specifically for UAVs data acquisition 
system. Before image-based assessment, high resolution ortho-
mosaics provides more accurate multispectral comparisons 
employing radiometric calibration based on ground system. By 
demonstrating it, spatial resolution obtained is even enough to 
assess the water status of each individual fruit crop (Gomez-
Candon et al. 2016). According to existing investigations above, 
applying different vegetation indices for real-time water status 
estimation or mapping spatial variability of water using sensing 
images derived from diverse sensors mounted on UAVs has been 
demonstrated (Table 2). Concurrently, multi UAV platforms 
were used for these applications, that poses a novel way for 
orchard management, specifically enhancing orchard irrigation 
effectiveness (Table 3). 
 

Index Camera payload Ref. 
NDVI thermal infrared;  

multispectral  
Espinoza et al. 
2017; Stagakis et 
al. 2012; Caruso 
et al. 2019; 
Zarco-Tejada et 
al. 2012; Caruso 
et al. 2019 

RDVI multispectral Stagakis et al. 
2012 

MTVI multispectral Stagakis et al. 
2012 

GNDVI thermal infrared;  
multispectral  

Espinoza et al. 
2017;  

ENDVI Multispectral; 
Video 

Bulanon et al. 
2016; 

Canopy NDVI multispectral Zhao et al. 2017 

NDGNI Multispectral; 
Video 

Bulanon et al. 
2016; 

SWP thermal infrared Park et al. 2017;  
CWSI Thermal; thermal 

infrared; 
multispectral 

Gonzalez-Dugo et 
al. 2014; 
Gonzalez-Dugo et 
al. 2013; Park et 
al. 2017; Berni et 
al. 2009 

GR Multispectral; 
Video 

Bulanon et al. 
2016; 

CC thermal infrared; 
multispectral 

Berni et al. 2009 

S Multispectral; 
Video 

Bulanon et al. 
2016; 

T thermal infrared;  
multispectral  

Espinoza et al. 
2017; 

I Multispectral; 
Video 

Bulanon et al. 
2016; 

Table 2 - Vegetation Index applied for resource efficiency 
 
Employing thermal image processing, such as object-based 
method, and statistical analysis, applicability and limitation of 
applying CWSI to indicate water deficits in orchards was 
demonstrated (Gonzalez-Dugo et al. 2014). After that, three 
vegetation indices (NDVI,GNDVI, and canopy temperature) 
show a potential to estimate water status in orchard employing 
image processing and statistical analysis (Espinoza et al. 2017). 
In the process of image processing, changing the red band to blue 
band for NDVI calculation provided a good correlation result, 
combined with tuning NDVI threshold (Zhao et al. 2017). 
Besides, RGB image processing results could be an image mask 
to access the orchard variation combining the statistical analysis 
of spectral images (Bulanon et al. 2016). Meanwhile, taking more 
attention to the radiometric calibration when the image is pre-
processed leads to assessment at individual fruit tree level 
(Gomez-Candon et al. 2016). Prior to Gaussian mixture 
modelling, edge extraction method, combined Sobel and Canny, 
and filtering can lead to pure canopy extraction accuracy 
enhancing combining statistical analysis. To reduce the influence 
of diverse training systems to thermal responses, adaptive 
thresholds of the parameters for CWSI calculation show unique 
performance using statistical analysis (Park et al. 2017). Based 
on specific assumptions, the canopy conductance calculation 
model and CWSI model were built. For the first model, 
simulating radiation and aerodynamic resistance meets the 
requirement of canopy conductance modelling (Berni et al. 2009). 
 

Index UAVs Altitude
(m) 

Ref. 

NDVI Mikrokopter 
OktokopterXL; 
Viewer; S1000; 
Benzin 
Acrobatic 

50/100; 
575;70 

Espinoza et al. 
2017; Zarco-
Tejada et al. 
2012; Caruso 
et al. 2019 

RDVI Benzin 
Acrobatic 

250 Stagakis et al. 
2012 

MTVI Benzin 
Acrobatic 

250 Stagakis et al. 
2012 

GNDVI ARF OktoXL 
6S12  

40 Espinoza et al. 
2017;  

ENDVI MikroKopter   Bulanon et al. 
2016; 

Canopy 
NDVI mX-SIGHT  90 Zhao et al. 

2017 
NDGNI Viewer  150 Bulanon et al. 
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2016; 
SWP S900   Park et al. 

2017;  
CWSI 

Benzin 
Acrobatic 

370 Gonzalez-
Dugo et al. 
2014; 
Gonzalez-
Dugo et al. 
2013; Park et 
al. 2017; Berni 
et al. 2009 

GR mX-SIGHT 250 Bulanon et al. 
2016; 

CC Benzin 
Acrobatic 

70 Berni et al. 
2009 

S S1000 575 Bulanon et al. 
2016; 

T Viewer  60 Espinoza et al. 
2017; 

I 3DRobotics  90 Bulanon et al. 
2016; 

Table 3 - UAVs platforms and data collected altitude applied for 
resource efficiency 

 
3.2 Biophysical and geometrical parameters measurement 

Pruning effects can be evaluated via extracting fruit crops 
structural properties such as crown perimeter, width, height and 
area using the multispectral images from UAVs. By doing this, 
significant changes in the structural properties can be observed 
after pruning. For data collection, variable flying height impacts 
fruit tree structural properties, specifically, increasing height 
produced decreasing crown perimeter and height measurement 
while less impact for crown width and Plant Projective Cover 
(PPC) (Johansen et al. 2018). Crown width and Crown Projection 
Area(CPA) measurement based on the processing of Digital 
Surface Model (DSM) is obtainable and reliable using a 
consumer-grade UAV, that also has a potential in mapping 
dynamical maps for orchard management. Good results were 
achieved and the method demonstrated it has an equivalent 
performance with manual delineation while field measurement 
could be instead by this (Mu et al. 2018). For the application of 
DSMs for fruit crops detection, a novel approach combined 
orientation symmetry information and local maxima cues with 
the inputs was developed. The high success investigation result 
was superior than the ones has been demonstrated before, with an 
value of 92.5% for overall F1 – score (Ok et al. 2018b). Different 
fruit trees pruning strategies, i.e., the traditional, adapted and 
mechanical pruning treatment, provide diverse effect on tree 
growth. To quantify the impact of this after pruning and a year 
after, UAV technology and object-based image analysis (OBIA) 
was combined, with a result that adapted pruning benefits tree 
height when intensity was lower than 10% . The quantified 
parameters were tree height, crown volume and projected canopy 
area (PCA) (Jimenez-Brenes et al. 2017).  
 
A UAV-derived algorithm for mapping 3-D almond tree volume 
and volume growth produced an overall root mean square error 
of 0.39m, that shows the capability of UAVs for accurately 
mapping fruit crops geometric features. The dataset generated 
was collected over diverse phenological stages in two years 
(Torres-Sanchez, de Castro, et al. 2018). Another investigation 
showed a 3-D geometric features computation with good 
performance in canopy area, with an quantification accuracy of 
97%, tree heights and crown volumes estimations (Torres-
Sanchez et al. 2015). In the process of fruit crops 3-D 
reconstruction in UAV photogrammetry, generating DSM takes 

a lot of time, that enables it a challenge in the application. Several 
DSMs with diverse forward laps were created to generate the 
optimal processing time. According to the accuracy of these 
models, the combination of 100 m flying altitude, compared with 
50 m, and a forward lap of 95% is the best, with a tree volume 
estimation accuracy of 95%. In addition, time saving 
performance reached to 85%, compared with the maximum 
overlap (Torres-Sanchez, et al. 2018b). Fruit trees 3-D 
reconstruction plays an critical role in remote sensing while 2-D 
delineation dominates the level of  a 3-D reconstruction. To 
achieve a successful 3-D reconstruction, a novel approach for 2-
D delineation accuracy improvement was developed basing on 
dense photogrammetric digital surface models (DSMs). A good 
balance between accuracy and recall measures was shown after 
extensive comparisons with eight DSMs (Ok et al. 2018a). 
 
Compared with a costly light detection and ranging (LiDAR) 
system, usually composes of a complex computation  system, an 
assessment provided by inexpensive UAV sensing system with 
consumer-grade camera was investigated, specifically, for the 
fruit trees canopy biophysical parameter, like tree height 
quantification (Zarco-Tejada et al. 2014). Another investigation 
showed the potential of UAV-based tree crown delineation in 
small holder field using aerial dataset from RGB cameras. The 
experimental subjects were banana, mango and coconut (Kestur 
et al. 2018). In some multi-story cropping pattern, like a 
cultivation system mixed with banana, orange and bamboo, crops 
discrimination has been tested, depending on diverse spectral 
response and crop height. Comparison between the 
discrimination employed vegetation index, NDVI, Normalized 
Difference Red Edge Index (NDRE) and Green Normalized 
Difference Vegetation Index (GNDVI), and the one based on 
DSM and digital terrain model was also provided(Handique et al. 
2017). According to existing investigations above, variable 
research objectives related to biophysical and geometrical 
parameters measurement for orchard precise management has 
been demonstrated (Table 4). 
 

Objectives Camera payload Ref. 
Crown perimeter multispectral  Johansen et al. 

2018;  
Crown width Multispectral; 

Digital camera 
Johansen et al. 
2018; Mu et al. 
2018;  

Tree height Multispectral; 
Point-and-shoot 
camera; color-
infrared 

Johansen et al. 
2018; Jimenez-
Brenes et al. 
2017; Zarco-
Tejada et al. 2014 

PPC multispectral Johansen et al. 
2018 

CPA Digital camera  Mu et al. 2018; 
Crown volume Point-and-shoot 

camera; Visible-
RGB 

Jimenez-Brenes 
et al. 2017; 
Torres-Sanchez et 
al. 2018a 

PCA Point-and-shoot 
camera 

Jimenez-Brenes 
et al. 2017; 
Gonzalez-Dugo et 
al. 2013; Park et 
al. 2017; Berni et 
al. 2009 

2-D delineation Digital camera Ok et al. 2018a;  
3-D Digital camera Kestur et al. 2018 

Table 4 – Variable research objectives contribution 
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Methods for olive trees delineation, like Geographic Object-
Based Image Analysis (GeoOBIA), had a poor performance for 
lychee trees, which needs more spectral information(Johansen et 
al. 2018). However, more investigations applied OBIA 
methodology provided a good computation for 3-D tree features 
(Jimenez-Brenes et al. 2017). In the process of 2-D delineation, 
orientation-based radial symmetry has a unique performance. 
Afterwards, delineating trees though active contours, where the 
influence region was squared up, was demonstrated. Besides, a 
canopy erroneous detection filter with no height thresholds was 
also present (Ok Ozdarici-Ok, 2018a). For irregular crown shape 
extraction, like peach trees, a combination of adaptive thresholds 
and watershed segmentation was also of interest, specifically, 
individual fruit trees could be extracted (Mu et al. 2018). As to 
generating ortho-mosaics and DSMs, effects of input image pixel 
resolution was simulated, with a result that stable relationships 
lie in the pixel resolutions between 5 and 30 cm while unstable 
happen when it is lower than 35cm (Zarco-Tejada et al. 2014). A 
point cloud derived from a UAV was the only input, based on 
this, an automatically executed procedure composed of digital 
terrain model generation, crown delineation and another two 
steps was applied (Torres-Sanchez et al. 2018a). In the context of 
tree crown delineation, methods based on extreme learning 
machine (ELM) was comparable to KMeans, even better. ELM 
is a neural network classifier, which applied as an important role 
in supervised classification. In the case of removing no tree pixels, 
cause by spectral intensities similarities, spatial classification 
was carried out with geometrical property filtering. In the case of 
segmenting connected crowns, watershed algorithm had a good 
performance using images marked by distance transform. The 
neural network classifier is a single hidden layer feed forward 
one(Kestur et al. 2018). Regarded DSM as the inputs, a 
combination of local maxima cues information and orientation 
symmetry performed better in the final transform(Ok Ozdarici-
Ok, 2018b). In an OBIA environment, a time-saving procedure 
was developed, by reducing the spectral information in the tree 
detection stage (Torres-Sanchez et al. 2018b). 
 
3.3 Applications in fruit harvest  

UAVs provide an environment that can be redeveloped, for both 
software and hardware. According to different research 
objectives, researchers can carry out various monitoring purposes 
by mounting different sensor acquisition devices on the drones. 
Optimal harvest date benefits fruit yield, by avoiding fruit 
spoiling. On the other hand, that also provides an efficient way to 
enhance resource utilization. With the development of gas 
detection technology, the potential of using aerial remote sensing 
for optimal harvest time detection was demonstrated. Uploading 
a small ethylene sensor to the UAV, field tests showed that the 
detection probability is 10% while UAV flying altitude less than 
6 meters. The methodology employed here mainly is modelling 
and simulation (Valente et al. 2019). Optimizing the harvest 
process in an orchard normally depends on detailed and precise 
information about yield estimation, that benefits the management 
for labour allotment, packing etc. Usually it is not easy to count 
the fruits on tree, due to occlusions from neighbouring ones or 
foliage. However, an investigation based on computer version 
and deep learning provided a novel solution for the yield 
estimation. Dataset acquired was oranges in daylight and apples 
at night. The counting algorithm developed here had a nice 
performance with limited dataset, even could annotate the apples 
which is hard for human to label well. Methodology employed 
were convolutional network and linear regression model (Chen 
et al. 2017). 
 

Radiation levels of fruit crops canopy is a critical element for the 
photosynthesis, specifically, that is for dry matter production and 
the crops growth determination. A model based on multispectral 
imagery derived from UAVs was demonstrated for mapping the 
intercepted photosynthetically active radiation (fIPAR) in peach 
and citrus orchards. Plots with a gradient in the structure of fruit 
crops canopy were selected, and leaf optical properties, sun 
geometry parameters used for canopy reflectance, vegetation 
indices, like NDVI, and fIPAR assessment were also studied for 
the 3-D canopy model (Guillen-Climent et al. 2012). Another 
photosynthesis-related index, carotenoids (Cx+c), estimation in a 
vineyard was demonstrated, with a RMSE below 1.3 𝜇𝑔/𝑐𝑚& 
when the targeted vines with no shadow and background effects 
(Zarco-Tejada et al. 2013a). 
 
NDVI variation map derived from UAV-based images was 
compared with spatial soil quality and banana production data, 
such as bunch weight, length of largest finger and yield. Good 
results showed that NDVI index was significantly correlated with 
bunch weight, length of largest finger, yield and banana loss, and 
was not correlated with the soil quality. Methods employed here 
were image processing and statistical analysis(Machovina et al. 
2016). Canopy florescence, NDVI, EVI, chlorophyII content, 
light use efficiency and canopy chlorophyII were critical 
indicators for gross primary production monitoring in orchard. 
But when these indices were derived from UAVs, less monitoring 
function was observed, though small physiological changes was 
obtained (Zarco-Tejada et al. 2013b). 
 
To estimate the fIPAR, 3-D radiative transfer model and forest 
light interaction model were used. A fIPAR map based on 
scaling-up and model inversion conducted with a look-up table 
or 3-D model yielded RMSE error below 0.10 or 0.09, 
respectively (Guillen-Climent et al. 2012). 
 
3.4 Diseases detection 

Some fruit industries are suffering from serious threats to deadly 
diseases worldwide. Like the Verticillium Wilt (VW) in olive 
trees, which infected the vascular system of fruit crops, has a 
great impact in blocking water flow in crops. As the most limiting 
disease of olive trees, VW could be earlier detected, and severity 
levels could be discriminated as well using multispectral, 
hyperspectral and thermal images derived from UAVs. Diverse 
vegetation indices were studied, i.e., chlorophyII a+b, 
blue/green/red/B/G/R indices, NDVI and CWSI. Meanwhile, leaf 
and tree-crown levels investigation were also provide. Results 
showed that for the earlier detection, CWSI, visible ratios 
B/BG/BR as well as fluorescence were carried out as the 
indicators, while photochemical reflectance index (PRI), 
chlorophyll, carotenoid indices, and the R/G ratio performed 
better for the severity levels assessment (Calderon et al. 2013). 
Huanglongbing (HLB), also known as citrus greening, greatly 
threatens the citrus industry worldwide. HLB is infected by a 
bacterium and spread by the insect vector named psyllid 
(Diaphorina citri). When obvious symptoms can be seen, the only 
treatment for the infected trees is cutting off by now, due to no 
treatment was found up to now. To achieve earlier detection 
avoiding more healthy trees to be infected, a study on this was 
carried out using high-resolution images from UAVs. High-
resolution images from a UAV uploaded multi-bands (from 530 
to 900nm) sensor and lower resolution images derived from an 
aircraft were compared, for the detection accuracy. Results shows 
that both the two sensing designs is capable of detecting HLB 
disease at 710 nm reflectance or with NIR-R index values. In 
addition, detection based on the dataset from UAVs has a better 
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performance, with detection accuracies lie in the range of 67-85% 
(Garcia-Ruiz et al. 2013). 
 
Earlier, pesticides spraying mainly relies on manual labour. 
UAVs with electric sprayer opens the opportunities to save 
labour work. More recent, an evaluation for UAV spraying and 
manual spraying was demonstrated. Different effects on the 
control against citrus leafminer (Phyllocnistis Citrella Stainton) 
and the  differentiation of cost under diverse citrus tree shapes 
were studied. Good results showed that UAV spraying is more 
efficient, with lower cost (Zhang et al. 2017). 
 
Statistical analysis combined with standard analysis of variance 
normally benefits checking out good indicators for disease 
detection and severity levels discrimination (Calderon et al. 
2013). After seven vegetation indices were calculated, regression 
analysis was employed for the features extraction. For 
classification assessment, support vector machine(SVM) was 
found to be better, compared with linear SVM, linear 
discriminant analysis (Garcia-Ruiz et al. 2013). 
 
3.5 Health status  

Nitrogen is an essential factor for fruit crops growth, i.e., nitrogen 
had an impact on the crops vigor and yield in a pear orchard. Two 
reflectance measurements were demonstrated, one is canopy-
scale reflectance measurement with the contribution of UAVs, 
the other is leaf-scale measurement in laboratory level. For the 
canopy-scale measurement, a result for root mean square error 
(RMSE) value is 0.24%N, resulted in a new index, modified 
canopy chlorophyII Content Index, which provided a support for 
spatial variation of leaf N concentration (Perry et al. 2018). In a 
thermal image, if different images indicate different temperature 
values for a same location in the terrain, thermal drift happens. 
Although thermal sensors attached to a UAV could produce a 
good assessment for water status in orchards, most of the sensors 
applied with no temperature control unit could not fulfil the 
requirements for thermal images accuracy, lower than 1℃. Based 
on redundant information obtained from multiple overlapping 
images, a correction methodology was developed. The novel 
method yielded an accuracy greater than 1℃, compared with 
existing methodology which needs additional in-flight 
calibration (Mesas-Carrascosa et al. 2018). 
 
Image processing and analysis were employed for the canopy 
reflectance measurement, specifically, for the nitrogen status 
estimation in a pear orchard (Perry et al. 2018). For thermal drift 
correction, six mathematical correction models were build up, 
and a line method defines the relationship between sensor 
temperature and absolute temperature was applied (Mesas-
Carrascosa et al. 2018). 
 
 

4. DISCUSSIONS 

In the articles previously introduced, most studies focus on the 
use of resources efficiency in orchards, such as monitoring water 
status to guide precision irrigation. The reasons for this are 
related to the close relationship between the fruit industry and 
water resources, and the trend of global water shortage. However, 
correlation between vegetation indices and other fruits also needs 
to be quantified (Mesas-Carrascosa et al. 2018). Secondly, more 
investigations are about the monitoring of biophysical 
information of fruit crops, which is the most basic and most 
important part of the precise management of orchard. On this 
basis, the monitoring research on the nutritional status of fruit 
trees is also showing an increasing trend, which is not only 

important for increasing the output of fruit industry, but also 
important for guiding the use of chemical fertilizers and 
pesticides. Of course, for the low cost of color camera detection, 
research on determining the optimal harvest time for orchard 
yield estimation has also increased. So far, the state of early 
warning monitoring research on fruit tree diseases has not shown 
an objective trend. Analysis of the reasons may be due to the fact 
that most fruit tree diseases have no fatal effects, but like HLB 
disease, because of its fatal impact on the related fruit industry 
has also attracted more researchers attention. In addition, the 
complexity of pathological analysis of disease detection is also 
an important factor restricting related research. In summary, 
based on the biophysical information monitoring of fruit trees, 
UAVs have a very promising application prospect in the orchard 
precise management because of their fast, efficient and low 
monitoring costs. 
 
 

5. OUTLOOK 

Overall the use of UAVs is largely underutilized in orchard 
management. Despite this, with the support of the new 
agricultural aviation policy, the global application of UAVs will 
continue to increase, and growers and fruit industry companies 
can benefit from the high efficiency in orchard management. Of 
course, the biggest beneficiary is the consumer. However, UAVs 
and a variety of sensors that can be equipped to UAVs 
manufacturers must reduce costs to benefit more people and more 
industries. At the same time, the detection and identification of 
some of the deadly diseases of fruit trees and the challenges of 
UAV-based precision spray systems cannot be ignored. Although 
agricultural drones have been successfully used in some countries, 
the application cost is still an important obstacle to the 
widespread application of UAVs in the precision management of 
orchards. In addition, the accuracy of UAVs in detection and 
monitoring applications is severely affected by uncertainties and 
variable conditions in the environment and is a limiting condition 
for their application. 
 
The application scenarios for future UAVs will be a combination 
of aerial remote sensing, real-time image processing and 
variable-rate aerospace applications. The monitoring system 
carried by UAVs processes the aerial image in real time to 
retrieve and diagnose fruit trees, soil, environmental information, 
and then respond accordingly to various automated systems, such 
as using variable rate spraying for individual fruit trees. In the 
context of multidisciplinary cross-applications, computer 
graphics technology will be able to provide a digital map of 
individual fruit trees in an orchard using automatic navigation, 
which is not out of reach. In addition, orchard application 
services provided by local governments, agricultural 
cooperatives and professional companies may be a trend. 
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